

USB	Complete:	The	Developer’s	Guide,	Fifth	Edition
by	Jan	Axelson
Copyright	1999-2015	by	Janet	L.	Axelson
All	rights	reserved.	No	part	of	the	contents	of	this	book,	except	the	program	code,	may	be	reproduced	or
transmitted	 in	 any	 form	or	by	 any	means	without	 the	written	permission	of	 the	publisher.	The	program
code	may	be	stored	and	executed	in	a	computer	system	and	may	be	incorporated	into	computer	programs
developed	by	the	reader.
The	information,	computer	programs,	schematic	diagrams,	documentation,	and	other	material	in	this	book
are	provided	“as	is,”	without	warranty	of	any	kind,	expressed	or	implied,	including	without	limitation	any
warranty	concerning	the	accuracy,	adequacy,	or	completeness	of	the	material	or	the	results	obtained	from
using	the	material.	Neither	the	publisher	nor	the	author	shall	be	responsible	for	any	claims	attributable	to
errors,	 omissions,	 or	 other	 inaccuracies	 in	 the	material	 in	 this	 book.	 In	 no	 event	 shall	 the	 publisher	 or
author	 be	 liable	 for	 direct,	 indirect,	 special,	 incidental,	 or	 consequential	 damages	 in	 connection	with,	 or
arising	out	of,	the	construction,	performance,	or	other	use	of	the	materials	contained	herein.
Many	of	the	products	and	company	names	mentioned	herein	are	the	trademarks	of	their	respective	holders.
PIC	and	MPLAB	are	registered	trademarks	of	Microchip	Technology	Inc.	in	the	U.S.A.	and	other	countries.

Published	by	Lakeview	Research	LLC,	5310	Chinook	Ln.,	Madison	WI	53704
janaxelson.com
Distributed	by	Independent	Publishers	Group	(ipgbook.com).
14	13	12	11	10	9	8	7	6	5	4	3	2	1

Printed	and	bound	in	the	United	States	of	America
ISBN13	978-1-931448-29-1

http://janaxelson.com
http://ipgbook.com

Contents

Introduction
1	USB	Basics

Uses	and	limits
Benefits	for	users
Benefits	for	developers
Addressing	USB’s	limits
USB	and	Ethernet
USB	and	Thunderbolt

Evolution	of	an	interface
USB	1.0
USB	1.1
USB	2.0
USB	2.1
USB	3.0
USB	3.1
Embedded	Host	and	On-The-Go

Bus	components
Topology
Bus	speed	considerations
Terminology

Division	of	labor

Host	responsibilities
Device	responsibilities
Bus	speeds	and	data	throughput

Developing	a	device
Components
Tools	for	developing
Steps	in	developing	a	project

USB	3.1	essentials
Features
Compatibility
Cables
Power

2	Inside	USB	Transfers
Transfer	basics

Essentials
Purposes	for	communication
Managing	data	on	the	bus

Elements	of	a	transfer
Endpoints:	the	source	and	sink	of	data
Transaction	types
Pipes:	connecting	endpoints	to	the	host
Transfer	types
Stream	and	message	pipes
Initiating	a	transfer

USB	2.0	transactions
Transaction	phases
Packet	sequences
Timing	constraints	and	guarantees
Split	transactions

Ensuring	successful	transfers
Status	and	control
Reporting	the	status	of	control	transfers
Error	checking

Enhanced	SuperSpeed	transactions

Packet	types
Transferring	data
Link	Management	Packets

3	A	Transfer	Type	for	Every	Purpose
Control	transfers

Availability
Structure
Data	size
Speed
Detecting	and	handling	errors
Device	responsibilities

Bulk	transfers
Availability
Structure
Data	size
Speed
Detecting	and	handling	errors
Device	responsibilities

Interrupt	transfers
Availability
Structure
Data	size
Speed
Detecting	and	handling	errors
Device	responsibilities

Isochronous	transfers
Availability
Structure
Data	size
Speed
Detecting	and	handling	errors
Device	responsibilities

More	about	time-critical	transfers
Bus	bandwidth

Device	capabilities
Host	capabilities
Host	latencies

4	Enumeration:	How	the	Host	Learns	about	Devices
Events	and	requests

Getting	to	the	Configured	state
Device	removal
Tips	for	successful	enumeration

Descriptors
Types
Device
Device_qualifier
Configuration
Other_speed_configuration
Interface	association
Interface
Endpoint
SuperSpeed	endpoint	companion
SuperSpeedPlus	isochronous	endpoint	companion
String
Binary	device	object	store	(BOS)	and	device	capability
OTG	descriptor
Microsoft	OS	descriptors
Updating	descriptors	to	USB	2.0
Updating	descriptors	to	USB	3.1

5	Control	Transfers:	Structured	Requests	for	Critical	Data
Elements	of	a	control	transfer

Setup	stage
Data	stage
Status	Stage
Handling	errors
Device	firmware

Standard	requests
Get	Status

Clear	Feature
Set	Feature
Set	Address
Get	Descriptor
Set	Descriptor
Get	Configuration
Set	Configuration
Get	Interface
Set	Interface
Synch	Frame
Set	SEL
Set	Isochronous	Delay

Other	requests
Class-specific	requests
Vendor-defined	requests

6	Chip	Choices
Components	of	a	USB	device

Inside	a	USB	2.0	controller
Other	device	components

Simplifying	device	development
Device	requirements
Documentation	and	example	code
Host	driver
Development	boards

USB	microcontrollers
Microchip	PIC18
Cypress	EZ-USB
ARM	processors

Controllers	that	interface	to	CPUs
Maxim	MAX3420E
PLX	Technology	USB	3380
FTDI	interface	chips

7	Device	Classes
Purpose

Approved	specifications
Elements	of	a	class	specification

Defined	classes
Audio
Audio/Video
Billboard
Communications
Content	security
Device	firmware	upgrade
Human	interface
IrDA	bridge
Mass	storage
Personal	healthcare
Printer
Smart	card
Still	image	capture
Test	and	measurement
Video
Classes	defined	by	other	specifications

Implementing	non-standard	functions
Choosing	a	driver
Using	a	generic	driver
Converting	from	RS-232
Converting	from	the	parallel	port
Connecting	two	PCs

8	How	the	Host	Communicates
Device	drivers

The	layered	driver	model
User	and	kernel	modes

Inside	the	layers
Applications
User-mode	client	drivers
Kernel-mode	client	drivers

Low-level	host	drivers

USB	3.0	drivers
USB	2.0	drivers

Writing	drivers
Kernel	mode
User	mode
Testing	tools

Using	GUIDs
Device	setup	GUIDs
Device	interface	GUIDs

9	Matching	a	Driver	to	a	Device
Using	Device	Manager

Viewing	devices
Property	pages

Device	information	in	the	registry
The	hardware	key
The	class	key
The	driver	key
The	services	key

Using	INF	files
Driver	signing	requirements
File	structure
Inside	an	INF	file

Using	device	identification	strings
Finding	a	match
When	to	provide	an	INF	file

Tools	and	diagnostic	aids
Tips	for	using	INF	files
What	the	user	sees

10	Detecting	Devices
A	brief	guide	to	calling	API	functions

Managed	and	unmanaged	code
Managing	data

Finding	a	device
Obtaining	the	device	interface	GUID

Requesting	a	pointer	to	a	device	information	set
Identifying	a	device	interface
Requesting	a	structure	with	the	device	path	name
Extracting	the	device	path	name
Closing	communications

Obtaining	a	handle
Requesting	a	communications	handle
Closing	the	handle

Detecting	device	attachment	and	removal
Using	WMI
Adding	a	handler	for	newly	arrived	devices
Detecting	the	target	device
Adding	a	handler	for	removed	devices

11	Human	Interface	Devices:	Capabilities
What	is	a	HID?

Hardware	requirements
Firmware	requirements

Descriptors
The	HID	interface
HID	class	descriptor
Report	descriptors

HID-specific	requests
Get	Report
Get	Idle
Get	Protocol
Set	Report
Set	Idle
Set	Protocol

Transferring	data
Writing	firmware
Tools

12	Human	Interface	Devices:	Reports
Report	structure

Control	and	data	item	values

Item	format
The	Main	item	type

Input,	Output,	and	Feature	items
Collections

The	Global	item	type
Identifying	the	report
Describing	the	data’s	use
Converting	units
Converting	raw	data
Describing	the	data’s	size	and	format
Saving	and	restoring	Global	items

The	Local	item	type
Physical	descriptors
Padding

13	Human	Interface	Devices:	Host	Application
HIDClass	support	routines

Requesting	information	about	the	HID
Sending	and	receiving	reports
Providing	and	using	report	data
Managing	HID	communications

Identifying	a	device
Reading	the	Vendor	ID	and	Product	ID
Getting	a	pointer	to	device	capabilities
Getting	the	device’s	capabilities
Getting	capabilities	of	buttons	and	values

Sending	and	receiving	reports
Sending	Output	reports	with	interrupt	transfers
Reading	Input	reports	with	interrupt	transfers
Writing	Feature	reports
Writing	Output	reports	with	control	transfers
Reading	Feature	reports
Reading	Input	reports	with	control	transfers
Closing	communications

14	Using	WinUSB	for	Vendor-defined	Functions

Capabilities	and	limits
Device	requirements
Host	requirements
Driver	requirements
Device	firmware

Accessing	the	device
Creating	a	SafeWinUsbHandle
Obtaining	a	WinUSB	handle
Requesting	an	interface	descriptor
Identifying	the	endpoints
Setting	pipe	policies
Writing	bulk	and	interrupt	data
Reading	bulk	and	interrupt	data
Using	vendor-defined	control	transfers
Selecting	an	alternate	interface
Writing	data:	isochronous	transfers
Reading	data:	isochronous	transfers
Closing	communications

15	Using	WinUSB’s	System	INF	File
Microsoft	OS	1.0	descriptors

Microsoft	OS	string	descriptor
Extended	compat	ID	OS	feature	descriptor
Extended	properties	OS	feature	descriptor
Enumeration

Microsoft	OS	2.0	descriptors
Microsoft	OS	2.0	platform	capability	descriptor
Microsoft	OS	2.0	descriptor	set
Enumeration

16	Using	Hubs	to	Extend	and	Expand	the	Bus
USB	2.0

The	hub	repeater
The	transaction	translator
The	hub	controller
Speed

Maintaining	active	links
USB	3.1

Bus	speeds
SuperSpeed
SuperSpeedPlus
Managing	traffic

The	hub	class
Hub	descriptors
Hub	class	requests

17	Managing	Power
Power	options

Using	bus	current
Bus	voltage
Bus-powered	devices

Hub	power
Power	sources
Over-current	protection
Power	switching

Conserving	power
USB	2.0	Link	Power	Management
Suspend
Sleep
Enhanced	SuperSpeed	power	management

Advanced	power	delivery	capabilities
Requirements
Negotiating	power
Role	swapping
Vendor-defined	messages

Power	management	under	Windows
Computer	power	states
Utilities

Battery	charging
Charger	types
Charger	detection

Charging	dead	or	weak	batteries

18	Testing	and	Debugging
Tools

Hardware	protocol	analyzers
Software	protocol	analyzers
Traffic	generators

Compliance	testing
Checklists
USB	Command	Verifier	software
Device	Framework	tests
Interoperability	tests
Current	measurement
Electrical	tests
Certified	USB	Logo

Windows	hardware	certification
Windows	hardware	certification
Driver	signatures
Test-signing	a	driver
Microsoft	USB	Test	Tool	(MUTT)

19	Packets	on	the	Bus
USB	2.0

Low	speed	and	full	speed	bus	states
High	speed	bus	states
Data	encoding
Staying	synchronized
Timing	accuracy
Packet	format
Inter-packet	delay
Test	modes

USB	3.1
Data	scrambling
Encoding
Link	layer
Reset

Signaling
Negotiating	speed

20	Electrical	and	Mechanical	Interface
USB	2.0

Transceivers
Cables	and	connectors

USB	3.1
Transmitters	and	receivers
Cables	and	connectors

USB	Type-C	cables
Benefits
Cables	and	connectors
New	cable	connections
Data	routing

Other	ways	to	connect
Inter-Chip
Isolated	interfaces
Long	distance	links
Going	wireless

21	Hosts	for	Embedded	Systems
The	Targeted	Host

The	Targeted	Peripheral	List
Targeted	Host	types
Bus	current
Turning	off	bus	power
The	Micro-AB	receptacle

Embedded	Hosts
Differences	from	conventional	host	ports
Host	connectors
Functioning	as	a	USB	device

OTG	devices
Requirements
Cables	and	connectors
The	A-Device	and	B-Device

The	OTG	descriptor
Host	Negotiation	Protocol	(HNP)
Role	Swap	Protocol

Choosing	a	development	platform
Comparing	options
Embedded	PC
General-purpose	microcontroller
Interface	chip
Host	module

Introduction
This	book	is	for	developers	who	are	involved	with	designing	or	programming
devices	that	use	the	Universal	Serial	Bus	(USB)	interface.	If	you	are	a	hardware
designer,	if	you	write	firmware	that	resides	inside	USB	devices,	or	if	you	write
applications	that	communicate	with	devices,	this	book	is	for	you.
The	USB	interface	is	versatile	enough	to	serve	just	about	any	device	function.
Familiar	USB	peripherals	 include	mice,	keyboards,	drives,	printers,	 speakers,
and	cameras.	USB	is	also	suitable	 for	data-acquisition	units,	control	systems,
and	other	devices	with	specialized	functions,	including	one-of-a-kind	designs.
The	right	choices	of	device	hardware,	software	drivers	and	development	tools
and	 techniques	 can	 help	 you	 design	 devices	 that	 perform	 their	 functions
without	errors	or	user	aggravation.	This	book	will	guide	you	along	the	way.

What’s	Inside
The	USB	specifications	are	the	ultimate	authority	on	the	USB	interface,	but	by
design	 the	specification	documents	omit	 implementation	 tips,	example	code,
and	information	that	applies	to	specific	device	hardware,	software,	and	other
tools	and	products.	This	book	bridges	the	gap	between	the	specifications	and
real-world	designs.
These	are	some	of	the	questions	this	book	answers:

How	can	I	decide	if	my	device	should	use	a	USB	interface?	Find	out	whether
your	device	should	use	USB	or	another	interface.	If	the	choice	is	USB,	you’ll
learn	 how	 to	 decide	 which	 of	 USB’s	 five	 speeds—including	 USB	 3.1’s
SuperSpeed	 and	 SuperSpeedPlus—and	which	 of	USB’s	 four	 transfer	 types
are	appropriate	for	your	application.
What	controller	hardware	should	my	device	use?	Every	USB	device	contains

an	intelligent	controller	to	manage	USB	communications.	A	variety	of	chip
companies	 offer	 controller	 hardware	 with	 different	 architectures	 and
abilities.	This	book	will	help	you	select	a	controller	based	on	your	project’s
needs,	 your	 budget,	 and	 your	 preferences	 for	 chip	 architecture,
programming	languages,	and	tools.
How	can	applications	 communicate	with	my	devices?	On	PCs,	applications
access	a	USB	device	by	communicating	with	the	driver	the	operating	system
has	assigned	to	the	device.	You’ll	learn	if	your	device	can	use	a	class	driver
provided	by	the	host	system’s	operating	system.	For	devices	that	don’t	fit	a
supported	 class,	 you	 can	 explore	 options	 such	 as	 Microsoft’s	 WinUSB
driver,	other	generic	drivers,	and	custom	drivers.	Example	code	shows	how
to	detect	and	communicate	with	devices	from	Visual	C#	applications.
What	firmware	does	my	device	need	to	support	USB	communications?	Find
out	 how	 to	 write	 firmware	 that	 enables	 your	 device	 to	 respond	 to	 USB
requests	and	events	and	exchange	data	for	any	purpose.
Does	my	device	need	 its	own	power	supply?	The	USB	 interface	can	provide
power	 to	devices,	 including	 charging	 current	 for	battery-powered	devices.
Learn	how	to	determine	if	a	design	can	obtain	all	of	its	power	from	the	bus,
how	to	meet	USB’s	requirements	for	conserving	power,	and	how	to	charge
battery-powered	devices	from	the	bus.
How	can	I	implement	wireless	communications?	A	variety	of	USB	and	other
industry	 standards	 and	 technologies	 enable	USB	 devices	 to	 communicate
wirelessly.	Learn	which	technology	is	right	for	your	device.
How	can	my	device	access	other	USB	devices?	Find	out	how	to	develop	a	host
for	an	embedded	system	or	a	USB	On-The-Go	device	that	can	function	as
both	 a	 USB	 device	 and	 a	 limited-capability	 host	 that	 accesses	 other	 USB
devices.
How	can	 I	 ensure	 reliable	operation?	All	devices	must	 respond	 to	 requests
and	other	events	on	the	USB	port.	The	host	computer	must	detect	attached
devices,	locate	appropriate	drivers,	and	exchange	data	with	the	devices.	This
book	 provides	 tips,	 example	 code,	 and	 information	 about	 debugging
software	and	hardware	to	help	with	these	tasks.

To	understand	the	material	 in	the	book,	 it’s	helpful	 to	have	some	experience
with	 digital	 logic,	 application	 programming	 for	 PCs	 and	 writing	 embedded
code	for	peripherals.	You	don’t	have	to	know	anything	about	USB.

What’s	New
The	core	of	USB	has	remained	much	the	same	since	the	release	of	USB	1.0	in
1996.	But	 the	 interface	has	expanded	 to	 support	 faster	bus	 speeds,	 improved
power	 delivery	 and	 management,	 more	 device	 classes,	 wireless
communications,	support	for	embedded	systems	that	access	USB	devices,	and
more.	New	and	improved	chips	and	development	tools	have	eased	the	task	of
developing	devices	and	the	software	to	access	them.
This	Fifth	Edition	is	revised	and	updated	throughout.	New	topics	 include	an
introduction	 to	USB	 3.1	 and	 SuperSpeedPlus,	 enhanced	 power	 delivery	 and
power	 management,	 new	 abilities	 using	 USB	 Type-C	 connectors,	 designing
devices	that	use	the	WinUSB	driver	without	requiring	a	vendor-provided	INF
file,	new	device	classes,	and	how	to	use	free	debugging	tools.
Much	of	the	information	in	this	book	applies	to	any	device	hardware	and	host
computer.	The	example	code	for	applications	uses	Visual	C#.

Updates	and	More
To	 find	 out	 more	 about	 developing	 USB	 devices	 and	 the	 software	 that
communicates	 with	 them,	 I	 invite	 you	 to	 visit	 my	 website,	 janaxelson.com
You’ll	 find	 code	 examples	 and	 links	 to	 articles,	 products,	 tools,	 and	 other
information	related	to	developing	USB	devices.	The	website	includes	a	PORTS
forum	 where	 you	 can	 ask	 questions	 and	 discuss	 topics	 related	 to	 USB	 and
other	interfaces.
Corrections	and	updates	to	the	book	will	also	be	available	at	janaxelson.com.	If
you	find	an	error,	please	let	me	know.

Example	Code
The	.NET	example	code	in	this	book	is	compatible	with	the	.NET	Framework
Version	4.5	and	later.
Example	applications	are	available	for	free	download	from	janaxelson.com.

Acknowledgments
USB	is	much	too	big	a	topic	to	write	about	without	help.	I	have	many	people
to	thank.
My	 technical	 reviewers	 provided	 feedback	 that	 helped	 make	 the	 book	 as

http://janaxelson.com
http://janaxelson.com
http://janaxelson.com

complete	and	accurate	as	possible.	With	that	said,	every	error	in	this	book	is
mine	and	mine	alone.	For	their	help	with	this	edition,	a	big	thanks	to	Paul	E.
Berg,	Lane	Hauck,	Kosta	Koeman,	Dhanraj	Rajput,	and	Rajaram	Regupathy.
Others	I	want	to	thank	for	their	support	are	Traci	Donnell	of	the	USB-IF,	John
Hyde	 of	usb-by-example.com,	 and	 Jeff	 Ravencraft	 and	 Brad	 Saunders	 of	 the
USB	3.0	Promoter	Group.
For	 their	 help	 with	 the	 previous	 editions	 this	 edition	 builds	 on,	 thanks	 to
Phyllis	Brown,	Greg	Burk,	 Joshua	Buergel,	Gary	Crowell,	 Fred	Dart,	Wendy
Dee,	Michael	DeVault,	 Lucio	DiJasio,	 Keith	Dingwall,	Dave	Dowler,	 Robert
Dunstan,	Mike	 Fahrion,	 David	 Flowers,	 John	 Garney,	 David	 Goll,	 John	M.
Goodman,	Laurent	Guinnard,	Tim	Harvey,	Blake	Henry,	Rahman	Ismail,	Bill
Jacobus,	David	James,	Christer	Johansson,	Geert	Knapen,	Matt	Leptich,	Alan
Lowne,	 Jon	 Lueker,	 Brad	 Markisohn,	 Dr.	 Bob	 Miller,	 Rich	 Moran,	 Bob
Nathan,	Walter	Oney,	Amar	Rajan,	Marc	Reinig,	Rawin	Rojvanit,	Glenn	M.
Roberts,	Jeff	Schmoyer,	Robert	Severson,	Craig	R.	Smith,	and	Dave	Wright.
I	 hope	 you	 find	 the	 book	 useful	 and	 welcome	 your	 comments	 at
jan@janaxelson.com.

Abbreviations
This	book	uses	the	abbreviations	and	symbols	below	to	express	quantities	and
units:

Multipliers

Symbol Description Multiplier

p pico 10-12

n nano 10-9

μ micro 10-6

m milli 10-3

k kilo 103

K kilo 210	(1024)

M mega 106

G giga 109

Electrical

http://usb-by-example.com
mailto:jan@janaxelson.com

Symbol Description

A ampere
F farad

ohm
V volt
W Watt

Time

Symbol Description

s second
Hz Hertz	(cycles	per	second)

Distance

Symbol Description

m meter
mm millimeter

Data

Symbol Description

b bit
B byte
bps bits	per	second

Number	Systems
Binary	 values	 have	 a	 trailing	 subscript	 b.	 Example:	 10100011b	Hexadecimal
values	have	a	leading	0x.	Example:	0xA3	All	other	values	are	decimal.

1

USB	Basics
USB	 is	 the	 most	 successful	 personal-computer	 interface	 ever.	 PCs,	 tablets,
phones,	and	other	devices	have	USB	ports	that	can	connect	to	everything	from
keyboards,	mice,	and	game	controllers	to	cameras,	printers,	drives,	audio	and
video	 devices,	 and	 more.	 USB	 is	 versatile,	 reliable,	 fast,	 power-conserving,
inexpensive,	 and	 supported	 by	 operating	 systems	 for	 computers	 large	 and
small.
With	 continued	 improvements	 and	 enhancements	 such	 as	 SuperSpeedPlus
and	more	flexible	power	delivery,	USB	is	likely	to	continue	to	dominate	as	the
interface	of	choice	for	an	ever-expanding	range	of	devices.
This	chapter	introduces	USB,	including	its	advantages	and	limits,	some	history
about	 the	 interface	 and	 recent	 enhancements	 to	 it,	 and	 a	 look	 at	 what’s
involved	in	designing	and	programming	a	device	with	a	USB	interface.

Uses	and	limits
USB	is	a	likely	solution	any	time	you	want	to	use	a	computer	to	communicate
with	 a	 device.	 The	 computer	 can	 be	 a	 conventional	 PC	 or	 a	 device	with	 an
embedded	 processor.	 Some	 PCs	 have	 internal	 devices,	 such	 as	 fingerprint
readers,	 that	 connect	 via	 USB.	 The	 USB	 interface	 is	 suitable	 for	 mass-
produced	consumer	devices	as	well	as	specialized,	small-volume	products	and
one-of-a-kind	projects.
To	be	successful,	an	interface	has	to	please	two	audiences:	the	users	who	will
buy	 the	 devices	 and	 the	 developers	 who	 design	 the	 hardware	 and	write	 the
code	 that	 communicates	 with	 the	 devices.	 USB	 has	 features	 to	 please	 both
groups.

Benefits	for	users
From	 the	 user’s	 perspective,	 the	 benefits	 of	 USB	 are	 ease	 of	 use,	 fast	 and
reliable	data	transfers,	low	cost,	and	power	conservation.	Table	1-1	compares

USB	with	other	interfaces.

Easy	to	use
Ease	 of	 use	 was	 a	major	 design	 goal	 for	 USB.	 The	 features	 of	 the	 interface
include:
One	 interface	 for	many	devices.	USB	 is	 versatile	 enough	 for	 just	 about	 any
standard	 peripheral	 function	 as	 well	 as	 devices	 with	 specialized	 functions.
Instead	 of	 having	 a	 different	 connector	 and	 cable	 type	 for	 each	 peripheral
function,	one	interface	serves	many.
Many	ports.	 A	 typical	 PC	 has	multiple	USB	 ports,	 and	 hubs	 enable	 adding
more	ports.
Hot	 pluggable.	 Users	 can	 connect	 and	 disconnect	 a	 USB	 device	 whenever
they	 want,	 whether	 or	 not	 the	 system	 and	 device	 are	 powered,	 without
damaging	 the	 PC	 or	 device.	 The	 operating	 system	 detects	 when	 a	 device
attaches.
Automatic	configuration.	When	a	user	 connects	 a	USB	device	 to	a	PC,	 the
operating	system	detects	the	device	and	loads	the	appropriate	software	driver.
The	first	time	the	device	connects,	the	operating	system	may	prompt	the	user
to	identify	a	driver,	but	other	than	that,	installation	is	automatic.	Users	don’t
need	to	reboot	before	using	a	new	device.
No	user	settings.	USB	devices	don’t	have	user-selectable	settings	such	as	port
addresses	and	interrupt-request	(IRQ)	lines,	so	users	have	no	jumpers	to	set	or
configuration	utilities	to	run.
No	power	supply	required	(sometimes).	The	USB	interface	includes	power-
supply	and	ground	lines	that	provide	a	nominal	+5V	from	the	PC	or	a	hub.	A
device	that	requires	up	to	500	mA	(USB	2.0)	or	900	mA	(USB	3.1)	can	draw	all
of	 its	 power	 from	 the	 bus	 instead	 of	 using	 a	 dedicated	 supply.	 Systems	 that
support	the	USB	Power	Delivery	Rev.	2.0,	v1.0	specification	can	provide	up	to
5A	at	voltages	as	high	as	20V	to	devices.
Convenient	 cables.	 USB	 connectors	 are	 small	 and	 compact	 compared	 to
connectors	 used	 by	 other	 interfaces	 such	 as	 RS-232.	 To	 ensure	 reliable
operation,	the	USB	specification	defines	electrical	requirements	for	cables	and
connectors.	A	cable	segment	can	be	as	long	as	5m	depending	on	bus	speed	and
connector	type.	With	hubs,	again	depending	on	bus	speed	and	connector	type,
a	device	can	be	as	far	as	30	m	from	its	host	computer.	USB	Type-C	connectors

bring	two	advances	for	user	convenience:	the	connectors	can	attach	either	side
up,	and	both	ends	of	the	cable	are	identical	so	users	don’t	need	to	figure	out
which	end	goes	where.

Table	1-1:	USB	is	more	flexible	than	other	interfaces,	which	often	target	a	specific
use.
Interface Type Number	of

Connections
(maximum)

Distance
(maximum
meters)

Speed
(maximum
bps)

Typical	Use

USB	3.1 dual	simplex
serial

127	per	bus 1	(5	m	with	5
hubs)

10	G Mass	storage,	video

USB	3.0 dual	simplex
serial

127	per	bus 2	(10	m	with	5
hubs)

5	G Mass	storage,	video

USB	2.0 half	duplex
serial

127	per	bus 5	(30	m	with	5
hubs)

1.5	M,	12	M,
480	M

Keyboard,	mouse,
drive,	speakers,
printer,	camera

CAN	bus serial Varies	with
hardware

500	@	125	kbs 1M	@40	m Automotive

eSATA serial 2	(port
multiplier
supports	16)

2 6	G Drives

Ethernet serial 1024 500,	varies	with
speed,	longer
using	fiber

10	G General	network
communications

IEEE-1394
(FireWire)

serial 64 100 3.2	G Video,	mass	storage

IEEE-488
(GPIB)

parallel 15 20 8	M Instrumentation

I2C synchronous
serial

1007 Several	meters,
varies	with	load
&	speed

3.4	M Embedded	systems,
general	purpose

Microwire synchronous
serial

8 3 2	M Embedded	systems,
general	purpose

MIDI serial	current
loop

2	(more	with
MIDI	thru
ports)

15 31.25	k Music,	show
control

Parallel	printer
port

parallel 2	(8	with	daisy-
chain	support)

3–10 16	M Printers,	scanners,
disk	drives

RS-232
(EIA/TIA-232)

asynchronous
serial

2 15–30 20	k	(higher
with	some
hardware)

Embedded	systems,
general	purpose

RS-485
(TIA/EIA-485)

asynchronous
serial

32	unit	loads
(up	to	256
devices
depending	on
hardware)

1200 10	M Data	acquisition
and	control	systems

SPI synchronous
serial

Varies	with
hardware

Several	meters,
varies	with	load
and	speed

2	M	or	higher
depending	on
hardware

Embedded	systems,
general	purpose

Thunderbolt full	duplex
serial

7 3	m	(copper),
100	m	(optical)

10	G	(v1),	20	G
(v2)

Mass	storage,	video

Wireless	options.	 USB	 originated	 as	 a	 wired	 interface,	 but	 technologies	 are
available	for	wireless	communications	with	USB	devices.

Multiple	speeds
USB	 supports	 five	 bus	 speeds:	 low	 speed	 (1.5	Mbps),	 full	 speed	 (12	Mbps),
high	speed	(480	Mbps),	SuperSpeed	(5	Gbps),	and	SuperSpeedPlus	(10	Gbps).
In	 PCs,	 USB	 3.1	 host	 controllers	 support	 all	 five	 speeds,	 USB	 3.0	 host
controllers	 support	 all	 but	 SuperSpeedPlus,	 and	 USB	 2.0	 host	 controllers
support	 low,	 full,	 and	high	 speeds.	 Embedded	 systems	 that	 function	 as	USB
hosts	can	support	fewer	speeds	depending	in	part	on	which	devices	the	system
supports.
The	 bus	 speed	 determines	 the	 rate	 that	 information	 travels	 on	 the	 bus.	 In
addition	 to	 application	 data,	 the	 bus	 must	 carry	 status,	 control,	 and	 error-
checking	 information,	 and	 multiple	 devices	 can	 share	 a	 bus.	 Thus,	 the
throughput	 for	an	 individual	device’s	 application	data	 is	 somewhat	 less	 than
the	bus	speed.
The	USB	1.0	specification	defined	low	and	full	speeds.	Full	speed	was	intended
for	most	 peripherals	 that	 had	 been	 using	 RS-232	 (serial)	 and	 parallel	 ports.
Full-speed	 data-transfer	 rates	 are	 comparable	 to	 the	 speeds	 of	 these	 earlier
interfaces.	 Mice	 tend	 to	 use	 low	 speed	 because	 the	 less	 stringent	 cable
requirements	 allow	more	 flexible	 cables.	 Low-speed	devices	may	 have	 lower
manufacturing	 cost	 due	 in	 part	 to	 cheaper	 cables.	 High	 speed	 became	 an
option	with	the	release	of	USB	2.0,	USB	3.0	defined	SuperSpeed,	and	USB	3.1
defined	SuperSpeedPlus.

Reliable
USB’s	 reliability	 is	 due	 to	 both	 its	 hardware	 and	 protocols.	 The	 hardware

specifications	for	USB	drivers,	receivers,	and	cables	ensure	an	electrically	quiet
interface	that	reduces	noise	that	could	result	in	data	errors.	The	USB	protocols
enable	 detecting	 errors	 in	 received	 data	 and	 notifying	 the	 sender	 so	 it	 can
retransmit.	 Hardware	 performs	 the	 detecting,	 notifying,	 and	 retransmitting
without	software	or	user	support.

Inexpensive
Because	 the	 host	 computer	 provides	most	 of	 the	 intelligence	 to	 control	 the
interface,	components	for	USB	devices	are	 inexpensive.	A	device	with	a	USB
interface	 is	 likely	 to	 cost	 the	 same	 or	 less	 than	 an	 equivalent	 device	 with	 a
different	interface.

Power	saving
Power-saving	 circuits	 and	 protocols	 reduce	 a	 device’s	 power	 consumption
while	 keeping	 the	 device	 ready	 to	 communicate	 when	 needed.	 Reducing
power	 consumption	 saves	 money,	 helps	 the	 environment,	 and	 for	 battery-
powered	devices,	allows	a	longer	time	between	charges.

Benefits	for	developers
Many	 of	 the	 user	 advantages	 described	 above	 also	 make	 things	 easier	 for
developers.	For	example,	USB’s	cable	standards	and	error	checking	mean	that
developers	 don’t	 have	 to	 specify	 cable	 characteristics	 or	 develop	 error-
checking	protocols.
Other	advantages	help	hardware	designers	who	select	components	and	design
the	circuits	in	devices	and	the	programmers	who	write	firmware	embedded	in
the	devices	and	software	to	communicate	with	devices.

Versatile
USB’s	four	transfer	types	and	five	speeds	make	the	interface	feasible	for	many
types	 of	 peripherals.	USB	has	 transfer	 types	 suited	 for	 exchanging	 large	 and
small	 blocks	 of	 data	 with	 and	 without	 time	 constraints.	 For	 data	 that	 can’t
tolerate	delays,	the	host	computer	can	guarantee	bandwidth.	These	abilities	are
especially	 welcome	 under	 Windows	 and	 other	 desktop	 operating	 systems
where	 accessing	 peripherals	 in	 real	 time	 is	 often	 a	 challenge.	 Although	 the
operating	 system,	 device	 drivers,	 and	 application	 software	 can	 introduce
unavoidable	delays,	USB	makes	it	as	easy	as	possible	to	achieve	transfers	that
are	close	to	real	time	even	on	desktop	systems.

Unlike	other	interfaces,	USB	doesn’t	assign	specific	functions	to	signal	lines	or
make	 other	 assumptions	 about	 how	 the	 system	 will	 use	 the	 interface.	 For
example,	 the	 status	 and	 control	 lines	 on	 the	PC’s	 parallel	 port	were	 defined
with	 the	 intention	of	communicating	with	 line	printers.	USB	makes	no	such
assumptions	and	is	suitable	for	just	about	any	peripheral	type.
USB	 classes	 define	 protocols	 for	 communicating	 with	 common	 peripherals
such	as	printers,	keyboards,	 and	drives.	Developers	 can	program	a	device	 to
conform	to	a	class	specification	instead	of	having	to	reinvent	everything	from
the	ground	up.

Operating	system	support
This	 book	 focuses	 on	Windows	 programming	 for	 PCs,	 but	 other	 operating
systems	 also	 have	 USB	 support,	 including	 Linux,	 Mac	 OSes,	 and	 Android.
Some	real-time	kernels	also	support	USB.
At	the	most	basic	level,	an	operating	system	(OS)	that	supports	USB	must	do
three	things:

Detect	when	devices	are	attached	and	removed	from	the	system.
Communicate	with	newly	attached	devices	to	find	out	how	to	exchange	data
with	them.
Provide	a	mechanism	that	enables	software	drivers	to	pass	communications
between	 the	 USB	 hardware	 and	 applications	 that	 want	 to	 access	 USB
peripherals.

At	a	higher	level,	operating-system	support	may	also	include	class	drivers	that
enable	 applications	 to	 access	 specific	 device	 types.	 If	 the	 operating	 system
doesn’t	 include	 a	 driver	 for	 a	 device,	 the	 device	 vendor	 must	 provide	 the
driver.
Microsoft	 continues	 to	 improve	 and	 add	 to	 the	 class	 drivers	 included	 with
Windows.	 Supported	 device	 types	 include	 human	 interface	 devices
(keyboards,	mice,	game	controllers),	speakers	and	other	audio	devices,	drives,
still-image	 and	 video	 cameras,	 scanners,	 and	 printers.	 Filter	 drivers	 can
support	device-specific	 features	 and	 abilities	within	 a	 class.	Applications	use
Application	 Programming	 Interface	 (API)	 functions	 or	 other	 software
components	to	communicate	with	the	drivers	that	access	devices.
Devices	 that	 have	 vendor-specific	 functions	 can	 sometimes	 use	 a	 supported
class	 such	 as	 the	 communications-device	 or	 human-interface	 device	 class.

Other	 options	 for	 vendor-specific	 functions	 include	 Microsoft’s	 WinUSB
driver	 and	 generic	 drivers	 from	 other	 sources.	 Some	 chip	 companies	 offer
generic	drivers	that	developers	can	use	with	the	provider’s	chips.
Writers	 of	 USB	 device	 drivers	 for	 Windows	 can	 use	 Microsoft’s	 Windows
Driver	Frameworks	(WDF)	libraries	to	simplify	the	task	of	writing	drivers.

Device	support
Every	USB	device	must	include	a	hardware	USB	interface	and	must	respond	to
requests	 that	 identify	 and	 configure	 the	 device.	 Some	 controllers	 perform
some	 or	 all	 of	 these	 functions	 entirely	 in	 hardware	 while	 others	 require
firmware	support.
Many	 USB	 device	 controllers	 are	 based	 on	 popular	 processor	 architectures
such	 as	 ARM	 Holdings’	 ARM,	 Intel	 Corporation’s	 8051,	 or	 Microchip
Technology’s	PIC®.	If	you’re	already	familiar	with	a	chip	architecture	that	has
a	 USB-capable	 variant,	 you	 don’t	 need	 to	 learn	 a	 new	 architecture.	 Other
controllers	provide	a	serial	or	parallel	interface	to	any	external	processor	with
a	 compatible	 interface.	Most	 chip	 companies	 provide	 example	 code	 to	 help
you	get	started.

USB	Implementers	Forum
The	 USB	 Implementers	 Forum,	 Inc.	 (USB-IF)	 (usb.org)	 is	 the	 non-profit
corporation	founded	by	the	companies	that	developed	the	USB	specification.
The	USB-IF’s	mission	 is	 to	 support	 the	 advancement	 and	 adoption	 of	USB
technology.	 To	 that	 end,	 the	 USB-IF	 offers	 information,	 tools,	 and	 testing
support.	The	information	includes	specification	documents,	white	papers,	and
FAQs.	 The	 tools	 include	 software	 and	 hardware	 to	 help	 in	 developing	 and
testing	products.	Support	for	testing	includes	compliance	tests	to	verify	proper
operation	 and	 compliance	 workshops	 where	 developers	 can	 have	 their
products	tested	and	certified	to	display	a	USB	logo.

Addressing	USB’s	limits
All	 of	 USB’s	 advantages	 mean	 that	 the	 interface	 is	 a	 good	 candidate	 for	 a
remarkable	variety	devices.	A	single	interface	can’t	handle	every	task,	but	USB
can	 do	 the	 job	 in	 many	 situations	 that	 at	 first	 might	 seem	 challenging	 or
impossible.

Interface	restrictions

http://usb.org

Limits	of	the	USB	interface	include	distance	constraints,	no	support	for	peer-
to-peer	 communications	 or	 broadcasting,	 and	 lack	 of	 support	 in	 older
hardware	and	operating	systems.
Distance.	 USB	 was	 designed	 as	 a	 desktop-expansion	 bus	 where	 devices	 are
relatively	close	at	hand.	Other	interfaces,	including	RS-485	and	Ethernet,	allow
much	longer	cables.	However,	to	extend	the	distance	between	a	device	and	its
host	 computer,	 a	 USB	 device	 can	 function	 as	 a	 bridge	 to	 a	 long-distance
interface	that	connects	to	the	end	device.
Peer-to-Peer	 Communications.	 With	 a	 few	 exceptions,	 every	 USB
communication	is	between	a	host	computer	and	a	device.	The	host	is	a	PC	or
other	 computer	 that	 contains	 host-controller	 hardware.	 The	 device	 contains
device-controller	hardware.	Hosts	can’t	talk	to	each	other	directly,	and	devices
can’t	 talk	 to	 each	 other	 directly.	 Other	 interfaces,	 such	 as	 Ethernet	 and
Thunderbolt	2,	allow	direct	device-to-device	communication.
USB	provides	 a	partial	 solution	with	USB	On-The-Go	 (OTG)	hardware	 and
protocols.	 An	 OTG	 device	 can	 function	 as	 both	 a	 device	 and	 a	 limited-
capability	host	that	communicates	with	other	devices.
Two	USB	hosts	 can	 communicate	with	 each	 other	 using	 a	 bridge	 cable	 that
contains	two	USB	devices	with	a	shared	buffer.	USB	3.1	defines	a	host-to-host
cable	 for	 SuperSpeed	 and	 SuperSpeedPlus	 debugging	 and	 other	 uses.	 With
driver	support,	this	cable	can	support	host-to-host	communications.
Broadcasting.	USB	doesn’t	 support	 sending	data	 simultaneously	 to	multiple
devices.	 The	 host	 computer	 must	 send	 data	 to	 each	 device	 individually.
Ethernet	supports	broadcasting	to	multiple	devices.
Legacy	Hardware.	Older	“legacy”	computers	and	peripherals	don’t	have	USB
ports,	but	the	need	to	support	legacy	equipment	is	fading	as	these	systems	are
retired.
If	 you	 need	 to	 connect	 a	 legacy	 peripheral	 to	 a	 USB	 port,	 a	 solution	 is	 an
intelligent	adapter	that	converts	between	USB	and	the	older	interface.	Several
sources	 have	 adapters	 for	 use	 with	 peripherals	 with	 RS-232,	 RS-485,	 and
parallel	 ports.	 An	 adapter	 is	 useful	 only	 for	 devices	 that	 use	 protocols
supported	 by	 the	 adapter’s	 driver	 in	 the	 host	 computer.	 For	 example,	most
parallel-port	 adapters	 support	 communications	 only	 with	 printers,	 not	 with
other	 parallel-port	 peripherals.	 RS-232	 adapters	 work	 with	 most	 RS-232
devices.

If	you	want	to	use	a	USB	device	with	a	computer	that	doesn’t	support	USB,	a
solution	is	to	add	USB	capabilities	to	the	computer.	To	do	so,	you	need	to	add
USB	host-controller	hardware	and	use	an	operating	system	that	supports	USB.
The	hardware	is	available	on	expansion	cards	that	plug	into	a	PCI	slot	or	on	a
replacement	motherboard.
If	upgrading	the	PC	to	support	USB	isn’t	feasible,	you	might	think	an	adapter
would	be	available	to	translate	a	peripheral’s	USB	interface	to	the	PC’s	RS-232,
parallel,	or	other	interface.	An	adapter	is	rarely	an	option	when	the	computer
has	 the	 legacy	 interface	 because	 an	 adapter	 that	 contains	 the	 needed	 host-
controller	hardware	and	code	 is	expensive	 to	design	and	manufacture	 for	 its
limited	market.
Even	 on	 new	 systems,	 users	 may	 occasionally	 run	 applications	 on	 older
operating	systems	such	as	DOS.	Without	a	device	driver,	the	operating	system
can’t	access	a	USB	device.	Although	it’s	possible	to	write	a	USB	device	driver
for	 DOS,	 few	 device	 vendors	 provide	 one.	 For	 mice	 and	 keyboards,	 the
system’s	UEFI	or	BIOS	typically	provide	support	to	ensure	that	the	devices	are
usable	any	time,	including	from	within	DOS	and	from	the	setup	screens	that
you	can	view	on	boot-up.

Developer	challenges
For	 developers,	 challenges	 to	 USB	 are	 the	 complexity	 of	 the	 protocols,
operating-system	 support	 for	 some	 applications,	 and	 for	 small-scale
developers,	the	need	to	obtain	a	Vendor	ID.
Protocol	Complexity.	A	USB	device	must	have	the	intelligence	to	respond	to
requests	 and	 other	 events	 on	 the	 bus.	 Device-controller	 chips	 vary	 in	 how
much	 firmware	 support	 they	 require	 to	 perform	USB	 communications.	 For
controllers	that	need	extensive	firmware	support,	example	code	can	provide	a
quick	start.
On	the	host	computer,	applications	communicate	with	class	or	device	drivers
that	 in	 turn	 communicate	 with	 the	 lower-level	 USB	 drivers	 that	 manage
communications	 on	 the	 bus.	 While	 device-driver	 writers	 need	 some
knowledge	of	USB	protocols,	device	drivers	insulate	application	programmers
from	having	to	be	familiar	with	low-level	protocols.
Evolving	Support	in	the	Operating	System.	The	class	drivers	 included	with
Windows	 and	 other	 OSes	 enable	 applications	 to	 communicate	 with	 many
devices.	Often,	you	can	design	a	device	to	use	one	of	the	provided	drivers.	If

not,	you	may	be	able	to	use	or	adapt	a	driver	provided	by	a	chip	company	or
other	 source.	 If	 you	 need	 to	 provide	 your	 own	 driver,	 a	 third-party	 driver
toolkit	can	help	in	developing	the	driver.
Fees.	 The	 USB-IF’s	 website	 provides	 the	 USB	 specifications,	 related
documents,	 software	 for	 compliance	 testing,	 and	 much	 more	 at	 no	 charge.
Anyone	can	develop	USB	software	without	paying	a	licensing	fee.
Every	USB	device	must	contain	a	Vendor	ID	and	a	Product	ID	that	identifies
the	device	 to	 the	operating	system.	To	obtain	 the	rights	 to	use	a	Vendor	ID,
you	can	join	the	USB-IF,	become	a	USB-IF	non-member	logo	licensee,	or	buy
a	Vendor	ID	for	a	1-time	fee.	Each	option	costs	several	thousand	dollars,	and
the	 first	 two	options	have	recurring	 fees.	 If	you	pay	only	 the	1-time	 fee,	you
aren’t	 authorized	 to	use	 the	USB	 logo.	The	owner	of	 the	Vendor	 ID	assigns
Product	IDs	to	devices.
Devices	 that	don’t	undergo	compliance	 testing	and	don’t	display	 the	USB-IF
logo	 have	 lower-cost	 options.	 Some	 chip	 companies,	 including	 Future
Technology	Devices	International	Limited	(FTDI)	and	Microchip	Technology,
will	assign	a	range	of	Product	IDs	to	a	customer	for	use	in	products	that	use
the	 company’s	Vendor	 ID,	 typically	 at	 no	 charge.	 Chips	 that	 perform	 all	 of
their	USB	communications	in	hardware	can	use	a	Vendor	ID	and	Product	ID
embedded	in	the	hardware.	An	example	is	FTDI’s	USB	device	controllers.
Companies	that	sell	products	that	implement	a	USB	specification	must	sign	an
adopters	agreement.	The	agreement	grants	a	royalty-free,	non-exclusive	patent
license	 to	 implement	 the	specification.	You	must	submit	a	signed	agreement
within	one	year	 after	 first	 sale	of	 a	product.	 See	usb.org	 for	 current	 fees	 and
agreements.

USB	and	Ethernet
For	 some	 devices,	 the	 choice	 is	 between	 USB	 and	 Ethernet.	 Ethernet’s
advantages	 include	 the	 ability	 to	 use	 very	 long	 cables,	 support	 for
broadcasting,	 and	 use	 of	 familiar	 Internet	 protocols.	 However,	 Ethernet
hardware	 is	more	complex	and	expensive	 than	 typical	USB	device	hardware.
Plus,	USB	 is	much	more	versatile,	with	 four	 transfer	 types	and	defined	class
protocols	for	many	device	functions.

USB	and	Thunderbolt
Thunderbolt,	developed	by	Intel	 in	collaboration	with	Apple,	 is	a	high-speed

http://usb.org

data	interface	that	also	provides	power.	The	original	Thunderbolt	interface	has
two	 10-Gbps	 channels	 with	 each	 channel	 having	 dedicated	 wires	 for	 each
direction.	 Thunderbolt	 2	 combines	 the	 channels	 into	 a	 single	 20-Gbps
channel.
Thunderbolt	uses	 the	 same	connector	as	 the	Mini	DisplayPort	video	port.	A
Thunderbolt	port	on	a	PC	can	connect	to	a	device	with	a	Thunderbolt	port	or
a	Mini	DisplayPort.	Adapters	enable	using	devices	with	other	connector	types.
The	 speed	 of	 a	 Thunderbolt	 channel	 is	 roughly	 the	 same	 as	USB	 3.1,	 while
Thunderbolt	 2’s	 single	 channel	 is	 2×	 faster.	 Thunderbolt	 can	 provide	 up	 to
10W	of	power,	which	is	more	than	USB	3.1’s	4.5	W	but	much	less	than	USB
Power	Delivery	Rev.	2.0,	v1.0’s	maximum	of	just	under	100	W.
Thunderbolt	has	been	available	mainly	on	Macs	and	a	few	PCs,	while	all	new
PCs	have	USB.	Thunderbolt,	which	targets	storage	and	video,	is	less	versatile
than	USB.	Thunderbolt	 controllers	and	cables	are	more	expensive	 than	USB
hardware.	Thus,	Thunderbolt	has	been	popular	mainly	for	applications	where
very	high	speed	is	essential.

Evolution	of	an	interface
The	main	 reason	why	new	 interfaces	don’t	appear	very	often	 is	 that	existing
interfaces	have	the	advantage	of	all	of	the	peripherals	that	users	don’t	want	to
scrap.	 The	 developers	 of	 the	 original	 IBM	 PC	 chose	 compatibility	 with	 the
existing	Centronics	parallel	interface	and	RS-232	serial-port	interface	to	speed
up	 the	 design	 process	 and	 enable	 users	 to	 connect	 to	 printers	 and	modems
already	 on	 the	market.	 These	 interfaces	 proved	 serviceable	 for	 close	 to	 two
decades.	But	as	computers	became	more	powerful	and	the	number	and	kinds
of	 peripherals	 increased,	 the	 older	 interfaces	 became	 a	 bottleneck	 of	 slow
communications	with	limited	options	for	expansion.
A	 break	 with	 tradition	 makes	 sense	 when	 the	 desire	 for	 enhancements	 is
greater	 than	 the	 inconvenience	 and	 expense	 of	 change.	 This	 is	 the	 situation
that	prompted	the	development	of	USB.
And	the	interface	hasn’t	stood	still	since	its	introduction.	New	versions	of	the
USB	 specification	 and	 related	 documents	 take	 advantage	 of	 hardware
advances	and	address	new	user	needs.
The	 USB-IF	 releases	 the	 specifications	 that	 define	 the	 interface.	 Each
specification	 is	 developed	 by	 a	 Promoter	 Group	 whose	 members	 are

corporations	involved	in	USB	technology.

USB	1.0
The	Universal	 Serial	 Bus	 Specification	 Revision	 1.0	 was	 released	 in	 January,
1996.	 USB	 capability	 first	 became	 available	 on	 PCs	 with	 the	 release	 of
Windows	 95’s	 OEM	 Service	 Release	 2,	 available	 only	 to	 vendors	 installing
Windows	95	on	PCs	they	sold.	The	USB	support	in	these	versions	was	limited
and	buggy,	and	there	weren’t	many	USB	peripherals	available,	so	use	of	USB
was	limited	in	this	era.
The	situation	improved	with	the	release	of	Windows	98	in	June,	1998.	By	this
time,	many	more	 vendors	had	USB	peripherals	 available,	 and	USB	began	 to
take	hold	as	a	popular	interface.	Windows	98	Second	Edition	(SE)	fixed	bugs
and	further	enhanced	the	USB	support.
The	USB	1.0	specification	was	a	product	of	Compaq	Computer	Corporation,
Digital	 Equipment	 Corporation,	 IBM	 PC	 Company,	 Intel	 Corporation,
Microsoft	Corporation,	NEC	Corporation,	and	Northern	Telecom.

USB	1.1
The	Universal	 Serial	 Bus	 Specification	 Revision	 1.1	 (September,	 1998)	 added
one	new	transfer	 type	(interrupt	OUT).	USB	1.1	replaced	USB	1.0.	The	USB
1.1	specification	was	a	product	of	Compaq	Computer	Corporation,	Hewlett-
Packard	 Company,	 Intel	 Corporation,	 Koninklijke	 Philips	 Electronics	 N.V.,
Lucent	Technologies	Inc,	Microsoft	Corporation,	and	NEC	Corporation.

USB	2.0
As	USB	gained	 in	popularity	and	PCs	became	more	powerful,	demand	grew
for	 a	 faster	 bus.	 Investigation	 showed	 that	 a	 bus	 40x	 faster	 than	 full	 speed
could	 remain	 backwards	 compatible	with	 the	 low-	 and	 full-speed	 interfaces.
April	 2000	 saw	 the	 release	 of	 the	Universal	 Serial	 Bus	 Specification	 Revision
2.0,	 which	 added	 high	 speed	 at	 480	 Mbps.	 High	 speed	 made	 USB	 more
attractive	for	peripherals	such	as	printers,	drives,	and	video	cameras.	Windows
added	support	for	USB	2.0	in	Windows	XP	SP1	and	Windows	2000	SP4.	USB
2.0	replaced	USB	1.1.
A	USB	2.0	device	other	than	a	hub	can	support	low	speed,	full	speed,	or	high
speed,	 and	 a	 high-speed	 device	 can	 support	 full	 speed	when	 connected	 to	 a
USB	1.1	bus.	A	USB	2.0	hub	must	support	all	three	USB	2.0	speeds.	The	ability

to	 communicate	 at	 any	 speed	 increases	 the	 complexity	 of	 the	 hubs	 but
conserves	 bus	 bandwidth	 and	 eliminates	 a	 need	 to	 use	 different	 hubs	 for
different	speeds.
USB	2.0	 is	backwards	compatible	with	USB	1.1.	USB	2.0	devices	can	use	 the
same	connectors	and	cables	as	1.1	devices,	and	a	USB	2.0	device	works	when
connected	to	a	PC	that	supports	USB	1.1	or	USB	2.0	except	for	a	few	devices
that	function	only	at	high	speed	and	thus	require	USB	2.0	support.
When	 USB	 2.0	 devices	 first	 became	 available,	 there	 was	 confusion	 among
users	about	whether	all	USB	2.0	devices	supported	high	speed.	To	clarify,	the
USB-IF	 released	 naming	 and	 packaging	 recommendations	 that	 emphasize
speed	 and	 compatibility	 rather	 than	 USB	 version	 numbers.	 A	 product	 that
supports	 high	 speed	 should	 be	 labeled	Hi-Speed	USB,	 and	messages	 on	 the
packaging	might	include	Fully	compatible	with	Original	USB	and	Compatible
with	 the	 USB	 2.0	 Specification.	 For	 products	 that	 support	 low	 or	 full	 speed
only,	the	recommended	messages	on	packaging	are	Compatible	with	the	USB
2.0	Specification	and	Works	with	USB	and	Hi-Speed	USB	systems,	peripherals
and	 cables.	 The	 recommendations	 advise	 avoiding	 references	 to	 low	 or	 full
speed	on	consumer	packaging.
To	use	 high	 speed,	 a	 high-speed-capable	 device	must	 connect	 to	 a	USB	 2.0,
USB	3.0,	or	USB	3.1	host	computer	with	only	USB	2.0,	USB	3.0,	or	USB	3.1
hubs	between	the	host	and	device.	USB	2.0,	USB	3.0,	and	USB	3.1	hosts	and
hubs	can	also	communicate	with	USB	1.1	devices.
The	 USB-IF	 releases	 revisions	 and	 additions	 to	 USB	 specifications	 in
Engineering	 Change	 Notices	 (ECNs).	 Table	 1-2	 lists	 ECNs	 to	 the	 USB	 2.0
specification.	Twice	a	year,	 the	USB-IF	releases	a	new	zip	 file	containing	 the
specification	 and	 all	 ECNs	 that	 apply	 to	 it.	 The	 main	 specification	 is	 not
updated	 with	 the	 ECNs	 so	 when	 studying	 a	 section	 of	 the	 spec,	 be	 sure	 to
check	the	ECNs	for	corrections	or	updates.
The	 USB	 2.0	 specification	 is	 a	 product	 of	 Compaq	 Computer	 Corporation,
Hewlett-Packard	Company,	Intel	Corporation,	Koninklijke	Philips	Electronics
N.V.,	 Lucent	 Technologies	 Inc,	 Microsoft	 Corporation,	 NEC	 Corporation,
STEricsson,	and	Texas	Instruments.

USB	2.1
The	 USB	 2.0	 Link	 Power	 Management	 Addendum	 and	 the	 USB	 3.1
specification	define	when	a	device	must	report	its	version	as	USB	2.1.	A	low-,

full-,	or	high-speed	device	that	supports	the	BOS	descriptor	(see	Chapter	4)	is
a	USB	2.1	device.	A	SuperSpeed	or	SuperSpeedPlus	device	that	also	supports
one	 or	 more	 USB	 2.0	 speeds	 must	 declare	 itself	 as	 a	 USB	 2.1	 device	 when
operating	at	a	USB	2.0	speed.

Table	 1-2:	 Engineering	 change	 notices	 (ECNs)	 correct,	 add	 to,	 and	 clarify	 the
USB	2.0	specification.
Category Title Description

Connecting Connect	Timing	Update Allow	devices	with	dead	batteries	to
draw	500	mA	on	connect.

Device	Capacitance Require	detectable	change	in
capacitance	on	VBUS	on
attachment.

Pull-up/Pull-Down	Resistors Loosen	tolerances	for	pull-up	and
pull-down	resistors.

Connectors	and	Cables Material	Change Allow	alternate	materials.

Micro-USB	connector New	connector	type.

Mini-B	Connector New	connector	type.

Rounded	Chamfer	for	the	Mini-B
Plug

Connector	recommendation.

Power 5V	Short	Circuit	Withstand
Requirement	Change

Change	short	circuit	requirement	to
a	recommendation.

Link	Power	Management Additional	power-saving
capabilities.

Errata	for	Link	Power	Management
ECN

Error	corrections.

Suspend	Current	Limit	Changes Loosen	Suspend	current
requirements.

USB	2.0	Phase-locked	SOFs Phase	lock	requirement	for	power
management	in	isochronous
transfers.

USB	2.0	VBUS	Max	Limit Increase	VBUS	maximum	to	5.5V.

Descriptors	and	Requests Interface	Association	Descriptor New	descriptor	type	for	functions
with	multiple	interfaces.

USB	TEST_MODE	selector	values Add	TEST_MODE	Feature	values.

Unicode	UTF–16LE	for	String
Descriptors

Specify	encoding	for	string
descriptors.

Errors Errata	as	of	12/7/2000 Error	corrections	and	clarifications.

Errata	as	of	5/28/2002 Error	corrections	and	clarifications.

Interchip Inter-Chip	USB	Supplement Chip-to-chip	interconnects	without
external	cables,	low	and	full	speeds.

Hi-Speed	Interchip	Electrical
Specification

Chip-to-chip	interconnects	without
external	cables,	high	speed.

High	Speed	Inter	Chip	Specification
(HSIC)	ECN

Interchip	modifications	and
clarifications.

USB	3.0
The	USB-IF	released	the	Universal	Serial	Bus	3.0	Specification	Revision	1.0	in
November,	2008.	USB	3.0	defines	a	new	architecture	with	two	physical	buses
that	 operate	 in	 parallel.	 One	 pair	 of	 wires	 carries	 USB	 2.0	 traffic,	 and	 two
additional	pairs	of	wires	carry	USB	3.0	traffic.
USB	3.0’s	5-Gbps	SuperSpeed	offers	a	more	than	10x	increase	over	USB	2.0’s
high	speed.	Plus,	with	a	pair	of	wires	for	each	direction,	a	SuperSpeed	bus	can
carry	 data	 in	 both	 directions	 at	 the	 same	 time.	 SuperSpeed	 devices	 can	 also
draw	 more	 bus	 current	 and	 use	 new	 protocols	 for	 more	 aggressive	 power
saving	and	more	efficient	transfers.
USB	 3.0	 is	 backwards	 compatible	 with	 USB	 2.0.	 USB	 3.0	 hosts	 and	 hubs
support	all	four	speeds.	USB	2.0	cables	fit	USB	3.0	receptacles.
Unlike	 the	 USB	 2.0	 specification,	 which	 replaced	 USB	 1.1,	 the	 USB	 3.0
specification	 supplemented,	 but	 didn’t	 replace,	USB	 2.0.	 SuperSpeed	 devices
use	many	 of	 the	 higher-level	 protocols	 defined	 in	 the	USB	 2.0	 specification.
Low,	full,	and	high-speed	devices	continue	to	comply	with	USB	2.0	and	can’t
take	 advantage	 of	 USB	 3.0’s	 features	 such	 as	 higher	 bus-current	 limits	 and
larger	data	packets.
Windows	8	and	Windows	Server	2012	were	the	first	Windows	editions	to	have
built-in	support	for	USB	3.0.
The	 USB	 3.0	 specification	 is	 a	 product	 of	 Hewlett-Packard	 Company,	 Intel
Corporation,	 Microsoft	 Corporation,	 NEC	 Corporation,	 STEricsson,	 and
Texas	Instruments.

USB	3.1
The	Universal	Serial	Bus	3.1	Specification	Revision	1.0,	 released	 in	 July,	2013,
updates	 USB	 3.0	 with	 10-Gbps	 SuperSpeedPlus	 bus	 speed	 plus	 new	 power-
saving	 features	 and	 other	 enhancements	 that	 apply	 to	 both	 SuperSpeed	 and

SuperSpeedPlus.	 A	 marketing	 term	 that	 you	 might	 see	 on	 products	 that
support	SuperSpeedPlus	is	SuperSpeed	USB	10Gbps.
USB	3.1	replaces	USB	3.0.	A	new	product	that	operates	at	SuperSpeed	should
comply	 with	 USB	 3.1	 whether	 or	 not	 the	 product	 also	 operates	 at
SuperSpeedPlus.	 Except	 for	 hubs,	 which	 must	 support	 SuperSpeedPlus,
SuperSpeed-only	USB	3.0	devices	require	few	changes	to	comply	with	USB	3.1.
A	device	that	supports	SuperSpeedPlus	must	also	support	SuperSpeed,	and	a
device	that	supports	SuperSpeed	must	at	minimum	support	at	 least	one	USB
2.0	speed.	A	USB	3.1	device	doesn’t	have	to	fully	function	at	a	USB	2.0	speed,
but	the	host	must	be	able	to	detect	the	device	and	advise	the	user	to	move	the
device	to	a	SuperSpeed	or	SuperSpeedPlus	port.	Cables	defined	in	the	USB	3.1
specification	have	the	same	number	of	wires	as	USB	3.0	cables	but	with	new
requirements	to	ensure	good	performance	at	SuperSpeedPlus.
The	 USB	 3.1	 specification	 defines	 some	 new	 terms.	 Gen	 1	 is	 the	 5-Gbps
SuperSpeed	data	rate.	Gen	2	 is	 the	10-Gbps	SuperSpeedPlus	data	rate.	Gen	X
refers	to	features	that	apply	to	both	Gen	1	and	Gen	2.
Enhanced	 SuperSpeed	 refers	 to	 features	 or	 requirements	 that	 apply	 to	 both
USB	3.0	and	USB	3.1	buses.	Note	 that	Enhanced	SuperSpeed	does	not	mean
SuperSpeedPlus	only.	For	 example,	 the	 statement	Enhanced	SuperSpeed	bulk
and	 interrupt	 endpoints	 can	 support	 burst	 transactions	 means	 that	 both
SuperSpeed	and	SuperSpeedPlus	endpoints	can	support	burst	transactions.
Thus	 the	 terms	 Enhanced	 SuperSpeed	 and	 USB	 3.1	 refer	 to	 components
that	 support	 SuperSpeed	 only	 as	 well	 as	 components	 that	 support
SuperSpeedPlus.	In	virtually	all	cases,	the	information	also	applies	to	USB	3.0
components.	In	the	few	cases	in	this	book	where	something	is	specific	to	USB
3.0,	I	mention	it.
The	 USB	 3.1	 specification	 is	 a	 product	 of	 Hewlett-Packard	 Company,	 Intel
Corporation,	Microsoft	 Corporation,	 Renesas	 Corporation,	 STEricsson,	 and
Texas	Instruments.

Embedded	Host	and	On-The-Go
As	USB	became	the	interface	of	choice	for	all	kinds	of	peripherals,	developers
of	 embedded	 systems	 wanted	 more	 flexibility	 in	 designing	 USB	 hosts	 that
didn’t	have	to	meet	all	of	the	requirements	for	a	USB	host	in	a	PC.	Developers
also	saw	a	need	for	a	way	for	USB	peripherals	to	access	other	USB	devices.	For

example,	a	user	might	want	to	attach	a	printer	to	a	camera	or	connect	a	flash
drive	to	a	phone.
The	On-The-Go	and	Embedded	Host	Supplement	 to	 the	USB	2.0	Specification
and	 On-The-Go	 and	 Embedded	 Host	 Supplement	 to	 the	 USB	 Revision	 3.0
Specification	 define	 limited-capability	 hosts	 that	 embedded	 systems	 can
implement	to	enable	communicating	with	USB	peripherals.

Bus	components
USB	 communications	 require	 a	 host	 computer	 with	 USB	 support,	 a	 device
with	a	USB	port,	 and	hubs,	 connectors,	 and	cables	as	needed	 to	connect	 the
device	to	the	host	computer.
The	host	 computer	 is	 a	PC	or	a	handheld	device	or	other	 embedded	 system
that	 contains	 USB	 host-controller	 hardware	 and	 a	 root	 hub.	 The	 host
controller	 formats	 data	 for	 transmitting	 on	 the	 bus	 and	 translates	 received
data	 to	 a	 format	 that	 operating-system	 components	 understand.	 The	 host
controller	 also	helps	manage	 communications	on	 the	bus.	The	 root	hub	has
one	 or	 more	 connectors	 for	 attaching	 devices.	 The	 root	 hub	 and	 host
controller	 together	detect	device	attachment	and	removal,	 carry	out	requests
from	 the	 host	 controller,	 and	 pass	 data	 between	 devices	 and	 the	 host
controller.	In	addition	to	the	root	hub,	a	bus	may	have	one	or	more	external
hubs.

Figure	1-1.	USB	uses	a	tiered	star	topology.	Each	external	hub	has	one	upstream-
facing	port	and	one	or	more	downstream-facing	ports.

Each	device	has	hardware	and	 firmware	as	needed	 to	communicate	with	 the
host	computer.	The	USB	specifications	define	the	cables	and	connectors	that
connect	devices	to	their	hubs.

Topology
The	 topology,	 or	 arrangement	 of	 connections,	 on	 the	 bus	 is	 a	 tiered	 star
(Figure	1-1).	At	 the	center	of	each	star	 is	 a	hub,	and	each	connection	 to	 the
hub	is	a	point	on	the	star.	The	root	hub	is	in	the	host.	If	you	think	of	the	bus	as
a	stream	with	the	host	as	the	source,	an	external	hub	has	one	upstream-facing
(host-side)	 connector	 for	 communicating	 with	 the	 host	 and	 one	 or	 more
downstream-facing	 (device-side)	 connectors	 or	 internal	 connections	 to
embedded	 devices.	 A	 typical	 hub	 has	 2,	 4,	 or	 7	 ports.	When	multiple	 hubs
connect	in	series,	the	series	forms	a	tier.
The	 tiered	 star	describes	only	 the	physical	 connections.	 In	programming,	all
that	matters	is	the	logical	connection.	Host	applications	and	device	firmware

don’t	need	 to	know	or	care	whether	 the	communication	passes	 through	one
hub	or	five.
Up	to	five	external	hubs	can	connect	in	series	with	a	limit	of	127	peripherals
and	hubs	including	the	root	hub.	However,	bandwidth	and	scheduling	limits
can	 prevent	 a	 single	 host	 controller	 from	 communicating	 with	 this	 many
devices.	To	increase	the	available	bandwidth	for	USB	devices,	many	PCs	have
multiple	host	controllers,	each	controlling	an	independent	bus.

Bus	speed	considerations
A	USB	1.1	host	supports	 low	and	full	speeds	only.	A	USB	2.0	host	adds	high
speed.	 A	 USB	 3.0	 host	 adds	 SuperSpeed,	 and	 a	 USB	 3.1	 host	 adds
SuperSpeedPlus.	 Exceptions	 include	 On-The-Go	 devices	 and	 other	 hosts	 in
embedded	 systems,	 which	 may	 support	 only	 the	 speeds	 needed	 to	 access
specific	peripherals.
A	 USB	 3.1	 hub	 contains	 both	 a	 USB	 2.0	 hub	 and	 a
SuperSpeed/SuperSpeedPlus	 hub.	 The	 hub	 handles	 traffic	 at	 any	 speed.
SuperSpeed	 and	SuperSpeedPlus	 traffic	 uses	 the	 SuperSpeed/SuperSpeedPlus
hub’s	circuits	and	wires,	and	other	traffic	uses	the	USB	2.0	hub’s	circuits	and
wires.	A	USB	3.0	hub	is	similar	but	doesn’t	support	SuperSpeedPlus.
A	 SuperSpeed-capable	 device	 communicates	 at	 SuperSpeed	 only	 if	 the	 host
and	 all	 hubs	 between	 the	 host	 and	 device	 are	 USB	 3.1	 hubs	 (Figure	 1-2).
Otherwise	 the	 device	 must	 use	 a	 slower	 speed.	 In	 a	 similar	 way,	 a
SuperSpeedPlus-capable	 device	 communicates	 at	 SuperSpeedPlus	 only	 if	 the
host	and	all	hubs	between	the	host	and	device	are	USB	3.1	hubs.	On	a	USB	3.0
bus	 or	 with	 a	 USB	 3.0	 hub,	 a	 SuperSpeedPlus	 device	 communicates	 at
SuperSpeed.
For	 compatibility	 with	 USB	 2.0	 hosts	 and	 hubs,	 a	 SuperSpeed	 or
SuperSpeedPlus	device	that	doesn’t	fully	function	at	a	USB	2.0	speed	must	at
least	 respond	 to	 bus	 resets	 and	 standard	 requests	 at	 a	USB	 2.0	 speed	 so	 the
device	can	inform	the	host	that	the	device	requires	a	higher	speed	to	perform
its	function.
A	USB	2.0	high-speed-capable	device	communicates	at	high	speed	if	the	host
and	 all	 hubs	 between	 are	 USB	 2.0	 or	 USB	 3.1	 hubs	 (Figure	 1-3).	 For
compatibility	with	USB	1.1	hosts	 and	hubs,	 a	high-speed	device	 that	doesn’t
fully	 function	 at	 full	 speed	must	 at	 least	 respond	 to	 bus	 resets	 and	 standard
requests	at	full	speed	so	the	device	can	inform	the	host	that	the	device	requires

high	speed	to	perform	its	function.	Many	high-speed	devices	function,	though
more	 slowly,	 at	 full	 speed	because	 adding	 support	 for	 full	 speed	 is	 generally
easy	and	is	required	to	pass	USB-IF	compliance	tests.

Figure	 1-2.	 USB	 3.1	 hosts	 and	 hubs	 support	 all	 five	 speeds	 for	 downstream
communications.

A	device	that	supports	full	or	low	speed	communicates	with	its	nearest	hub	at
the	 supported	 speed.	 For	 any	 segments	 upstream	 from	 that	 hub,	 if	 all
upstream	hubs	are	USB	2.0	or	higher,	the	device’s	traffic	travels	at	high	speed.

Terminology
In	 the	world	 of	USB,	 the	words	 function	 and	device	 have	 specific	meanings.
Also	 important	 is	 the	 concept	 of	 a	USB	 port	 and	 how	 it	 differs	 from	 other
ports	such	as	RS-232.

Function
A	 USB	 function	 is	 a	 set	 of	 one	 or	 more	 related	 interfaces	 that	 expose	 a
capability.	 Examples	 of	 functions	 are	 a	 mouse,	 a	 set	 of	 speakers,	 a	 data-
acquisition	 unit,	 or	 a	 hub.	 A	 single	 physical	 device	 can	 contain	 multiple
functions.	 For	 example,	 a	 device	 might	 provide	 both	 printer	 and	 scanner
functions.	 A	 host	 identifies	 a	 device’s	 functions	 by	 requesting	 a	 device
descriptor	 and	 one	 or	 more	 interface	 descriptors	 from	 the	 device.	 The
descriptors	are	data	structures	that	contain	information	about	the	device.

Device
A	device	 is	 a	 logical	 or	physical	 entity	 that	performs	one	or	more	 functions.
Hubs	and	peripherals	are	devices.	The	host	assigns	a	unique	address	 to	each
device	 on	 the	 bus.	 A	 compound	 device	 contains	 a	 hub	 with	 one	 or	 more
permanently	attached	devices.	The	host	treats	a	compound	device	in	much	the
same	way	as	 if	 the	hub	and	 its	 functions	were	separate	physical	devices.	The
hub	and	embedded	devices	each	have	a	unique	address.

Figure	 1-3.	USB	 2.0	 hubs	 use	 high	 speed	 for	 upstream	 communications	 if	 the
host	and	all	hubs	between	are	USB	2.0	or	higher.

A	USB	3.1	hub	is	a	special	case.	The	hub	contains	both	a	USB	2.0	hub	function
and	a	USB	3.1	hub	function.
A	composite	device	has	one	bus	address	but	multiple,	independent	interfaces	or
groups	 of	 related	 interfaces	 that	 each	 provide	 a	 function.	 Each	 interface	 or
group	of	related	interfaces	can	use	a	different	driver	on	the	host.	For	example,
a	composite	device	could	have	interfaces	for	a	printer	and	a	drive.	Composite
devices	are	very	common.

Port
In	general	terms,	a	hardware	computer	port	is	an	addressable	location	that	can
connect	 to	 peripheral	 circuits.	 A	 port’s	 circuits	 can	 terminate	 at	 a	 cable
connector	or	be	hard-wired	to	peripheral	circuits.	For	USB,	each	downstream-
facing	 connector	 on	 a	 hub	 represents	 a	 USB	 port.	 Host	 applications	 can’t
access	USB	ports	 directly	 but	 instead	 communicate	with	 drivers	 assigned	 to
the	devices	attached	to	ports.	A	USB	host	controller	may	reside	at	a	series	of
port	addresses	the	system’s	CPU	accesses,	but	these	ports	are	distinct	from	the
ports	on	the	bus.

Division	of	labor
The	 host	 and	 its	 devices	 each	 have	 defined	 responsibilities.	 The	 host	 bears
most	of	the	burden	of	managing	communications,	but	a	device	must	have	the
intelligence	to	respond	to	communications	from	the	host	and	other	events	on
the	bus.

Host	responsibilities
To	communicate	with	USB	devices,	a	computer	needs	hardware	and	software
that	 support	 the	 USB	 host	 function.	 The	 hardware	 consists	 of	 a	 USB	 host
controller	and	a	root	hub	with	one	or	more	USB	ports.	The	software	support	is
typically	an	operating	system	that	enables	device	drivers	to	communicate	with
lower-level	drivers	that	access	the	USB	hardware.
PCs	have	one	or	more	hardware	host	 controllers	 that	 each	 support	multiple
ports.	The	host	is	in	charge	of	the	bus.	The	host	has	to	know	what	devices	are
on	the	bus	and	the	capabilities	of	each	device.	The	host	must	also	do	its	best	to
ensure	that	all	devices	on	the	bus	can	send	and	receive	data	as	needed.	A	bus
may	 have	 many	 devices,	 each	 with	 different	 requirements,	 all	 wanting	 to
transfer	data	at	the	same	time.	The	host’s	job	isn’t	trivial.

Fortunately,	 the	host-controller	hardware	and	drivers	 in	Windows	and	other
OSes	do	much	of	the	work	of	managing	the	bus.	Each	device	attached	to	the
host	 must	 have	 an	 assigned	 device	 driver	 that	 enables	 applications	 to
communicate	 with	 the	 device.	 System-level	 software	 components	 manage
communications	between	 the	device	driver	 and	 the	host	 controller	 and	 root
hub.
Applications	 don’t	 have	 to	 know	 the	 hardware-specific	 details	 of
communicating	with	devices.	All	the	application	has	to	do	is	send	and	receive
data	 using	 standard	 operating-system	 functions	 or	 other	 software
components.	Often	the	application	doesn’t	have	to	know	or	care	whether	the
device	uses	USB	or	another	interface.
The	 host	 must	 detect	 devices,	 manage	 data	 flow,	 perform	 error	 checking,
provide	and	manage	power,	and	exchange	data	with	devices.

Detect	devices
On	 power	 up,	 hubs	make	 the	 host	 aware	 of	 all	 attached	 USB	 devices.	 In	 a
process	called	enumeration,	the	host	determines	what	bus	speed	to	use,	assigns
an	address,	and	requests	additional	information.	After	power	up,	whenever	a
device	 is	 removed	or	 attached,	 a	hub	 informs	 the	host	 of	 the	 event,	 and	 the
host	enumerates	any	newly	attached	device	and	removes	any	detached	device
from	its	list	of	devices	available	to	applications.

Manage	data	flow
The	 host	manages	 traffic	 on	 the	 bus.	Multiple	 devices	may	want	 to	 transfer
data	 at	 the	 same	 time.	 The	 host	 controller	 divides	 the	 available	 time	 into
intervals	and	gives	each	 transmission	a	portion	of	 the	available	 time.	A	USB
2.0	host	can	send	or	receive	data	at	one	USB	2.0	speed	at	a	 time.	A	USB	3.1
host	can	simultaneously	transmit	SuperSpeed	or	SuperSpeedPlus	data,	receive
SuperSpeed	 or	 SuperSpeedPlus	 data,	 and	 send	 or	 receive	 data	 at	 a	 USB	 2.0
speed.
During	 enumeration,	 a	 device’s	 driver	 requests	 bandwidth	 for	 any	 transfer
types	 that	must	have	guaranteed	 timing.	 If	 the	bandwidth	 isn’t	available,	 the
driver	 can	 request	 a	 smaller	 portion	 of	 the	 bandwidth	 or	 wait	 until	 the
requested	 bandwidth	 is	 available.	 Transfers	 that	 have	 no	 guaranteed	 timing
use	 the	 remaining	 bandwidth	 and	must	 wait	 if	 the	 bus	 is	 busy	 with	 higher
priority	data.

Error	checking
When	transferring	data,	the	host	adds	error-checking	bits.	On	receiving	data,
the	 device	 performs	 calculations	 on	 the	 data	 and	 compares	 the	 result	 with
received	 error-checking	 bits.	 If	 the	 results	 don’t	 match,	 the	 device	 doesn’t
acknowledge	receiving	the	data	and	the	host	knows	it	should	retransmit.	In	a
similar	 way,	 the	 host	 error-checks	 data	 received	 from	 devices.	 USB	 also
supports	a	 transfer	 type	without	acknowledgments	 for	use	with	data	 such	as
real-time	 audio,	 which	 can	 tolerate	 occasional	 errors	 but	 needs	 a	 constant
transfer	rate.
If	 a	 transmission	 attempt	 fails	 after	 multiple	 tries,	 the	 host	 can	 inform	 the
device’s	driver	of	the	problem,	and	the	driver	can	notify	the	application	so	it
can	take	action	as	needed.

Provide	and	manage	power
In	 addition	 to	 data	 wires,	 a	 USB	 cable	 has	 wires	 for	 a	 power	 supply	 and
ground.	The	default	power	is	a	nominal	+5	V.	The	host	provides	power	to	all
devices	 on	 power	 up	 or	 attachment	 and	works	with	 the	 devices	 to	 conserve
power	when	possible.	Some	devices	draw	all	of	their	power	from	the	bus.
A	high-power	USB	2.0	device	can	draw	up	to	500	mA	from	the	bus.	A	high-
power	SuperSpeed	or	SuperSpeedPlus	device	can	draw	up	to	900	mA	from	an
Enhanced	 SuperSpeed	 bus.	 Ports	 on	 some	 battery-powered	 hosts	 and	 hubs
support	 only	 low-power	 devices,	which	 are	 limited	 to	 100	mA	 (USB	2.0)	 or
150	mA	(Enhanced	SuperSpeed).	To	conserve	power	when	 the	bus	 is	 idle,	 a
host	can	require	devices	to	enter	a	low-power	state	and	reduce	their	use	of	bus
current.
Hosts	and	devices	that	support	USB	Power	Delivery	Rev.	2.0,	v1.0	can	negotiate
for	bus	currents	up	to	5	A	and	voltages	up	to	20	V.

Exchange	data	with	devices
All	of	the	above	tasks	support	the	host’s	main	job,	which	is	to	exchange	data
with	 devices.	 In	 some	 cases,	 a	 device	 driver	 requests	 the	 host	 to	 attempt	 to
send	 or	 receive	 data	 at	 defined	 intervals,	 while	 in	 others	 the	 host
communicates	 only	 when	 an	 application	 or	 other	 software	 component
requests	a	transfer.

Device	responsibilities

In	 many	 ways,	 a	 device’s	 responsibilities	 are	 a	 mirror	 image	 of	 the	 host’s.
When	 the	 host	 initiates	 communications,	 the	 device	 must	 respond.	 But
devices	 also	 have	 duties	 that	 are	 unique.	 The	 device-controller	 hardware
typically	handles	much	of	the	 load.	The	amount	of	needed	firmware	support
varies	 with	 the	 chip	 architecture.	 Devices	 must	 detect	 communications
directed	to	the	device,	respond	to	standard	requests,	perform	error	checking,
manage	power,	and	exchange	data	with	the	host.

Detect	communications
Devices	must	detect	 communications	directed	 to	 the	device’s	 address	on	 the
bus.	The	device	 stores	 received	data	 in	 a	buffer	 and	 returns	a	 status	 code	or
sends	requested	data	or	a	status	code.	In	almost	all	controllers,	these	functions
are	built	into	the	hardware	and	require	no	support	in	code	besides	preparing
the	buffers	 to	 send	or	 receive	data.	The	 firmware	doesn’t	have	 to	 take	other
action	 or	 make	 decisions	 until	 the	 chip	 has	 detected	 a	 communication
intended	for	the	device’s	address.	Enhanced	SuperSpeed	devices	have	less	of	a
burden	 in	 detecting	 communications	 because	 the	 host	 routes	 Enhanced
SuperSpeed	communications	only	to	the	target	device.

Respond	to	standard	requests
On	power	up	or	when	a	device	attaches	 to	a	powered	system,	a	device	must
respond	to	standard	requests	sent	by	the	host	computer	during	enumeration
and	after	enumeration	completes.
All	devices	must	 respond	 to	 these	 requests,	which	query	 the	capabilities	and
status	of	the	device	or	request	the	device	to	take	other	action.	On	receiving	a
request,	the	device	places	data	or	status	information	in	a	buffer	to	send	to	the
host.	 For	 some	 requests,	 such	 as	 selecting	 a	 configuration,	 the	 device	 takes
other	action	in	addition	to	responding	to	the	host	computer.
The	 USB	 specification	 defines	 requests,	 and	 a	 class	 or	 vendor	 may	 define
additional	 requests.	 On	 receiving	 a	 request	 the	 device	 doesn’t	 support,	 the
device	responds	with	a	status	code.

Error	check
Like	 the	 host,	 a	 device	 adds	 error-checking	 bits	 to	 the	 data	 it	 sends.	 On
receiving	data	that	includes	error-checking	bits,	the	device	performs	the	error-
checking	calculations.	The	device’s	response	or	lack	of	response	tells	the	host
whether	 to	 retransmit.	The	device	 also	detects	 the	acknowledgment	 the	host

returns	 on	 receiving	 data	 from	 the	 device.	 The	 device	 controller’s	 hardware
typically	performs	these	functions.

Manage	power
A	device	may	have	its	own	power	supply,	obtain	power	from	the	bus,	or	use
power	from	both	sources.	A	host	can	request	a	device	to	enter	the	low-power
Suspend	state,	which	requires	the	device	to	draw	no	more	than	2.5	mA	of	bus
current.	Some	devices	support	remote	wakeup,	which	can	request	 to	exit	 the
Suspend	state.	USB	3.1	hosts	can	place	individual	functions	within	a	USB	3.1
device	in	the	Suspend	state.	With	host	support,	devices	can	use	additional,	less
restrictive	low-power	states	to	conserve	power	and	extend	battery	life.

Exchange	data	with	the	host
All	of	the	above	tasks	support	the	main	job	of	a	device’s	USB	port,	which	is	to
exchange	 data	 with	 the	 host	 computer.	 For	 most	 transfers	 where	 the	 host
sends	 data	 to	 the	 device,	 the	 device	 responds	 to	 each	 transfer	 attempt	 by
sending	a	code	that	indicates	whether	the	device	accepted	the	data	or	was	too
busy	to	accept	it.	For	most	transfers	where	the	device	sends	data	to	the	host,
the	 device	 must	 respond	 to	 each	 attempt	 by	 returning	 data	 or	 a	 code
indicating	 the	 device	 has	 no	 data	 to	 send.	Typically,	 the	 hardware	 responds
according	 to	 firmware	 settings	 and	 the	 error-checking	 result.	 Some	 transfer
types	don’t	use	acknowledgments,	and	the	sender	receives	no	feedback	about
whether	the	receiver	accepted	transmitted	data.
Devices	send	data	only	at	the	host’s	request.	Enhanced	SuperSpeed	devices	can
send	a	packet	that	causes	the	host	to	request	data	from	the	device.
The	controller	chip’s	hardware	handles	 the	details	of	 formatting	 the	data	 for
the	 bus.	 The	 formatting	 includes	 adding	 error-checking	 bits	 to	 data	 to
transmit,	checking	for	errors	 in	received	data,	and	sending	and	receiving	the
individual	bits	on	the	bus.
Of	 course,	 the	 device	must	 also	 do	whatever	 other	 tasks	 it’s	 responsible	 for.
For	 example,	 a	mouse	must	 be	 ready	 to	 detect	movement	 and	button	 clicks
and	a	printer	must	use	received	data	to	generate	printouts.

Bus	speeds	and	data	throughput
The	data	throughput,	or	rate	of	transfer	of	application	data,	between	a	device
and	host	 is	 less	 than	 the	bus	speed	and	 isn’t	always	predictable.	Some	of	 the

transmitted	 bits	 identify,	 synchronize,	 and	 error-check	 the	 data,	 and	 the
throughput	also	varies	with	the	transfer	type	and	how	busy	the	bus	is.
For	 time-sensitive	 data,	USB	 supports	 transfer	 types	 that	 have	 a	 guaranteed
rate	or	guaranteed	maximum	latency.	Isochronous	transfers	have	a	guaranteed
rate,	 where	 the	 host	 can	 request	 a	 specific	 number	 of	 bytes	 to	 transfer	 at
defined	intervals.	The	intervals	can	be	as	short	as	1	ms	at	full	speed	or	125	μs
at	 high	 speed,	 SuperSpeed,	 and	 SuperSpeedPlus.	 Isochronous	 transfers	 have
no	 error	 correcting,	 however.	 Interrupt	 transfers	 have	 error	 correcting	 and
guaranteed	maximum	latency.	The	device	specifies	a	maximum	interval,	and
when	a	driver	has	requested	a	data	transfer,	the	host	allows	no	more	than	the
specified	 interval,	 or	maximum	 latency,	 to	 elapse	between	 transfer	 attempts.
The	requested	maximum	interval	can	have	a	range	of	10–255	ms	at	low	speed,
1–255	 ms	 at	 full	 speed,	 and	 125	 –	 4.096	 s	 at	 high	 speed	 and	 Enhanced
SuperSpeed.
Because	all	devices	share	 the	bus,	a	device	has	no	guarantee	 that	a	particular
rate	or	maximum	latency	will	be	available	on	attachment.	If	the	bus	is	too	busy
to	 allow	 a	 requested	 transfer	 rate	 or	 maximum	 latency,	 the	 host	 refuses	 to
complete	the	configuration	process	that	enables	the	host	to	schedule	transfers.
The	device’s	driver	can	then	request	a	configuration	or	interface	that	requires
less	 bandwidth.	 For	 the	 fastest	 transfers,	 the	 device	 driver	 and	 application
software	 and	 device	 firmware	 should	 eliminate	 retries	 as	 much	 as	 possible.
The	 device	 should	 have	 data	 ready	 to	 send	 when	 the	 host	 requests	 it	 and
should	be	ready	to	accept	data	when	the	host	sends	it.
Of	USB’s	four	transfer	types	(control,	bulk,	interrupt,	isochronous),	the	fastest
on	 an	 otherwise	 idle	 bus	 are	 bulk	 transfers,	 with	 theoretical	 maximums	 of
around	1.2	MB/s	at	full	speed,	53	MB/s	at	high	speed,	460	MB/s	at	SuperSpeed,
and	1.1	GB/s	at	SuperSpeedPlus.	 Isochronous	 transfers	can	request	 the	most
bandwidth	 (1.023	MB/s	 at	 full	 speed,	 24.576	MB/s	 at	 high	 speed,	 over	 393
MB/s	 at	 SuperSpeed,	 and	 over	 786	 MB/s	 at	 SuperSpeedPlus).	 Low	 speed
doesn’t	support	bulk	or	isochronous	transfers,	and	the	maximum	guaranteed
bandwidth	for	a	single	low-speed	transfer	is	800	bytes/s.

Developing	a	device
Designing	 a	 USB	 device	 for	 PCs	 involves	 both	 getting	 the	 device	 up	 and
running	and	providing	software	to	communicate	with	the	device.

Components
A	USB	device	needs	the	following:

A	 device-controller	 chip	 with	 a	 USB	 interface	 and	 a	 CPU	 or	 other
intelligent	hardware	 that	communicates	with	 the	controller.	The	CPU	can
be	in	the	controller	chip	or	on	a	different	chip.
Program	code,	 hardware,	 or	 a	 combination	of	 these	 to	 carry	out	 the	USB
communications	in	the	device.
Hardware	 and	 code	 to	 carry	 out	 the	 device’s	 function	 (processing	 data,
reading	inputs,	writing	to	outputs).

The	host	that	communicates	with	the	device	needs	the	following:
Host	controller	hardware	and	software	(typically	included	with	the	OS).
Device-driver	software	on	 the	host	 to	enable	applications	 to	communicate
with	the	device.	The	driver	may	be	included	with	the	OS	or	provided	by	the
device	vendor,	the	chip	company,	or	another	source.
Application	 software	 to	 enable	 users	 to	 access	 the	 device.	 For	 standard
device	 types	 such	 as	 a	 mouse,	 keyboard,	 or	 disk	 drive,	 you	 don’t	 need
custom	 application	 software	 though	 you	 may	 want	 to	 write	 a	 test
application.

Tools	for	developing
To	develop	a	USB	device,	you	need	the	following	tools:

A	compiler	or	assembler	to	create	the	device	firmware	(the	code	that	runs
inside	the	device’s	controller	chip).
A	mechanism	for	storing	the	assembled	or	compiled	code	in	the	controller’s
program	memory.
A	compiler	 for	writing	and	debugging	host	software,	which	may	include	a
combination	of	a	device	driver,	filter	driver,	and	application	code.

Also	recommended	are	a	monitor	program	for	debugging	device	firmware	and
a	protocol	analyzer	for	viewing	USB	traffic.

Steps	in	developing	a	project
The	steps	 in	project	development	 include	 initial	decisions,	enumerating,	and
exchanging	data.

Selecting	hardware	and	software
Before	you	can	begin	programming,	you	need	to	select	device	hardware	and	a
host	driver:
1.	Specify	the	device’s	requirements.	For	the	USB	interface,	define	the	required
rate	 of	 data	 transfer	 and	 timing	 or	 bandwidth	 requirements.	Consider	what
else	 your	 device	 needs	 to	 carry	 out	 its	 function.	 For	 example,	 a	 data	 logger
might	need	an	analog	input.	Chapter	3	has	more	about	the	capabilities	of	the
different	transfer	types	and	how	they	relate	to	device	requirements.
2.	Decide	whether	 the	PC	can	access	 the	device	using	a	driver	 included	with
the	 operating	 system	 or	 a	 driver	 you	 provide.	 Chapter	 7	 has	 more	 about
drivers.
3.	Select	a	device	controller	chip.	Chapter	6	has	more	about	selecting	chips.

Enumerating
To	enable	a	host	to	enumerate	your	device,	do	the	following:
1.	Write	or	obtain	device	firmware	to	respond	to	standard	USB	requests	from
the	 host	 and	 other	 events	 on	 the	 bus.	 The	 requests	 ask	 for	 a	 series	 of
descriptors,	 which	 are	 data	 structures	 that	 describe	 the	 device’s	 USB
capabilities.	 Chip	 companies	 generally	 provide	 example	 code	 that	 you	 can
modify	for	a	specific	device.	A	few	controllers	can	enumerate	with	no	device
firmware	required.
2.	 For	 a	 Windows	 host,	 identify	 or	 create	 a	 device	 driver	 and	 INF
(information)	file	to	enable	identifying	the	device	and	assigning	a	driver.	The
INF	 file	 is	 a	 text	 file	 that	 names	 the	 driver	 the	 device	 will	 use	 on	 the	 host
computer.	If	your	device	fits	a	class	supported	by	Windows,	you	may	be	able
to	 use	 an	 INF	 file	 included	 with	 Windows.	 Other	 operating	 systems	 use
different	methods	to	match	a	driver	to	a	device.
3.	Build	or	obtain	a	development	board	or	other	 circuit	 to	 test	 the	 chip	and
your	 firmware.	Chip	 companies	 typically	 offer	development	boards	 for	 their
chips.
4.	Load	the	code	into	the	device	and	attach	the	device	to	the	bus.	A	Windows
host	will	enumerate	the	device	and	add	it	to	Device	Manager.

Exchanging	data
When	the	device	enumerates	successfully,	you	can	begin	 to	add	components

and	code	to	carry	out	the	device’s	function.	If	needed,	write	application	code
to	communicate	with	and	test	the	device.	When	the	code	is	debugged,	you’re
ready	to	test	on	your	final	hardware.

USB	3.1	essentials
USB	3.0	was	a	major	update	to	the	USB	specification,	and	USB	3.1	builds	on
USB	3.0’s	foundation.	This	section	describes	what	is	new	in	USB	3.0	and	USB
3.1.

Features
USB	3.1	incorporates	many	new	features	while	continuing	to	support	USB	2.0.

USB	3.1	replaces	USB	3.0
USB	 3.1	 replaces	 USB	 3.0	 as	 the	 current	 specification	 for	 Enhanced
SuperSpeed.	USB	3.0	defined	a	new	SuperSpeed	bus	 that	operates	parallel	 to
the	 USB	 2.0	 bus.	 USB	 3.1	 uses	 the	 same	 wires	 but	 adds	 support	 for
SuperSpeedPlus.	New	designs,	whether	 they	 support	 SuperSpeedPlus	 or	 just
SuperSpeed,	should	comply	with	USB	3.1.

USB	3.1	doesn’t	replace	USB	2.0
USB	 2.0	 remains	 the	 specification	 for	 low,	 full,	 and	 high	 speeds	 as	 well	 as
features	 and	 protocols	 that	 apply	 to	 all	 speeds	 including	 transfer	 types,
descriptors,	and	general	bus	topology.
Devices	 that	don’t	 support	a	USB	3.1	 speed	 should	continue	 to	comply	with
USB	2.0.	SuperSpeed	and	SuperSpeedPlus	devices	comply	with	USB	3.1	when
operating	 at	USB	 3.1	 speeds	 and	 comply	with	USB	 2.0	when	 operating	 at	 a
lower	speed.

Devices	that	benefit
Devices	that	can	benefit	from	Enhanced	SuperSpeed	include	drives	and	video
devices.	 High-resolution	 video	 displays	 that	 use	 USB	 for	 data	 are	 feasible.
Power-hungry	 devices	 can	 benefit	 from	 higher	 current	 limits,	 and	 power-
sensitive	devices	can	benefit	from	new	protocols.

Faster	data	transfers
The	SuperSpeed	bus	has	a	signaling	rate,	or	speed	of	the	bits	on	the	wires,	of	5

Gb/s,	which	is	over	10x	faster	than	high-speed	USB.	SuperSpeedPlus	doubles
the	signaling	rate	to	10	Gb/s.	Unlike	USB	2.0,	SuperSpeed	and	SuperSpeedPlus
use	a	pair	of	wires	for	each	direction	so	data	can	travel	in	both	directions	at	the
same	 time.	After	 encoding	 and	 other	 overhead,	 a	 SuperSpeed	 bus	 can	 carry
around	460	MB/s	of	application	data	in	each	direction,	and	a	SuperSpeedPlus
bus	can	carry	around	1.1	GB/s	of	application	data	in	each	direction.
Other	 Enhanced	 SuperSpeed	 features	 that	 can	 increase	 data	 throughput
include	these:

Devices	 can	 asynchronously	notify	 the	host	when	 they	have	data	 to	 send.
The	host	doesn’t	have	to	use	bandwidth	polling	devices	that	have	nothing	to
send.
Bulk	transfers	can	use	a	streaming	protocol	for	improved	performance.

Some	features	remain	the	same
These	features	remain	essentially	unchanged	in	USB	3.1	compared	to	USB	2.0:

Tiered	star	topology.
Four	transfer	types	(control,	bulk,	interrupt,	isochronous).
Use	 of	 descriptors	 to	 provide	 device	 information.	 USB	 3.1	 adds	 new
descriptors	and	adds	new	information	in	some	fields	in	descriptors	defined
in	USB	2.0.
Device	classes	and	many	class	drivers.
Low,	full,	and	high-speed	protocols	and	cabling.

Other	enhancements
Besides	the	new	bus	speeds,	other	changes	with	USB	3.1	compared	to	USB	2.0
include	these:

Direct	routing.	Hubs	route	downstream	traffic	only	to	the	receiving	device
rather	than	to	every	Enhanced	SuperSpeed	port.
No	polling.	When	a	host	requests	data	from	an	Enhanced	SuperSpeed,	non-
isochronous	endpoint	that	is	busy	or	has	no	data,	the	endpoint	returns	Not
Ready	(NRDY).	The	host	can	then	leave	the	endpoint	alone	until	the	device
sends	an	Endpoint	Ready	(ERDY)	notification	indicating	that	the	endpoint
has	 data	 to	 send.	Thus	 the	 host	 doesn’t	waste	 bus	 time	 polling	 endpoints
that	may	have	nothing	to	send.
New,	aggressive	power-saving	modes	and	protocols.

More	bus	current	available	to	devices.
Support	 for	 bursts,	 where	 a	 host	 or	 device	 sends	 multiple	 data	 packets
without	waiting	for	each	previous	packet’s	acknowledgment.
Streaming	on	bulk	endpoints.	Multiple,	 independent	data	 streams	can	use
the	same	endpoint	with	a	dedicated	buffer	for	each	stream.

Compatibility
USB	 3.1	 is	 backwards	 compatible	 with	 USB	 2.0.	 The	 statements	 below	 also
apply	to	USB	3.0	except	for	lack	of	support	for	SuperSpeedPlus.

USB	2.0	devices	work	with	USB	3.1	hosts
A	USB	3.1	host	has	a	USB	2.0	bus	 in	parallel	with	an	Enhanced	SuperSpeed
bus.	USB	2.0	devices	require	no	changes	to	work	with	USB	3.1	hosts.

USB	3.1	devices	may	work	with	USB	2.0	hosts
Every	 Enhanced	 SuperSpeed	 device	must	 also	 support	 a	USB	 2.0	 speed	 but
doesn’t	 have	 to	 fully	 function	 at	 that	 speed.	 A	 device	 that	 can’t	 perform	 its
function	 at	 the	 lower	 speed	 informs	 the	 host	 that	 the	 device	 requires
SuperSpeed.

Changes	in	host	software
The	operating	 system	must	provide	a	driver	 for	 the	USB	3.1	host	controller.
Class	 and	 device	 drivers	 that	 support	 isochronous	 transfers	 are	 likely	 to
require	changes	to	support	SuperSpeed	and	SuperSpeedPlus.

USB	3.1’s	higher	bus	currents	are	available	only	on	the	USB	3.1
bus
Enhanced	SuperSpeed	devices	should	comply	with	USB	3.1	when	operating	at
a	Gen	1	or	Gen	2	data	rate	and	should	comply	with	USB	2.0	when	operating	at
a	 lower	speed.	Thus	a	high-power	device	 that	can	operate	at	both	a	USB	3.1
speed	and	a	USB	2.0	speed	can	draw	900	mA	at	the	USB	3.1	speed	but	only	500
mA	at	the	USB	2.0	speed.

USB	3.1	hubs	support	all	speeds
A	USB	3.1	hub	contains	an	Enhanced	SuperSpeed	hub	and	a	USB	2.0	hub	that
share	power	and	ground	lines	and	logic	to	control	power	to	the	bus.	The	hub
enumerates	as	two	devices,	an	Enhanced	SuperSpeed	hub	on	the	USB	3.1	bus

and	a	USB	2.0	hub	on	the	USB	2.0	bus.

A	USB	3.1	device	communicates	at	one	speed	at	a	time
USB	3.1	devices	 communicate	 at	 the	highest	 speed	 supported	by	 the	device,
the	 host,	 and	 the	 hubs	 between	 them.	 An	 exception	 is	 upstream
communications	on	hubs	on	some	buses—a	USB	2.0	hub	connected	to	a	USB
2.0	or	higher	host	always	communicates	upstream	at	high	speed.
Except	for	hubs,	a	device	can’t	use	the	USB	3.1	and	USB	2.0	buses	at	the	same
time.

Cables
USB	3.1	defines	new	cables	and	connectors.

At	USB	2.0	speeds,	devices	can	use	USB	2.0	cables	with	USB	3.1
hosts	and	hubs
For	traffic	at	USB	2.0	speeds,	USB	2.0	cables	fit	USB	3.1	receptacles	but	don’t
have	wires	to	carry	USB	3.1	traffic.

USB	3.1	cables	fit	USB	2.0	hosts	and	hubs
The	USB	3.1	Standard-A	plug	 fits	 the	USB	2.0	Standard-A	receptacle	so	you
can	use	a	USB	3.1	cable	to	attach	a	USB	3.1	device	to	a	USB	2.0	host	or	hub.
The	device	will	communicate	at	a	USB	2.0	speed.

USB	3.1	cables	don’t	fit	USB	2.0	devices
A	USB	3.1	cable	with	a	USB	3.1	Standard-B	or	USB	3.1	Micro-B	plug	doesn’t
fit	USB	2.0	receptacles.

USB	3.1	receptacles	have	additional	requirements
For	 noise	 reduction,	 USB	 3.1	 has	 more	 requirements	 for	 receptacle	 back-
shields,	ground	tabs,	and	grounding	spring	tabs.

USB	3.1	devices	and	hosts	can	use	USB	Type-C	cables
The	 USB	 Type-C	 connector	 specification	 followed	 the	 release	 of	 USB	 3.1.
These	connectors	have	many	benefits	including	small	form	factor,	support	for
advanced	power	delivery	protocols,	and	 the	ability	 to	 insert	 them	either	 side
up.	Any	USB	3.1	or	USB	2.0	host	or	device	can	be	designed	to	use	USB	Type-C
connectors	and	cables.

Maximum	cable	length
Maximum	 cable	 lengths	 for	 Enhanced	 SuperSpeed	 are	 shorter	 compared	 to
USB	2.0.	The	USB	3.1	specification	defines	performance	requirements	but	not
maximum	cable	length.	A	practical	limit	for	USB	3.1	cables	is	1	m.
The	USB	Type-C	specification	provides	practical	maximum	lengths	for	cables
that	use	USB	Type-C	connectors:	1	m	for	SuperSpeedPlus,	2	m	for	SuperSpeed
and	USB	2.0	cables	with	micro-B	plugs,	and	4	m	for	other	USB	2.0	cables.

Connecting	two	USB	3.1	hosts
USB	3.1	defines	a	new	cable	with	a	USB	3.1	Standard-A	plug	on	each	end.	The
cable	 is	 intended	 for	 debugging	 and	 other	 host-to-host	 applications	 with
driver	 support.	 The	 cable	 includes	 Enhanced	 SuperSpeed	 data	 wires	 but	 no
wires	for	VBUS,	D+,	or	D-.

Power
USB	3.1	provides	both	more	power	and	more	power-saving	options	to	devices.

More	bus	power	available
A	USB	3.1	host	or	hub	can	provide	up	to	900	mA	to	high-power	SuperSpeed
and	SuperSpeedPlus	devices	and	up	to	150	mA	to	low-power	SuperSpeed	and
SuperSpeedPlus	devices.
When	operating	at	low,	full,	or	high	speed,	USB	2.0’s	limits	apply:	high	power
devices	can	draw	up	 to	500	mA,	and	 low	power	devices	can	draw	up	 to	100
mA.	USB	Power	Delivery	Rev.	2.0,	v1.0	expands	the	options	for	power	on	both
USB	2.0	and	USB	3.1	systems.

2

Inside	USB	Transfers
This	 chapter	 looks	 at	 the	 elements	 that	make	 up	 a	USB	 transfer.	 You	 don’t
always	need	to	know	every	detail	about	USB	transfers	to	get	a	project	up	and
running,	 but	 understanding	 how	 transfers	work	 can	 help	 in	 deciding	which
transfer	 types	 a	 device	 should	 use	 and	 in	 writing	 and	 debugging	 device
firmware.

Transfer	basics
To	send	or	receive	data,	 the	USB	host	 initiates	a	USB	transfer.	Each	 transfer
uses	a	defined	format	to	send	data,	an	address,	error-detecting	bits,	and	status
and	 control	 information.	 The	 format	 varies	 with	 the	 transfer	 type	 and
direction.

Essentials
Every	USB	communication	(with	one	exception	in	USB	3.1)	is	between	a	host
and	a	device.	The	host	manages	traffic	on	the	bus,	and	the	device	responds	to
communications	 from	 the	 host.	 An	 endpoint	 is	 a	 device	 buffer	 that	 stores
received	 data	 or	 data	 to	 transmit.	 Each	 endpoint	 address	 has	 a	 number,	 a
direction,	 and	 a	maximum	 number	 of	 data	 bytes	 the	 endpoint	 can	 send	 or
receive	in	a	transaction.
Each	USB	transfer	consists	of	one	or	more	transactions	that	can	carry	data	to
or	 from	 an	 endpoint.	 A	 USB	 2.0	 transaction	 begins	 when	 the	 host	 sends	 a
token	 packet	 on	 the	 bus.	 The	 token	 packet	 contains	 the	 target	 endpoint’s
number	 and	 direction.	An	 IN	 token	 packet	 requests	 a	 data	 packet	 from	 the
endpoint.	 An	 OUT	 token	 packet	 precedes	 a	 data	 packet	 from	 the	 host.	 In
addition	to	data,	each	data	packet	contains	error-checking	bits	and	a	Packet	ID
(PID)	with	a	data-sequencing	value.	Many	transactions	also	have	a	handshake
packet	 where	 the	 receiver	 of	 the	 data	 reports	 success	 or	 failure	 of	 the
transaction.

For	Enhanced	SuperSpeed	transactions,	the	packet	types	and	protocols	differ,
but	 the	 transactions	 contain	 similar	 addressing,	 error-checking,	 and	 data-
sequencing	values	along	with	the	data.
USB	supports	four	transfer	types:	control,	bulk,	interrupt,	and	isochronous.	In
a	 control	 transfer,	 the	host	 sends	 a	defined	 request	 to	 the	device.	On	device
attachment,	the	host	uses	control	transfers	to	request	a	series	of	data	structures
called	descriptors	from	the	device.	The	descriptors	provide	information	about
the	device’s	capabilities	and	help	the	host	decide	what	driver	to	assign	to	the
device.	A	class	specification	or	vendor	can	also	define	requests.
Control	 transfers	have	up	 to	 three	 stages:	Setup,	Data	 (optional),	and	Status.
The	Setup	stage	contains	 the	request.	When	present,	 the	Data	stage	contains
data	 from	 the	 host	 or	 device,	 depending	 on	 the	 request.	 The	 Status	 stage
contains	 information	 about	 the	 success	 of	 the	 transfer.	 In	 a	 control	 read
transfer,	the	device	sends	data	in	the	Data	stage.	In	a	control	write	transfer,	the
host	sends	data	in	the	Data	stage,	or	the	Data	stage	is	absent.
The	 other	 transfer	 types	 don’t	 have	 defined	 stages.	 Instead,	 higher-level
software	defines	how	to	interpret	the	raw	data.	Bulk	transfers	are	the	fastest	on
an	otherwise	idle	bus	but	have	no	guaranteed	timing.	Printers	and	drives	use
bulk	transfers.	Interrupt	transfers	have	guaranteed	maximum	latency,	or	time
between	 transaction	 attempts.	 Mice	 and	 keyboards	 use	 interrupt	 transfers.
Isochronous	 transfers	 have	 guaranteed	 timing	 but	 no	 error	 correcting.
Streaming	audio	and	video	use	isochronous	transfers.

Purposes	for	communication
USB	 communications	 fall	 into	 two	 general	 categories:	 communications	 that
help	to	identify	and	configure	the	device	and	communications	that	carry	out
the	 device’s	 purpose.	 During	 enumeration,	 the	 host	 learns	 about	 the	 device
and	 requests	 a	 configuration.	When	 enumeration	 is	 complete,	 the	 host	 can
send	and	request	data	as	needed	to	carry	out	the	device’s	purpose.
During	 enumeration,	 the	 device’s	 firmware	 responds	 to	 a	 series	 of	 standard
requests	from	the	host.	The	device	must	decode	the	requests,	return	requested
information,	and	take	other	actions	to	carry	out	the	requests.
Windows	 and	 other	 OSes	 perform	 enumeration	 with	 no	 application
programming	required.	Under	Windows,	the	first	time	a	device	attaches	to	a
system,	 the	 Plug	 and	 Play	 (PnP)	 Manager	 must	 locate	 an	 INF	 file	 that
identifies	 the	name	and	 location	of	one	or	more	driver	 files	 to	 assign	 to	 the

device.	If	the	required	files	are	available	and	the	firmware	functions	correctly,
the	 enumeration	 process	 is	 generally	 invisible	 to	 users.	 Chapter	 9	 has	more
about	device	drivers	and	INF	files.
After	 the	 host	 has	 enumerated	 the	 device	 and	 assigned	 and	 loaded	 a	 device
driver,	 application	 communications	 can	 begin.	At	 the	 host,	 applications	 can
use	Windows	API	functions	or	other	software	components	to	read	and	write
to	the	device.	At	the	device,	transferring	data	typically	requires	either	placing
data	to	send	in	an	endpoint’s	transmit	buffer	or	retrieving	received	data	from
an	endpoint’s	 receive	buffer,	 and	on	completing	a	 transaction,	 ensuring	 that
the	 endpoint	 is	 ready	 for	 another	 transaction.	 Most	 devices	 also	 require
firmware	support	for	handling	errors	and	other	events.

Managing	data	on	the	bus
The	 host	 schedules	 the	 transfers	 on	 the	 bus.	 A	 USB	 2.0	 host	 controller
manages	traffic	by	dividing	time	into	1-ms	frames	at	low	and	full	speeds	and
125-μs	 microframes	 at	 high	 speed.	 The	 host	 allocates	 a	 portion	 of	 each
(micro)frame	 to	 each	 transfer.	 Each	 (micro)frame	 begins	 with	 a	 Start-of-
Frame	(SOF)	timing	reference.
An	 Enhanced	 SuperSpeed	 bus	 doesn’t	 use	 SOFs,	 but	 the	 host	 schedules
transfers	 within	 125-μs	 bus	 intervals.	 A	USB	 3.1	 host	 also	 sends	 timestamp
packets	once	every	bus	interval	to	all	Enhanced	SuperSpeed	ports	that	aren’t	in
a	low-power	state.
Each	 transfer	 consists	 of	 one	 or	more	 transactions.	Control	 transfers	 always
have	multiple	transactions	because	they	have	multiple	stages,	each	consisting
of	 one	 or	more	 transactions.	 Other	 transfer	 types	 use	multiple	 transactions
when	they	have	more	data	than	will	fit	in	a	single	transaction.	Depending	on
how	the	host	schedules	the	transactions	and	the	speed	of	a	device’s	response,
the	 transactions	 in	 a	 transfer	 may	 all	 be	 in	 a	 single	 (micro)frame	 or	 bus
interval,	or	the	transactions	may	be	spread	over	multiple	(micro)frames	or	bus
intervals.
Every	device	has	a	unique	address	assigned	by	the	host,	and	all	data	travels	to
or	 from	the	host.	Except	 for	 remote	wakeup	signaling,	 everything	a	USB	2.0
device	 sends	 is	 in	 response	 to	 receiving	 a	 packet	 sent	 by	 the	 host.	 Because
multiple	devices	 can	 share	 a	data	path	on	 the	bus,	 each	USB	2.0	 transaction
includes	a	device	address	that	identifies	the	transaction’s	destination.
Enhanced	SuperSpeed	devices	can	send	status	and	control	information	to	the

host	without	waiting	for	the	host	to	request	the	information.	Every	Enhanced
SuperSpeed	 Data	 Packet	 and	 Transaction	 Packet	 includes	 a	 device	 address.
Enhanced	 SuperSpeed	 buses	 also	 use	 Link	Management	 Packets	 that	 travel
only	 between	 a	 device	 and	 the	 nearest	 hub	 and	 thus	 don’t	 need	 addressing
information.

Elements	of	a	transfer
Every	USB	transfer	consists	of	one	or	more	transactions,	and	each	transaction
in	turn	contains	packets	of	information.	To	understand	transactions,	packets,
and	their	contents,	you	also	need	to	understand	endpoints	and	pipes.	So	that’s
where	we’ll	begin.

Endpoints:	the	source	and	sink	of	data
All	bus	 traffic	 travels	 to	or	 from	a	device	endpoint.	The	endpoint	 is	a	buffer
that	typically	stores	multiple	bytes	and	consists	of	a	block	of	data	memory	or	a
register	 in	the	device-controller	chip.	The	data	stored	at	an	endpoint	may	be
received	data	or	data	waiting	to	transmit.	The	host	also	has	buffers	that	hold
received	 data	 and	 data	 waiting	 to	 transmit,	 but	 the	 host	 doesn’t	 have
endpoints.	 Instead,	 the	 host	 serves	 as	 the	 source	 and	 destination	 for
communicating	with	device	endpoints.
An	 endpoint	 address	 consists	 of	 an	 endpoint	 number	 and	 direction.	 The
number	is	a	value	in	the	range	0–15.	The	direction	is	defined	from	the	host’s
perspective:	 an	 IN	 endpoint	 provides	 data	 to	 send	 to	 the	 host	 and	 an	OUT
endpoint	 stores	 data	 received	 from	 the	 host.	 An	 endpoint	 configured	 for
control	 transfers	must	 transfer	data	 in	both	directions	 so	a	control	 endpoint
consists	of	a	pair	of	IN	and	OUT	endpoint	addresses	 that	share	an	endpoint
number.
Every	 device	 must	 have	 endpoint	 zero	 configured	 as	 a	 control	 endpoint.
Additional	control	endpoints	offer	no	improvement	in	performance	and	thus
are	rare.
In	 other	 transfer	 types,	 the	 data	 flows	 in	 one	 direction	 though	 status	 and
control	 information	 can	 travel	 in	 the	 opposite	 direction.	 A	 single	 endpoint
number	 can	 support	 both	 IN	 and	OUT	 endpoint	 addresses.	 For	 example,	 a
device	might	have	endpoint	1	IN	for	sending	data	to	the	host	and	endpoint	1
OUT	for	receiving	data	from	the	host.

In	addition	 to	endpoint	 zero,	 a	 full-	or	high-speed	device	can	have	up	 to	30
additional	 endpoint	 addresses	 (1–15,	 IN	and	OUT).	A	 low-speed	device	 can
have	 at	 most	 two	 additional	 endpoint	 addresses	 which	 can	 be	 two	 IN,	 two
OUT,	or	one	in	each	direction.

Transaction	types
Every	 USB	 2.0	 transaction	 begins	 with	 a	 packet	 that	 contains	 an	 endpoint
number	and	a	code	that	 indicates	the	direction	of	data	flow	and	whether	the
transaction	is	initiating	a	control	transfer:

Transaction
Type

Source	of	Data Types	of	Transfers	that
Use	the	Transaction	Type

Contents

IN device all data	or	status	information

OUT host all data	or	status	information

Setup host control a	request

As	 with	 endpoint	 directions,	 the	 naming	 convention	 for	 IN	 and	 OUT
transactions	 is	 from	 the	 perspective	 of	 the	 host.	 In	 an	 IN	 transaction,	 data
travels	from	the	device	to	the	host.	In	an	OUT	transaction,	data	travels	from
the	host	to	the	device.
A	Setup	transaction	is	like	an	OUT	transaction	because	data	travels	from	the
host	to	the	device,	but	a	Setup	transaction	is	a	special	case	because	it	initiates	a
control	transfer.	Devices	need	to	identify	Setup	transactions	because	these	are
the	only	transactions	that	devices	must	always	accept.	Any	transfer	type	may
use	IN	or	OUT	transactions.
In	every	USB	2.0	transaction,	the	host	sends	an	addressing	triple	 that	consists
of	 a	 device	 address,	 an	 endpoint	 number,	 and	 endpoint	 direction.	 On
receiving	an	OUT	or	Setup	packet,	 the	 endpoint	 stores	 the	data	 that	 follows
the	packet,	and	the	device	hardware	typically	triggers	an	interrupt.	Firmware
can	 then	 process	 the	 received	 data	 and	 take	 any	 other	 required	 action.	 On
receiving	an	IN	packet,	if	the	endpoint	has	data	ready	to	send	to	the	host,	the
hardware	 sends	 the	 data	 on	 the	 bus	 and	 typically	 triggers	 an	 interrupt.
Firmware	can	then	do	whatever	is	needed	to	get	ready	to	send	data	in	the	next
IN	 transaction.	 An	 endpoint	 that	 isn’t	 ready	 to	 send	 or	 receive	 data	 in
response	to	an	IN	or	OUT	packet	sends	a	status	code.
For	Enhanced	SuperSpeed	transactions,	the	protocol	differs	as	described	later

in	this	chapter.

Pipes:	connecting	endpoints	to	the	host
Before	data	can	transfer,	the	host	and	device	must	establish	a	pipe.	A	pipe	is	an
association	 between	 a	 device’s	 endpoint	 and	 the	 host	 controller’s	 software.
Host	software	establishes	a	pipe	with	each	endpoint	address	the	host	wants	to
communicate	with.
The	 host	 establishes	 pipes	 during	 enumeration.	 If	 a	 user	 detaches	 a	 device
from	the	bus,	the	host	removes	the	no	longer	needed	pipes.	The	host	can	also
request	 new	 pipes	 or	 remove	 unneeded	 pipes	 by	 using	 control	 transfers	 to
request	an	alternate	configuration	or	interface	for	a	device.	Every	device	has	a
default	control	pipe	that	uses	endpoint	zero.
The	 configuration	 information	 received	 by	 the	 host	 includes	 an	 endpoint
descriptor	for	each	endpoint	the	device	wants	to	use.	Each	endpoint	descriptor
contains	an	endpoint	address,	the	type	of	transfer	the	endpoint	supports,	the
maximum	size	of	data	packets,	 and,	 for	 interrupt	 and	 isochronous	 transfers,
the	 desired	 service	 interval,	 or	 period	 of	 time	 between	 attempts	 to	 send	 or
receive	data.

Transfer	types
Devices	with	 varied	 requirements	 for	 transfer	 rate,	 response	 time,	 and	 error
correcting	 can	 all	 use	 USB.	 Each	 of	 the	 four	 types	 of	 data	 transfers	 meets
different	needs.	Each	device	can	support	the	transfer	types	that	are	best	suited
for	its	purpose.	Table	2-1	summarizes	the	features	and	uses	of	each	type.
Control	 transfers	 are	 the	 only	 type	 with	 functions	 defined	 by	 the	 USB
specification.	 Control	 transfers	 enable	 the	 host	 to	 read	 information	 about	 a
device,	 set	 a	 device’s	 address,	 and	 select	 configurations	 and	 other	 settings.
With	 driver	 support,	 control	 transfers	 can	 also	 contain	 class-	 and	 vendor-
specific	requests	that	send	and	receive	data	for	any	purpose.	All	USB	devices
must	support	control	transfers.
Bulk	 transfers	 are	 intended	 for	 applications	 where	 the	 rate	 of	 transfer	 isn’t
critical,	 such	 as	 sending	 a	 file	 to	 a	 printer	 or	 accessing	 files	 on	 a	 drive.	 For
these	applications,	quick	transfers	are	nice,	but	the	data	can	wait	if	necessary.
On	a	busy	bus,	bulk	transfers	have	to	wait,	but	on	a	bus	that	is	otherwise	idle,
bulk	transfers	are	the	fastest.	Low	speed	devices	don’t	support	bulk	endpoints.
Devices	 aren’t	 required	 to	 support	 bulk	 transfers,	 but	 a	 specific	 device	 class

can	require	them.
Interrupt	 transfers	 are	 for	 devices	 that	 must	 receive	 the	 host’s	 or	 device’s
attention	 periodically,	 or	 with	 low	 latency,	 or	 delay.	 Other	 than	 control
transfers,	 interrupt	 transfers	are	 the	only	way	 low-speed	devices	can	 transfer
data.	Keyboards	and	mice	use	interrupt	transfers	to	send	keypress	and	mouse-
movement	data.	Interrupt	transfers	can	use	any	speed.	Devices	aren’t	required
to	support	interrupt	transfers,	but	a	specific	device	class	can	require	them.
Isochronous	transfers	have	guaranteed	delivery	time	but	no	error	correcting.
Data	 that	 uses	 isochronous	 transfers	 includes	 streaming	 audio	 and	 video.
Isochronous	 is	 the	 only	 transfer	 type	 that	 doesn’t	 support	 automatic	 re-
transmitting	 of	 data	 received	 with	 errors,	 so	 occasional	 errors	 must	 be
acceptable.	Low-speed	devices	don’t	 support	 isochronous	endpoints.	Devices
aren’t	required	to	support	isochronous	transfers,	but	a	specific	device	class	can
require	them.

Table	2-1:	Each	of	the	USB’s	four	transfer	types	is	suited	for	different	uses.
Transfer	Type Control Bulk Interrupt Isochronous

Typical	Use Identification
and
configuration

Printer,
scanner,	drive

Mouse,
keyboard

Streaming	audio,
video

Device	support	required? yes no no no

Low	speed	allowed? yes no yes no

Maximum	packet	size;	maximum
guaranteed	packets/interval
(Enhanced	SuperSpeed).

512;
none

1024;
none

1024;
3	/	125	μs

1024;
SuperSpeed:	48	/
125	μs
SuperSpeedPlus:	96
/	125	μs

Maximum	packet	size;	maximum
guaranteed	packets/interval	(high
speed).

64;
none

512;
none

1024;
3	/	125	μs

1024;
3	/	125	μs

Maximum	packet	size;	maximum
guaranteed	packets/interval	(full
speed).

64;
none

64;
none

64:
1	/	ms

1023;
1	/	ms

Maximum	packet	size;	maximum
guaranteed	packets/interval	(low
speed).

8;
none

not	allowed 8;
1	/	10	ms

not	allowed

Direction	of	data	flow IN	and	OUT IN	or	OUT IN	or	OUT IN	or	OUT

Reserved	bandwidth	for	all
transfers	of	the	type

10%	at
low/full	speed,

none 90%	at	low/full	speed,	80%	at	high
speed	and	Enhanced	SuperSpeed

20%	at	high
speed	and
Enhanced
SuperSpeed

(isochronous	and	interrupt
combined)

Message	or	Stream	data? message stream stream stream

Error	correction? yes yes yes no

Guaranteed	delivery	rate? no no no yes

Guaranteed	latency	(maximum
time	between	transfer	attempts)?

no no yes yes

Stream	and	message	pipes
In	 addition	 to	 classifying	 a	 pipe	 by	 the	 type	 of	 transfer	 it	 carries,	 the	 USB
specification	defines	pipes	as	either	stream	or	message.	Control	 transfers	use
bidirectional	message	pipes;	all	other	transfer	types	use	unidirectional	stream
pipes.

Control	transfers
In	 a	 control	 transfer’s	 message	 pipe,	 a	 transfer	 begins	 with	 a	 transaction
containing	a	request.	Depending	on	the	request,	to	complete	the	transfer,	the
host	and	device	may	exchange	data	and	status	information,	or	the	device	may
just	send	status	information.	Each	control	transfer	has	at	least	one	transaction
that	sends	information	in	each	direction.
If	a	device	supports	a	received	request,	the	device	takes	the	requested	action.	If
a	 device	 doesn’t	 support	 the	 request,	 the	 device	 responds	 with	 a	 code	 to
indicate	that	the	request	isn’t	supported.

Other	transfers
The	data	 in	a	stream	pipe	has	no	structure	defined	by	the	USB	specification.
The	receiver	just	accepts	or	rejects	the	data	that	arrives.	The	device	firmware
or	host	 software	can	process	 the	data	 in	whatever	way	 is	appropriate	 for	 the
application.
Of	 course,	 even	 with	 stream	 data,	 the	 sending	 and	 receiving	 devices	 must
agree	 on	 a	 data	 format.	 For	 example,	 the	 USB	 mass-storage	 specification
defines	structures	the	host	can	use	for	sending	commands	and	receiving	status
information	when	communicating	with	drives.

Initiating	a	transfer

The	USB	2.0	specification	defines	a	 transfer	as	one	or	more	bus	 transactions
that	move	 information	between	a	software	client	and	 its	 function.	A	transfer
may	be	very	short,	sending	as	little	as	one	byte	of	application	data	or	no	data
(only	status	information),	or	very	long,	such	as	sending	the	contents	of	a	large
file.
Windows	applications	can	access	some	USB	devices	by	calling	API	functions
to	 open	 a	 handle	 to	 the	 device	 and	 request	 data	 transfers.	 The	 operating
system	passes	 a	 request	 to	 transfer	data	 to	 a	device	or	 class	driver,	which	 in
turn	 passes	 the	 request	 to	 other	 system-level	 drivers	 and	 on	 to	 the	 host
controller.	The	host	controller	initiates	the	transfer	on	the	bus.
For	devices	in	standard	classes,	a	programming	language	can	provide	alternate
ways	to	access	a	device.	In	many	cases,	the	application	doesn’t	have	to	know	or
care	whether	the	device	uses	USB	or	another	interface.	For	example,	the	.NET
Framework	 includes	Directory	 and	 File	 classes	 for	 accessing	 files	 on	 drives,
including	USB	drives.
A	 vendor-supplied	 driver	 can	 also	 define	 API	 functions.	 For	 example,	 chip
company	 FTDI	 provides	 a	 driver	 that	 provides	 functions	 for	 setting
communications	 parameters	 and	 exchanging	 data	 with	 FTDI’s	 controller
chips.
For	receiving	data	 from	a	device,	 some	drivers	request	 the	host	controller	 to
poll	 an	 endpoint	 at	 intervals,	 while	 other	 drivers	 don’t	 initiate
communications	unless	an	application	has	requested	data	from	the	device.

USB	2.0	transactions
Figure	 2-1	 shows	 the	 elements	 of	 a	 typical	 USB	 2.0	 transfer.	 A	 lot	 of	 the
terminology	 here	 begins	 to	 sound	 the	 same.	 There	 are	 transfers	 and
transactions,	stages	and	phases,	data	transactions	and	data	packets.	There	are
Status	stages	and	handshake	phases.	Data	stages	have	handshake	packets	and
Status	stages	have	data	packets.	 It	can	take	a	while	 to	absorb	 it	all.	Table	2-2
lists	the	elements	that	make	up	each	of	the	four	transfer	types.
Each	 transfer	 consists	 of	 one	 or	more	 transactions,	 and	 each	 transaction	 in
turn	 consists	 of	 two	 or	 three	 packets.	 (Start-of-Frame	 markers	 transmit	 in
single	packets.)	The	USB	2.0	specification	defines	a	transaction	as	the	delivery
of	 service	 to	 an	 endpoint.	 Service	 in	 this	 case	 can	 mean	 either	 the	 host’s
sending	 information	 to	 the	 device	 or	 the	 host’s	 requesting	 and	 receiving

information	from	the	device.	Setup	transactions	send	control-transfer	requests
to	 a	 device.	 OUT	 transactions	 send	 other	 data	 or	 status	 information	 to	 the
device.	IN	transactions	send	data	or	status	information	to	the	host.

Figure	2-1.	A	USB	2.0	transfer	consists	of	transactions.	The	transactions	in	turn
contain	packets,	and	the	packets	contain	a	packet	identifier	(PID)	and	sometimes
additional	information.

Table	 2-2:	 Each	USB	 2.0	 transaction	 has	 two	 or	 three	 phases.	 (Not	 shown	 are
additional	transactions	required	for	split	transactions,	the	PING	protocol	used	in
some	 transfers,	 and	 the	 PRE	 packet	 that	 precedes	 downstream,	 low-speed
packets.)
Transfer	Type Number	and	Direction	of	Transactions Phases	(packets)

Control Setup	Stage 1	(SETUP) Token

Data

Handshake

Data	Stage Zero	or	more
(IN	or	OUT)

Token

Data

Handshake

Status	Stage 1	(opposite	direction	of	the
transaction(s)	in	the	Data
stage	or	IN	if	there	is	no	Data
stage)

Token

Data

Handshake

Bulk 1	or	more
(IN	or	OUT)

Token

Data

Handshake

Interrupt 1	or	more
(IN	or	OUT)

Token

Data

Handshake

Isochronous 1	or	more
(IN	or	OUT)

Token

Data

Each	 USB	 2.0	 transaction	 includes	 identifying,	 error-checking,	 status,	 and
control	information	as	well	as	any	data	to	be	exchanged.	A	transfer	may	take
place	 over	 multiple	 frames	 or	 microframes,	 but	 each	 USB	 2.0	 transaction
completes	 within	 a	 frame	 or	 microframe	 without	 interruption.	 No	 other
packets	on	 the	bus	can	break	 into	 the	middle	of	a	 transaction.	Devices	must
respond	quickly	with	 requested	data	 or	 status	 information.	Device	 firmware
typically	arms,	or	sets	up,	an	endpoint’s	response	to	a	received	packet,	and	on
receiving	a	packet,	the	hardware	places	the	response	on	the	bus.
A	non-control	transfer	with	a	small	amount	of	data	may	complete	in	a	single
transaction.	 Other	 transfers	 use	 multiple	 transactions	 with	 each	 carrying	 a
portion	of	the	data.

Transaction	phases
Each	transaction	has	up	to	three	phases,	or	parts	that	occur	in	sequence:	token,
data,	and	handshake.	Each	phase	consists	of	one	or	 two	transmitted	packets.
Each	packet	is	a	block	of	information	with	a	defined	format.	All	packets	begin
with	 a	 Packet	 ID	 (PID)	 that	 contains	 identifying	 information	 (Table	 2-3).
Depending	 on	 the	 transaction,	 the	 PID	 may	 be	 followed	 by	 an	 endpoint
address,	 data,	 status	 information,	 or	 a	 frame	 number,	 along	 with	 error-
checking	bits.
In	 the	 token	 phase	 of	 a	 transaction,	 the	 host	 initiates	 a	 communication	 by
sending	a	token	packet.	The	PID	indicates	the	transaction	type,	such	as	Setup,

IN,	OUT,	or	SOF.
In	the	data	phase,	the	host	or	device	may	transfer	any	kind	of	information	in	a
data	packet.	The	PID	includes	a	data-toggle	or	data	PID	sequencing	value	that
guards	 against	 lost	 or	 duplicated	 data	 when	 a	 transfer	 has	 multiple	 data
packets.
In	 the	 handshake	 phase,	 the	 host	 or	 device	 sends	 status	 information	 in	 a
handshake	 packet.	 The	 PID	 contains	 a	 status	 code	 (ACK,	NAK,	 STALL,	 or
NYET).	The	USB	2.0	specification	sometimes	uses	the	terms	status	phase	and
status	packet	to	refer	to	the	handshake	phase	and	packet.
The	token	phase	has	one	additional	use.	A	token	packet	can	carry	a	Start-of-
Frame	(SOF)	marker,	which	is	a	timing	reference	that	the	host	sends	at	1-ms
intervals	at	 full	 speed	and	at	125-μs	 intervals	at	high	 speed.	This	packet	also
contains	 a	 frame	 number	 that	 increments,	 rolling	 over	 on	 exceeding	 the
maximum	 value.	 The	 number	 indicates	 the	 frame	 count	 so	 the	 eight
microframes	 within	 a	 frame	 all	 have	 the	 same	 number.	 An	 endpoint	 can
synchronize	 to	 the	SOF	packet	or	use	 the	 frame	count	as	a	 timing	reference.
The	 SOF	 marker	 also	 keeps	 devices	 from	 entering	 the	 low-power	 Suspend
state	when	the	bus	has	no	other	USB	traffic.
Low-speed	 devices	 don’t	 see	 the	 SOF	 packet.	 Instead,	 the	 hub	 the	 device
attaches	 to	 provides	 an	 End-of-Packet	 (EOP)	 signal,	 called	 the	 low-speed
keep-alive	 signal,	 once	 per	 frame.	As	 the	 SOF	does	 for	 full-	 and	 high-speed
devices,	 the	 low-speed	keep-alive	keeps	 low-speed	devices	 from	entering	 the
Suspend	state.
The	PRE	PID	contains	a	preamble	code	that	tells	hubs	that	the	next	packet	is
low	speed.	On	receiving	a	PRE	PID,	the	hub	enables	communications	with	any
attached	 low-speed	 devices.	 On	 a	 low-	 and	 full-speed	 bus,	 the	 PRE	 PID
precedes	all	token,	data,	and	handshake	packets	directed	to	low-speed	devices.
High-speed	buses	 encode	 the	PRE	 in	 the	 SPLIT	packet,	 rather	 than	 sending
the	PRE	 separately.	Low-speed	packets	 sent	by	 a	device	don’t	 require	 a	PRE
PID.
In	 a	 high-speed	 bulk	 or	 control	 transfer	 with	 multiple	 data	 packets,	 before
sending	 the	 second	 and	 any	 subsequent	 data	 packets,	 the	 host	 may	 send	 a
PING	PID	to	find	out	if	the	endpoint	is	ready	to	receive	more	data.	The	device
responds	with	a	status	code.

Table	 2-3:	 The	 PID	 provides	 information	 about	 a	 transaction.	 Content	 from

Universal	 Serial	 Bus	 Specification,	 Revision	 2.0	 and	 USB	 2.0	 Link	 Power
Management	Addendum.
Packet	Type PID

Name
Value
(binary)

Transfer
types	used	in

Source Bus
Speed

Description

Token
(identifies
transaction
type)

OUT 0001 all host all Device	and	endpoint	address
for	OUT	transaction.

IN 1001 all host all Device	and	endpoint	address
for	IN	transaction.

SOF 0101 Start	of	Frame host all Start-of-Frame	marker	and
frame	number.

SETUP 1101 control host all Device	and	endpoint	address
for	Setup	transaction.

Data	(carries
data	or	status
code)

DATA0 0011 all host,
device

all Data	toggle	or	data	PID
sequencing.

DATA1 1011 all host,
device

all Data	toggle	or	data	PID
sequencing.

DATA2 0111 isochronous host,
device

high Data	PID	sequencing.

MDATA 1111 isochronous,
split
transactions

host,
device

high Data	PID	sequencing.

Handshake
(carries	status
code)

ACK 0010 control,	bulk,
interrupt

host,
device

all Receiver	accepts	error-free
data	packet.

NAK 1010 control,	bulk,
interrupt

device all Receiver	can’t	accept	data	or
sender	can’t	send	data	or	has
no	data	to	transmit.

STALL 1110 control,	bulk,
interrupt

device all A	control	request	isn’t
supported	or	the	endpoint	is
halted.

NYET 0110 control	write,
bulk	OUT,
split
transactions

device high Device	accepts	an	error-free
data	packet	but	isn’t	ready	for
another,	or	a	hub	doesn’t	yet
have	complete-split	data.

Special PRE 1100 control,
interrupt

host full Preamble	issued	by	a	host	to
indicate	that	the	next	packet	is
low	speed	(low/full-speed
segment	only).

ERR 1100 all hub high Returned	by	a	hub	to	report	a
low-	or	full-speed	error	in	a
split	transaction	(high-speed
segment	only).

SPLIT 1000 all host high Precedes	a	token	packet	to
indicate	a	split	transaction.

PING 0100 control	write,
bulk	OUT

host high Busy	check	for	bulk	OUT	and
control	write	data
transactions	after	NYET.

EXT 0000 – host all Protocol	extension	token.

The	 SPLIT	 PID	 identifies	 a	 token	 packet	 as	 part	 of	 a	 split	 transaction	 as
explained	 later	 in	 this	chapter.	The	ERR	PID	is	only	 for	split	 transactions	 to
enable	a	USB	2.0	hub	 to	 report	an	error	 in	a	downstream	 low-	or	 full-speed
transaction.	 The	 ERR	 and	 PRE	 PIDs	 have	 the	 same	 value	 but	 don’t	 cause
confusion	because	a	hub	never	sends	a	PRE	to	the	host	or	an	ERR	to	a	device.
Also,	ERR	is	only	for	high-speed	segments	and	PRE	never	transmits	on	high-
speed	segments.
The	Link	Power	Management	addendum	to	the	USB	2.0	specification	defines
the	EXT	PID.	The	host	follows	an	EXT	token	packet	with	an	extended	token
packet	for	a	specific	function.	Chapter	17	has	more	about	an	extended	token
packet	for	use	in	power	management.

Packet	sequences
Every	USB	2.0	transaction	has	a	token	packet.	The	host	is	always	the	source	of
this	packet,	which	 sets	up	 the	 transaction	by	 identifying	 the	packet	 type,	 the
receiving	device	and	endpoint,	 and	 the	direction	of	 any	data	 the	 transaction
will	 transfer.	 For	 low-speed	 transactions	 on	 a	 full-speed	 bus,	 a	 PRE	 packet
precedes	the	token	packet.	For	split	transactions,	a	SPLIT	packet	precedes	the
token	packet.
Depending	 on	 the	 transfer	 type	 and	 whether	 the	 host	 or	 device	 has
information	to	send,	a	data	packet	may	follow	the	token	packet.	The	direction
specified	in	the	token	packet	determines	whether	the	host	or	device	sends	the
data	packet.
In	all	transfer	types	except	isochronous,	the	receiver	of	the	data	packet	(or	the
device	if	there	is	no	data	packet)	returns	a	handshake	packet	containing	a	code
that	 indicates	 the	 success	 or	 failure	 of	 the	 transaction.	 The	 absence	 of	 an
expected	 handshake	 packet	 can	 indicate	 a	 more	 serious	 error	 or	 an
unsupported	Packet	ID.

Timing	constraints	and	guarantees

The	allowed	delays	between	the	token,	data,	and	handshake	packets	of	a	USB
2.0	 transaction	 are	 very	 short,	 intended	 to	 allow	 only	 for	 cable	 delays	 and
switching	times	plus	a	brief	time	to	allow	hardware	to	determine	a	response,
such	as	data	or	a	status	code,	in	response	to	a	received	packet.
A	common	mistake	in	writing	firmware	is	to	assume	that	the	firmware	should
wait	for	an	interrupt	before	providing	data	to	send	to	the	host.	Instead,	before
the	host	requests	 the	data,	 the	 firmware	must	copy	 the	data	 to	send	 into	 the
endpoint’s	buffer	and	arm	the	endpoint	 to	 send	 the	data	on	receiving	an	 IN
token	 packet.	 The	 interrupt	 occurs	 when	 the	 transaction	 completes.	 After	 a
successful	transaction,	the	interrupt	informs	the	firmware	that	the	endpoint’s
buffer	is	ready	to	store	data	for	the	next	transaction.	If	the	firmware	waits	for
an	interrupt	before	providing	the	initial	data,	the	interrupt	never	happens	and
data	doesn’t	transfer.
A	single	transaction	can	carry	data	up	to	the	maximum	packet	size	the	device
specifies	for	the	endpoint.	A	data	packet	with	fewer	than	the	maximum	packet
size’s	number	of	bytes	is	a	short	packet.	A	transfer	with	multiple	transactions
can	 take	place	over	multiple	 frames	or	microframes,	which	don’t	have	 to	be
contiguous.	 For	 example,	 in	 a	 full-speed	 bulk	 transfer	 of	 512	 bytes,	 the
maximum	number	of	bytes	in	a	single	transaction	is	64,	so	transferring	all	of
the	data	requires	at	least	eight	transactions,	which	may	occur	in	one	or	more
frames.
A	data	packet	 that	 contains	 a	Data	PID	and	error-checking	bits	but	no	data
bytes	is	a	zero-length	packet	(ZLP).	A	ZLP	can	indicate	the	end	of	a	transfer	or
successful	completion	of	a	control	transfer.

Split	transactions
A	USB	2.0	hub	communicates	with	a	USB	2.0	host	at	high	speed	unless	a	USB
1.1	 hub	 is	 between	 the	 host	 and	 hub.	When	 a	 low-	 or	 full-speed	 device	 is
attached	to	a	USB	2.0	hub,	the	hub	converts	between	speeds	as	needed.	Speed
conversion	isn’t	all	a	hub	does	to	manage	multiple	speeds.	High	speed	is	40x
faster	than	full	speed	and	320x	faster	than	low	speed.	It	doesn’t	make	sense	for
the	 entire	 bus	 to	wait	while	 a	 hub	 exchanges	 low-	 or	 full-speed	 data	with	 a
device.
The	solution	is	split	transactions.	A	USB	2.0	host	uses	split	transactions	when
communicating	with	 a	 low-	 or	 full-speed	device	 on	 a	 high-speed	 bus.	What
would	be	a	single	transaction	at	low	or	full	speed	usually	requires	two	types	of

split	transactions:	one	or	more	start-split	transactions	to	send	information	to
the	device	and	one	or	more	complete-split	transactions	to	receive	information
from	the	device.	The	exception	is	isochronous	OUT	transactions,	which	don’t
use	 complete-split	 transactions	 because	 the	 device	 has	 nothing	 to	 send;	 the
transaction	completes	with	the	start-split.
Transfers	 that	use	 split	 transactions	 require	more	 transactions	 to	complete	a
transfer	but	make	better	use	of	bus	time	because	they	minimize	the	time	spent
waiting	 for	 a	 low-	 or	 full-speed	 device	 to	 transfer	 data.	 The	 components
responsible	 for	performing	 split	 transactions	 are	 the	USB	2.0	host	 controller
and	 a	 USB	 2.0	 hub	 that	 has	 an	 upstream	 connection	 to	 a	 high-speed	 bus
segment	 and	a	downstream	connection	 to	 a	 low-	or	 full-speed	bus	 segment.
The	 transactions	 at	 the	 device	 are	 identical	 whether	 the	 host	 is	 using	 split
transactions	or	not.	At	the	host,	device	drivers	and	application	software	don’t
have	to	know	or	care	whether	the	host	is	using	split	transactions	because	the
protocol	is	handled	at	a	lower	level.	Chapter	16	has	more	about	how	the	host
and	hubs	manage	split	transactions.

Ensuring	successful	transfers
USB	 2.0	 transfers	 use	 status	 and	 control	 codes	 and	 error-checking	 to	 help
ensure	 that	 data	 gets	 to	 its	 destination	 as	 quickly	 as	 possible	 and	 without
errors.

Status	and	control
The	USB	2.0	specification	defines	handshake	codes	that	indicate	acceptance	of
received	 data,	 support	 or	 non-support	 of	 a	 control	 request,	 flow-control
conditions,	and	an	endpoint’s	HALT	state.
A	 code	 indicates	 the	 success	 or	 failure	 of	 all	 transactions	 except	 those	 in
isochronous	transfers.	In	addition,	in	control	transfers,	the	Status	stage	reports
the	success	or	failure	of	an	entire	transfer.
The	handshake	codes	travel	in	the	handshake	or	data	packet	of	a	transaction.
The	 defined	 status	 codes	 are	 ACK,	 NAK,	 STALL,	 NYET,	 and	 ERR.	 The
absence	 of	 an	 expected	 handshake	 code	 indicates	 an	 error.	 In	 all	 cases,	 the
expected	receiver	of	 the	handshake	uses	the	 information	to	help	decide	what
to	do	next.	Table	2-4	shows	 the	status	 indicators	and	where	 they	 transmit	 in
each	transaction	type.

ACK
ACK	(acknowledge)	indicates	that	a	host	or	device	has	received	data	without
error.	 Devices	 must	 return	 ACK	 in	 the	 handshake	 packets	 of	 Setup
transactions	if	the	token	and	data	packets	were	received	without	error.	Devices
return	ACK	 in	 the	 handshake	 packets	 of	OUT	 transactions	 to	 complete	 the
transaction	 and	 accept	 the	 received	 data.	 The	 host	 returns	 ACK	 in	 the
handshake	 packets	 of	 IN	 transactions	 if	 the	 token	 and	 data	 packets	 were
received	without	error.

Table	2-4:	The	location,	source,	and	contents	of	the	handshake	code	depend	on
the	type	of	transaction.
Transaction	Type
or	PING	Query

Data	Packet Handshake	Packet

Source Contents Source Contents

Setup host data device ACK

OUT host data device ACK,	NAK,
STALL,	(high	speed
only)	NYET,	(from
hub	in	complete
split)	ERR

IN device data,	NAK,	STALL,
(from	hub	in
complete	split)	ERR

host ACK

PING	(high	speed
only)

no	data	packet – device ACK,	NAK,	STALL

NAK
NAK	 (negative	 acknowledge)	 means	 the	 device	 is	 busy	 or	 has	 no	 data	 to
return.	If	 the	host	sends	data	when	the	device	 is	 too	busy	to	accept	data,	 the
endpoint	returns	NAK	in	the	handshake	packet.	If	the	host	requests	data	when
the	device	has	nothing	to	send,	the	endpoint	returns	NAK	in	the	data	packet.
In	 either	 case,	NAK	 indicates	 a	 temporary	 condition,	 and	 the	host	normally
retries	later	up	to	a	driver-defined	limit.
Hosts	never	send	NAK.	Isochronous	transactions	don’t	use	NAK	because	they
have	no	handshake	packet	for	returning	a	NAK.	If	a	device	or	the	host	doesn’t
receive	transmitted	isochronous	data,	it’s	lost.

STALL
The	 STALL	 handshake	 can	 mean	 an	 unsupported	 control	 request,	 control

request	failed,	or	endpoint	failed.
On	 receiving	 an	 unsupported	 control-transfer	 request,	 the	 device	 returns
STALL	in	the	Data	or	Status	stage.	The	device	also	returns	STALL	if	the	device
supports	the	request	but	for	some	reason	can’t	take	the	requested	action.	For
example,	 if	 the	 host	 sends	 a	 Set	 Configuration	 request	 to	 set	 the	 device
configuration	 to	 2,	 and	 the	 device	 supports	 only	 configuration	 1,	 the	 device
returns	STALL.	To	clear	this	type	of	stall,	the	host	sends	another	Setup	packet
to	 begin	 a	 new	 control	 transfer.	 The	USB	 2.0	 specification	 calls	 this	 type	 of
stall	a	protocol	stall.
Another	use	of	STALL	 is	a	 response	when	 the	endpoint’s	Halt	 feature	 is	 set,
which	means	 that	 the	 endpoint	 is	 unable	 to	 send	 or	 receive	 data	 at	 all.	 The
USB	2.0	specification	calls	this	type	of	stall	a	functional	stall.
Bulk	 and	 interrupt	 endpoints	 must	 support	 the	 functional	 stall.	 USB	 2.0
control	endpoints	may	support	the	functional	stall	but	have	little	reason	to	do
so.	A	control	endpoint	in	a	functional	stall	must	continue	to	respond	normally
to	 other	 requests	 that	monitor	 and	 control	 the	 stall	 condition.	An	 endpoint
that	 is	 capable	 of	 responding	 to	 these	 requests	 is	 capable	 of	 communicating
and	 thus	 shouldn’t	 be	 stalled.	 Isochronous	 transactions	 don’t	 use	 STALL
because	 they	have	no	handshake	packet	 for	 returning	 the	STALL.	Enhanced
SuperSpeed	control	endpoints	don’t	use	the	functional	STALL.
On	receiving	a	 functional	STALL,	 the	host	drops	all	pending	 requests	 to	 the
device	and	doesn’t	resume	communications	until	the	host	has	sent	a	successful
control	 request	 to	 clear	 the	 Halt	 feature	 on	 the	 device.	 Hosts	 never	 send
STALL.

NYET
Only	high-speed	devices	 send	NYET	(not	yet).	High-speed	bulk	and	control
transfers	 support	a	protocol	 that	enables	 the	host	 to	 find	out	before	 sending
data	if	an	endpoint	is	ready	to	receive	the	data.	At	low	and	full	speeds,	when
the	host	wants	 to	send	data	 in	a	control,	bulk,	or	 interrupt	 transfer,	 the	host
sends	 the	 token	and	data	packets	and	receives	a	reply	 from	the	device	 in	 the
transaction’s	handshake	packet.	If	not	ready	for	the	data,	the	endpoint	returns
NAK	and	the	host	retries	later.	Retrying	can	waste	a	lot	of	bus	time	if	the	data
packets	are	large	and	the	device	is	often	not	ready.
High-speed	bulk	and	control	transfers	with	multiple	data	packets	have	a	better
way.	After	receiving	a	data	packet,	an	endpoint	can	return	a	NYET	handshake,

which	 says	 the	 endpoint	 accepted	 the	 data	 but	 is	 not	 yet	 ready	 to	 receive
another	data	packet.	When	the	host	 thinks	 the	endpoint	might	be	ready,	 the
host	can	send	a	PING	token	packet,	and	the	endpoint	returns	either	an	ACK
to	indicate	the	device	is	ready	for	the	next	data	packet	or	NAK	or	STALL	if	the
endpoint	isn’t	ready.
Sending	a	PING	is	more	efficient	than	sending	the	entire	data	packet	only	to
find	 out	 the	 device	 wasn’t	 ready	 and	 having	 to	 resend	 later.	 Even	 after
responding	 to	 a	PING	or	OUT	with	ACK,	 an	 endpoint	 is	 allowed	 to	 return
NAK	on	 receiving	 the	data	packet	 that	 follows	but	 should	do	 so	 rarely.	The
host	 then	 tries	 again	 with	 another	 PING.	 The	 use	 of	 PING	 by	 the	 host	 is
optional.
A	USB	2.0	hub	may	return	NYET	in	a	complete-split	 transaction.	Hosts	and
low-	and	full-speed	devices	never	send	NYET.

ERR
The	 ERR	 handshake	 is	 for	 use	 only	 by	 high-speed	 hubs	 in	 complete-split
transactions.	ERR	indicates	the	device	didn’t	return	an	expected	handshake	in
the	transaction	the	hub	is	completing	with	the	host.

No	response
Another	type	of	status	indication	occurs	when	the	host	or	a	device	expects	to
receive	a	handshake	but	 receives	nothing.	This	 lack	of	 response	can	occur	 if
the	 receiver’s	 error-checking	 calculation	 detected	 an	 error.	 On	 receiving	 no
response,	the	sender	knows	it	should	retry.	After	multiple	failures,	the	sender
can	take	other	action.

Reporting	the	status	of	control	transfers
In	 control	 transfers,	 the	 data	 and	 handshake	 packets	 in	 the	 Status	 stage
indicate	 the	 status	 of	 the	 transfer.	 Table	 2-5	 shows	 the	 status	 indicators	 for
control	transfers.
For	control	write	transfers,	the	device	returns	the	status	of	the	transfer	in	the
data	packet	of	the	Status	stage.	On	accepting	the	request	and	receiving	data	in
the	 Data	 stage	 (if	 present)	 without	 error,	 the	 device	 returns	 a	 ZLP.	 Or	 the
device	may	return	NAK	(busy)	or	STALL	(failure).	The	host	returns	ACK	to
complete	 the	 transfer.	 For	 an	 unsupported	 request,	 a	 device	 may	 return
STALL	in	the	Data	stage	to	end	the	transfer.

For	control	read	transfers,	on	receiving	data	 in	 the	Data	stage	without	error,
the	 host	 sends	 a	 ZLP	 in	 the	 data	 packet	 of	 the	 Status	 stage.	 The	 device
responds	with	ACK	(transaction	complete),	NAK	(busy),	or	STALL	(failure).
A	 host	 may	 begin	 the	 Status	 stage	 before	 the	 device	 has	 sent	 all	 of	 the
requested	data	packets,	and	if	so,	the	device	must	abandon	the	Data	stage	and
return	a	handshake	code.

Error	checking
The	USB	specifications	define	hardware	requirements	that	ensure	that	errors
due	 to	 line	 noise	 are	 rare.	 Still,	 a	 noise	 glitch	 or	 unexpectedly	 disconnected
cable	 could	 corrupt	 a	 transmission.	USB	packets	 include	 error-checking	bits
that	 enable	 a	 receiver	 to	 identify	 just	 about	 any	 received	 data	 that	 doesn’t
match	 what	 was	 sent.	 For	 transfers	 that	 use	 multiple	 transactions,	 a	 data-
toggle	value	keeps	the	transmitter	and	receiver	synchronized	to	guard	against
missed	transactions.

Error-checking	bits
Token,	data,	and	SOF	packets	 include	bits	 for	use	 in	error-checking.	The	bit
values	 are	 calculated	 using	 a	 cyclic	 redundancy	 check	 (CRC)	 algorithm
defined	 in	 the	 USB	 2.0	 specification.	 Hardware	 performs	 the	 calculations,
which	 must	 be	 fast	 to	 enable	 the	 device	 to	 meet	 the	 specification’s	 timing
requirements.

Table	2-5:	The	Status	stage	of	a	control	transfer	indicates	the	success	or	failure	of
the	transaction.	(A	device	may	also	return	STALL	in	the	Data	stage.)
Control	Transfer
Type

Status	Stage

Data	Packet
Source

Data	Packet
Contents

Handshake	Packet
Source

Handshake	Packet

Write	(Host	sends
data	in	Data	Stage
or	no	Data	stage)

Device ZLP	(success),
NAK	(busy),	or
STALL	(failed)

Host ACK

Read	(Device	sends
data	in	Data	Stage)

Host ZLP Device ACK	(success),
NAK	(busy),	or
STALL	(failed)

The	CRC	 is	 applied	 to	 the	 data	 to	 be	 checked.	The	 sender,	whether	 host	 or
device,	performs	the	calculation	and	sends	the	result	along	with	the	data.	The
receiver	performs	the	identical	calculation	on	the	received	data.	If	 the	results

match,	the	data	has	arrived	without	error	and	the	receiver	returns	ACK.	If	the
results	 don’t	 match,	 the	 receiver	 sends	 no	 handshake.	 The	 absence	 of	 the
expected	handshake	tells	the	sender	to	retry.	Hosts	typically	try	a	total	of	three
times.	On	giving	up,	the	host	can	notify	the	driver	that	requested	the	transfer.
The	 PID	 field	 in	 token	 packets	 uses	 a	 simpler	 form	 of	 error	 checking.	 The
lower	four	bits	in	the	field	are	the	PID,	and	the	upper	four	bits	are	the	PID’s
complement.	 The	 receiver	 can	 check	 the	 integrity	 of	 the	 PID	 by
complementing	the	upper	four	bits	and	ensuring	that	they	match	the	PID.	If
not,	the	packet	is	corrupted	and	the	receiver	ignores	the	contents.

The	data	toggle
The	 data-toggle	 value	 enables	 detecting	missed	 or	 duplicate	 data	 packets	 in
control,	bulk,	and	interrupt	transfers.	IN	and	OUT	transactions	have	a	data-
toggle	 value	 in	 the	 data	 packet’s	 PID	 field.	 DATA0	 is	 a	 code	 of	 0011b,	 and
DATA1	 is	 1011b.	 In	 controller	 chips,	 a	 register	 bit	 often	 indicates	 the	 data-
toggle	 state,	 so	 the	 data-toggle	 value	 is	 sometimes	 called	 the	 data-toggle	 bit.
Each	endpoint	maintains	its	own	data	toggle.
Both	 the	 sender	 and	 receiver	 keep	 track	 of	 the	 data	 toggle.	Host	 controllers
handle	data	 toggles	 at	 a	 low	 level	 that	 is	 invisible	 to	 applications	 and	device
drivers.	 Some	 device-controller	 chips	 handle	 the	 data	 toggles	 completely	 in
hardware	while	 others	 require	 some	 firmware	 control.	 If	 you’re	 debugging	 a
device	 where	 the	 correct	 data	 is	 transmitting	 on	 the	 bus	 but	 the	 receiver	 is
ignoring	 or	 discarding	 the	 data,	 the	 chances	 are	 good	 that	 the	 device	 isn’t
sending	or	expecting	the	correct	data-toggle	value.
When	the	host	configures	a	device	on	power	up	or	attachment,	 the	host	and
device	 each	 set	 their	 data	 toggles	 to	DATA0	 for	 all	 except	 some	 high-speed
isochronous	 endpoints.	 On	 detecting	 an	 incoming	 data	 packet,	 the	 host	 or
device	compares	the	state	of	its	data	toggle	with	the	received	data	toggle.	If	the
values	match,	 the	 receiver	 toggles	 its	 value	 and	 returns	 an	 ACK	 handshake
packet.	The	ACK	causes	the	sender	to	toggle	its	value	for	the	next	transaction.
The	 next	 received	 packet	 in	 the	 transfer	 should	 contain	 a	 data	 toggle	 of
DATA1,	 and	 again	 the	 receiver	 toggles	 its	 bit	 and	 returns	 ACK.	 The	 data
toggle	 on	 each	 end	 continues	 to	 alternate	 in	 each	 transaction	 except	 for
control	transfers	as	explained	below.
If	 the	 receiver	 is	 busy	 and	 returns	NAK,	or	 if	 the	 receiver	detects	 corrupted
data	and	returns	no	response,	the	sender	doesn’t	toggle	its	bit	and	instead	tries

again	with	the	same	data	and	data	toggle.
If	a	receiver	returns	ACK	but	for	some	reason	the	sender	doesn’t	see	the	ACK,
the	sender	will	 think	the	receiver	didn’t	get	 the	data	and	will	 try	again	using
the	same	data	and	data-toggle	bit.	In	this	case,	the	receiver	of	the	repeated	data
ignores	the	data,	doesn’t	toggle	the	data	toggle,	and	returns	ACK.	If	the	sender
mistakenly	 sends	 two	 packets	 in	 a	 row	with	 the	 same	 data-toggle	 value,	 on
receiving	 the	 second	 packet,	 the	 receiver	 ignores	 the	 data,	 doesn’t	 toggle	 its
value,	 and	 returns	 ACK.	 In	 both	 cases,	 the	 ACK	 re-synchronizes	 the	 data
toggles.
Control	 transfers	 always	 use	DATA0	 in	 the	 Setup	 stage,	 use	DATA1	 in	 the
first	transaction	of	the	Data	stage,	toggle	the	value	in	any	additional	Data-stage
transactions,	 and	 use	DATA1	 in	 the	 Status	 stage.	 Bulk	 endpoints	 toggle	 the
value	in	every	transaction,	resetting	the	data	toggle	only	after	completing	a	Set
Configuration,	 Set	 Interface,	 or	 Clear	 Feature(ENDPOINT_HALT)	 request.
Interrupt	OUT	endpoints	behave	the	same	as	bulk	OUT	endpoints.	Interrupt
IN	 endpoints	 can	 behave	 the	 same	 as	 bulk	 IN	 endpoints,	 or	 to	 simplify
processing	with	the	risk	of	losing	some	data,	the	endpoint	can	toggle	its	data
toggle	 in	 each	 transaction	 without	 checking	 for	 the	 host’s	 ACK.	 Full-speed
isochronous	transfers	always	use	DATA0.	Isochronous	transfers	can’t	use	the
data	toggle	to	correct	errors	because	there	is	no	packet	for	returning	ACK	or
NAK	and	no	time	to	resend	missed	data.

Data	PID	sequencing
Some	high-speed	 isochronous	 transfers	use	DATA0,	DATA1,	and	additional
PIDs	of	DATA2	and	MDATA.	This	use	of	 the	DATA	and	MDATA	PIDs	 is
called	data	PID	sequencing.	High-speed	isochronous	IN	transfers	with	two	or
three	 transactions	 per	 microframe	 use	 DATA0,	 DATA1,	 and	 DATA2
encoding	to	indicate	a	transaction’s	position	in	the	microframe:

IN	Transactions	per
Microframe

Data	PID

First	Transaction Second	Transaction Third	Transaction

1 DATA0 – –

2 DATA1 DATA0 –

3 DATA2 DATA1 DATA0

High-speed	 isochronous	 OUT	 transfers	 that	 have	 two	 or	 three	 transactions

per	 microframe	 use	 DATA0,	 DATA1,	 and	 MDATA	 encoding	 to	 indicate
whether	more	data	will	follow	in	the	microframe:

OUT	Transactions
per	Microframe

Data	PID

First	Transaction Second	Transaction Third	Transaction

1 DATA0 – –

2 MDATA DATA1 –

3 MDATA MDATA DATA2

Enhanced	SuperSpeed	transactions
Like	USB	2.0,	Enhanced	SuperSpeed	buses	carry	data,	addressing,	and	status
and	control	information.	But	Enhanced	SuperSpeed	has	a	dedicated	data	path
for	 each	 direction,	 more	 support	 for	 power	 conservation,	 and	 other
enhancements	 for	 greater	 efficiency.	To	 support	 these	differences,	Enhanced
SuperSpeed	transactions	use	different	packet	formats	and	protocols.

Packet	types
Enhanced	 SuperSpeed	 communications	 use	 two	 packet	 types	 when
transferring	data:

A	Transaction	Packet	(TP)	carries	status	and	control	information.
A	Data	Packet	(DP)	carries	data	and	status	and	control	information.

Two	additional	packet	types	perform	other	functions:
An	Isochronous	Timestamp	Packet	(ITP)	carries	timing	information	that
devices	can	use	for	synchronization.	The	host	multicasts	an	ITP	following
each	 bus-interval	 boundary	 to	 all	 links	 that	 aren’t	 in	 a	 low-power	 state.
The	 timestamp	 holds	 a	 count	 from	 zero	 to	 0x3FFF	 and	 rolls	 over	 on
overflow.

Table	2-6:	Each	Enhanced	SuperSpeed	packet	has	a	14-byte	header	followed	by	a
Link	Control	Word.
Bits Length	(bits) Use

0–4 5 Type Packet	header

5–95 91 Fields	specific	to	the
packet	type

96–111 16 CRC

112–127 16 Link	Control	Word

A	 Link	 Management	 Packet	 (LMP)	 travels	 only	 in	 the	 link	 between	 a
device’s	port	and	the	hub	the	device	connects	to.	The	ports	are	called	link
partners.	LMPs	help	manage	the	link.

Enhanced	 SuperSpeed	 doesn’t	 use	 token	 packets	 because	 packet	 headers
contain	 the	 token	 packet’s	 information.	 Instead	 of	 data	 toggles,	 Enhanced
SuperSpeed	uses	5-bit	sequence	numbers	that	roll	over	from	31	to	zero.
When	TPs	and	DPs	are	both	available	to	transmit,	SuperSpeedPlus	buses	must
transmit	the	TPs	first.

Format
Each	Enhanced	SuperSpeed	packet	has	a	14-byte	header	followed	by	a	2-byte
Link	Control	Word	 (Table	2-6).	 The	 first	 five	 bits	 in	 the	 header	 are	 a	 Type
field	that	identifies	the	packet	as	one	of	the	four	types	described	above.	Every
header	 also	 contains	 type-specific	 information	 and	 a	 16-bit	 CRC.	 The	 Link
Control	 Word	 (Table	 2-7)	 provides	 information	 used	 in	 managing	 the
transmission.
A	DP	consists	of	a	Data	Packet	Header	(DPH)	followed	immediately	by	a	Data
Packet	 Payload	 (DPP).	 The	DPH	 (Table	 2-8)	 consists	 of	 the	 14-byte	 packet
header	and	a	Link	Control	Word.	(SuperSpeedPlus	non-deferred	DPHs	have
two	additional	16-bit	fields,	each	containing	a	 length	field	replica.)	Note	that
the	DPH’s	 second	 field	 provides	 values	 for	Gen	 1	 speed	 and	 “other	 speed,”
indicating	that	 the	specification	may	 in	 the	 future	support	speeds	other	 than
SuperSpeed	and	SuperSpeedPlus.
The	DPP	contains	the	transaction’s	data,	with	the	number	of	bytes	specified	in
the	Data	Length	field,	and	a	4-byte	CRC.	A	DPP	with	less	than	the	endpoint’s
maximum	packet	size	bytes	is	a	short	packet.	A	DPP	consisting	of	just	the	CRC
and	no	data	is	a	zero-length	Data	Payload.
For	SuperSpeedPlus	only,	the	DP	specifies	the	transfer	type,	and	non-periodic
DPs	 specify	 an	 arbitration	 rate	 for	 use	 by	 the	 hub	 in	 scheduling
SuperSpeedPlus	traffic.
The	other	three	packet	types	are	always	128	bytes.	In	a	TP,	the	Subtype	field
indicates	the	transaction’s	purpose	(Table	2-9).	All	TPs	have	a	device	address
that	indicates	the	source	or	destination	of	the	packet.	All	TPs	sent	by	the	host
contain	a	Route	String	that	hubs	use	in	routing	the	packet	to	its	destination.

Table	 2-7:	 Each	 Enhanced	 SuperSpeed	 packet	 has	 a	 Link	 Control	Word	 with
information	used	 in	managing	 the	 transmission.	Content	 from	Universal	Serial
Bus	3.1	Specification,	Revision	1.0.
Bit(s) Name Description

0–2 Header	Sequence
Number

Valid	values	are	0–7	in	continuous	sequence.

3–5 Reserved –

6–8 Hub	Depth Valid	only	if	Deferred	is	set.	Identifies	the	hub	that	deferred	the
packet.

9 Delayed Set	to	1	if	a	hub	resends	or	delays	sending	a	Header	Packet.

10 Deferred Set	to	1	if	a	hub	can’t	send	a	packet	because	the	downstream	port
is	in	a	power-managed	state.

11–15 CRC–5 Error	checking	bits.

Transferring	data
An	Enhanced	SuperSpeed	transaction	has	one	or	two	phases	that	each	contain
a	DP	or	a	TP.
In	 a	 non-isochronous	 IN	 transaction,	 the	 host	 sends	 an	ACK	TP	 to	 request
data,	 and	 the	 device	 returns	 a	 DP,	 a	 NRDY	 TP,	 or	 a	 STALL	 TP.	 In	 an
isochronous	 IN	 transaction,	 the	host	 sends	 an	ACK	TP	 to	 request	data,	 and
the	device	returns	a	DP.	For	IN	transactions,	a	SuperSpeedPlus	host	may	issue
simultaneous	 ACK	 TPs	 to	 different	 endpoints	 on	 devices	 operating	 at
SuperSpeedPlus.
In	 a	non-isochronous	OUT	 transaction,	 the	host	 sends	 a	DP	and	 the	device
returns	an	ACK,	NRDY,	or	STALL	TP.	 In	an	 isochronous	OUT	transaction,
the	host	sends	a	DP.

Sequence	Numbers
Table	 2-10	 shows	 the	 contents	 of	 the	 ACK	 TP.	 In	 an	 IN	 transaction,	 on
receiving	an	ACK	TP	with	NumP	=	1,	the	endpoint	sends	a	DP	with	the	DPH
containing	 the	 Sequence	 Number	 of	 the	 received	 ACK	 TP.	 Except	 for
isochronous	 transactions,	 on	 receiving	 the	 DP,	 the	 host	 acknowledges
receiving	the	data	by	incrementing	the	Sequence	Number	and	sending	another
ACK	TP.	If	NumP	>	0,	the	ACK	TP	also	serves	as	a	request	for	more	data.	In
other	words,	 instead	of	requiring	separate	transactions	to	ACK	received	data
and	then	request	more	data,	a	single	ACK	TP	can	perform	both	functions.

At	SuperSpeedPlus,	a	host	can	pipeline	multiple	isochronous	IN	transactions,
sending	 an	 ACK	 TP	 before	 all	 of	 the	 data	 requested	 in	 the	 ACK	 TP	 has
arrived.

Table	 2-8:	 The	 Data	 Packet	 Header	 (DPH)	 provides	 the	 Data	 Packet	 (DP)’s
length	and	other	information.	Following	the	DPH	are	the	data	and	a	CRC	value.
Content	from	Universal	Serial	Bus	3.1	Specification,	Revision	1.0.
Field Bits Function

Type 5 Data	Packet	Header	(01000b)

Route	String,	Arbitration
Rate,	or	Reserved

20 Gen	1:	In	downstream	communications,	used	by	hubs	to	route	a
packet	to	the	correct	port.	Other	speed:	for	downstream	flowing
packets,	a	Route
String.	For	upstream-flowing	asynchronous	packets	the	lower	16
bits	are	the	Arbitration	Rate.	Remaining	bits	are	zero.

Device	Address 7 The	device	that	is	the	source	or	receiver	of	the	DP.

Sequence	Number 5 Identifies	the	DP.

Reserved 1 –

End	of	Burst	(EOB)
(non-isochronous	IN),
zero	(non-isochronous
OUT),	or
Last	Packet	Flag	(LPF)
(isochronous)

1 For	non-isochronous	IN	endpoints,	identifies	the	last	packet	in	a
burst.	For	non-isochronous	OUT	and	control	endpoints,	zero.
For	isochronous	endpoints,	identifies	the	last	packet	in	a	service
interval.

Direction 1 0	=	host	to	device;	1	=	device	to	host.

Endpoint	Number 4 The	endpoint	that	is	the	source	or	receiver	of	the	DP.

Transfer	Type	(TT)	or
Reserved

3 Gen	1:	reserved
Other	speed:
100b	control	transfer
101b	isochronous	transfer
110b	bulk	transfer
111b	interrupt	transfer
000b	unknown	for	ACKs	and	deferred	DPs	from	SuperSpeed	bus
instances
Other	values	reserved

Setup 1 Set	by	the	host	when	the	DP	is	a	Setup	packet.

Data	Length 16 The	number	of	data	bytes	in	the	Data	Packet	Payload.

Stream	ID	or	Reserved 16 For	bulk	endpoints,	can	identify	a	stream.

Reserved 8 –

Support	Smart 1 Indicates	support	for	smart	isochronous	scheduling.

Isochronous	(SSI)	or
Reserved

Will	Ping	Again
(WPA)/Reserved

1 If	SSI	=	1,	the	host	will	send	a	PING	TP	before	servicing	the
endpoint	again.

Data	in	this	Bus	Interval
is	done	(DBI)/Reserved

1 If	SSI	=	1,	the	host	is	finished	with	transactions	with	the	endpoint
in	the	current	bus	interval.

Packets	Pending	(PP) 1 Indicates	whether	the	host	has	another	packet	for	the	endpoint.

Number	of	Bus	Intervals
(NBI)/Reserved

4 If	SSI	=	1,	WPA	=	0,	and	DBI	=	1,	the	host	controller	will	next
service	the	endpoint	in	(current	bus	interval	+	NBI	value	+	1).

CRC–16 16 Error	checking.

Link	Control	Word 16 Link	management.

Data	Block varies Data	specified	in	Data	Length	field.

CRC–32 32 Error	checking	for	Data	Block.

In	an	OUT	transaction,	 the	DP	 from	the	host	contains	a	Sequence	Number.
The	ACK	TP	that	the	device	sends	in	response	contains	the	Sequence	Number
of	 the	 next	 expected	 DP	 and	 serves	 as	 an	 implicit	 acknowledgment	 of
receiving	the	previous	DP.
In	 a	 control	 transfer,	 the	 Setup	 TP	 and	 the	 first	 DPH	 each	 use	 a	 Sequence
Number	of	 zero.	 (Note	 that	 this	differs	 from	USB	2.0,	where	 the	Data	Stage
begins	 with	 DATA1.)	 For	 any	 additional	 DPs,	 the	 Sequence	 Number
increments,	resetting	to	zero	on	rollover.
Bulk	 and	 interrupt	 endpoints	 increment	 the	 Sequence	 Number	 for	 every
transaction,	 resetting	 to	 zero	 on	 rollover	 or	 after	 completing	 a	 Set
Configuration,	Set	Interface,	or	Clear	Feature(ENDPOINT_HALT)	request.	In
isochronous	 transfers,	 the	 Sequence	Number	 resets	 to	 zero	 at	 the	 start	 of	 a
service	 interval	 and	 increments	 on	 each	 additional	 DP	 within	 the	 service
interval.	The	endpoint	descriptor	specifies	the	length	of	a	service	interval	and
the	maximum	number	of	DPs	per	service	interval.
On	detecting	an	error	in	a	received	DP,	the	host	or	device	sends	an	ACK	TP
with	the	Retry	bit	set	and	the	Sequence	Number	of	the	packet	that	contained
the	error.	The	sender	of	the	DP	must	then	resend	all	sent	DPs	beginning	with
that	Sequence	Number.
For	SuperSpeedPlus	only,	the	ACK	TP	specifies	the	transfer	type

Burst	transactions

Enhanced	 SuperSpeed	 bulk	 and	 interrupt	 endpoints	 can	 support	 burst
transactions	where	the	host	or	device	sends	multiple	DPs	without	waiting	for
ACK	TPs	to	acknowledge	previous	received	data.	Every	data	payload	in	a	burst
except	the	last	must	equal	the	endpoint’s	maximum	packet	size.

Table	2-9:	Hosts	 and	devices	use	Transaction	Packets	 (TPs)	 to	 send	 status	and
control	 information.	 Content	 from	 Universal	 Serial	 Bus	 3.1	 Specification,
Revision	1.0.
Subtype Source Description

ACK Host Requests	data	from	an	IN	endpoint	and	acknowledges	a
previously	received	DP.

Device Acknowledges	data	received	on	an	OUT	endpoint	and
specifies	how	many	data	packet	buffers	are	available	after
receiving	this	packet.

NRDY Device On	receiving	a	DP	on	an	OUT	endpoint,	informs	the
host	that	the	device	has	no	buffer	space	to	accept	the
data.	On	receiving	an	ACK	TP	on	an	IN	endpoint,
informs	the	host	that	the	device	can’t	return	a	DP.	Valid
for	non-isochronous	endpoints.

ERDY Device An	endpoint	is	ready	to	send	or	receive	DPs.	Valid	for
non-isochronous	endpoints.

STATUS Host The	host	has	initiated	the	Status	stage	of	a	control
transfer.	Valid	for	control	endpoints.

STALL Device The	endpoint	is	halted	or	a	requested	control	transfer	is
invalid	or	unsupported.

DEV_NOTIFICATION Device A	change	in	a	device	or	interface	state	has	occurred.	The
highest	four	bits	are	the	type	of	change:
0x0 reserved
0x1 function	wake
0x2 latency	tolerance	message
0x3 bus	interval	adjustment	message
0x4 host	role	request	(OTG)
0x5 sublink	speed	(for	devices	not	operating	at

SuperSpeed	or	SuperSpeedPlus
0x6–0xF reserved

PING Host Before	initiating	an	isochronous	transfer	when	a	link	is
in	a	low-power	state,	requests	all	paths	between	the	host
and	the	isochronous	endpoint	to	transition	to	the	active
state.

PING_RESPONSE Device Response	to	PING.

The	NumP	field	 in	an	ACK	TP	sets	 the	number	of	DPs	a	device	or	host	can
receive	 in	a	burst.	Valid	values	 are	 zero	or	 any	value	 from	one	 less	 than	 the
value	 in	 the	 previous	 ACK	 packet	 to	 bMaxBurst	 +	 1	 in	 the	 endpoint
companion	 descriptor.	 Note	 that	 bMax-Burst	 is	 zero-based,	 with	 zero
indicating	 a	 maximum	 burst	 of	 1	 packet,	 while	 NumP	 indicates	 the	 actual
number	of	packets	a	receiver	can	accept	(which	may	be	zero).
A	 Set	 Configuration,	 Set	 Interface,	 or	 Clear	 Feature(ENDPOINT_HALT)
request	resets	the	burst	size	of	the	associated	endpoint(s).

Table	 2-10:	 An	 ACK	 Transaction	 Packet	 (TP)	 can	 acknowledge	 received	 data
and	 request	 new	 data.	 Content	 from	 Universal	 Serial	 Bus	 3.1	 Specification,
Revision	1.0.
Number	of	Bits Field	Name Description

5 Type Transaction	Packet	(00100b)

20 Route	String	or	Reserved Used	by	hubs	in	routing	packets	downstream.

7 Device	Address The	address	assigned	during	enumeration.

4 SubType ACK	(0001b)

2 Reserved -

1 Retry	DP	(rty) If	set,	the	host	or	device	requests	a	resend	due	to	not
receiving	a	packet	or	receiving	a	corrupted	packet.

1 Direction	(D) The	direction	of	the	endpoint	sending	or	receiving
the	data:	0	=	host	to	device;	1	=	device	to	host.

4 Endpoint	Number	(EPT
Num)

The	endpoint	sending	or	receiving	the	data.

3 Transfer	Type	(TT)	or
Reserved

Gen	1	speed:	Reserved
Other	speed:
100b	control	transfer
101b	isochronous	transfer
110b	bulk	transfer
111b	interrupt	transfer
000b	unknown	for	ACKs	and	deferred	DPs	from
SuperSpeed	bus	instances
Other	values	reserved

1 Host	Error	(HE) For	host-to-device	ACK	TPs,	indicates	that	host	was
unable	to	accept	a	valid	DP.

5 Number	of	Packets
(NumP)

The	number	of	DPs	the	receiver	can	accept	in	a
burst.

5 Sequence	Number	(Seq
Num)

The	sequence	number	of	the	next	expected	DP.

5 Reserved –

1 TP	Follows	(TPF)	or
Reserved

Gen	1	speed:	Reserved
Other	speed:	1	if	the	device	will	send	a	Device
Notification	TP	following	this	TP.

16 Stream	ID	or	Reserved For	bulk	endpoints,	can	identify	a	stream.

8 Reserved –

1 Support	Smart
Isochronous	(SSI)	or
Reserved

Indicates	support	for	smart	isochronous	scheduling.

1 Will	Ping	Again
(WPA)/Reserved

If	SSI	=	1,	the	host	will	send	a	PING	TP	before
servicing	the	endpoint	again.

1 Data	in	this	Bus	Interval
is	done	(DBI)/Reserved

If	SSI	=	1,	the	host	is	finished	with	transactions	with
the	endpoint	in	the	current	bus	interval.

1 Packets	Pending	(PP) Indicates	whether	the	host	has	another	packet	for
the	endpoint.

4 Number	of	Bus	Intervals
(NBI)/Reserved

If	SSI	=	1,	WPA	=	0,	and	DBI	=	1,	the	host
controller	will	next	service	the	endpoint	in	(current
bus	interval	+	NBI	value	+	1).

16 CRC–16 Error	detecting.

16 Link	Control	Word Defines	link-level	flow	control.

Isochronous	 endpoints	 can	 support	 isochronous	 burst	 transactions,	 which
consist	 of	 multiple	 DPs	 transferred	 in	 a	 service	 interval	 with	 each	 packet
except	 the	 last	 required	 to	 be	 the	 endpoint’s	 maximum	 packet	 size.
Isochronous	transactions	never	use	ACK.

Timing	constraints
Devices	and	hosts	must	 respond	quickly	 to	 received	DPs	and	ACK	TPs	 that
request	 data.	On	 receiving	 an	ACK	TP,	 STATUS	TP,	 or	DP,	 a	 device	must
begin	to	return	a	response	within	400	ns.	On	receiving	a	DP,	a	host	must	begin
to	 return	an	ACK	TP	within	3	μs.	The	maximum	interval	between	DPs	 in	a
burst	 is	100	ns	for	Gen	1	and	50	ns	for	Gen	2.	Thus,	device	hardware	rather
than	firmware	handles	responding	to	received	packets.

Notifying	the	host
To	conserve	bandwidth	and	to	enable	inactive	links	to	transition	to	low-power
states,	 Enhanced	 SuperSpeed	 hosts	 stop	 requesting	 to	 send	 or	 receive	 data

from	Enhanced	SuperSpeed	endpoints	that	are	in	the	flow	control	condition.
This	 condition	 indicates	 that	 the	 endpoint	 temporarily	 can’t	 send	or	 receive
data.	To	request	to	resume	communications,	the	endpoint	sends	an	ERDY	TP.
A	 device	 can	 send	 the	 ERDY	 at	 any	 time	 without	 waiting	 for	 the	 host	 to
request	a	packet.	On	receiving	the	ERDY,	the	host	resumes	communications
with	the	endpoint.
An	IN	endpoint	is	 in	the	flow	control	condition	after	responding	to	an	ACK
TP	 with	 a	 NRDY	 TP	 or	 a	 DP	 with	 the	 End	 of	 Burst	 (EOB)	 field	 set	 to	 1
indicating	that	the	packet	is	the	last	in	a	burst.	The	device	sets	EOB	if	the	data
payload	 is	equal	 to	 the	endpoint’s	maximum	packet	size	and	the	endpoint	 is
returning	 fewer	 than	 the	number	 of	 packets	 requested	 in	 the	 previous	ACK
TP.
An	OUT	endpoint	is	in	the	flow	control	condition	on	responding	to	a	DP	with
either	a	NRDY	TP	or	an	ACK	TP	with	the	NumP	field	set	to	zero,	indicating
that	the	endpoint	can’t	accept	any	DPs.
Hosts	retain	the	option	to	attempt	communications	with	bulk	endpoints	in	the
flow-control	condition	before	receiving	ERDY.

Link	Management	Packets
Link	Management	Packets	have	these	subtypes:

Set	Link	Function	defines	a	bit	for	use	in	testing.
U2	Inactivity	Timeout	specifies	the	timeout	for	transitioning	between	low-
power	states.
Vendor	Device	Test	provides	a	mechanism	for	vendor-specific	tests.
Port	Capabilities	 indicates	 if	 the	 port	 can	 be	 configured	 as	 an	upstream-
facing	port,	a	downstream-facing	port,	or	both.	The	ports	in	a	link	exchange
this	 packet	 after	 initializing	 the	 link.	 For	 situations	where	 both	ports	 in	 a
link	 support	 both	 port	 types,	 a	 tiebreaker	 field	 and	 protocol	 determines
which	port	is	upstream-facing	and	which	is	downstream-facing.
Port	Configuration	 contains	 a	 bit	 that	 is	 set	 to	 1	 to	 specify	 that	 the	 link
speed	 for	 the	upstream-facing	port	 shall	be	5	Gbps.	A	downstream-facing
port	operating	at	Gen	1	speed	sends	this	packet	to	its	link	partner.
Port	 Configuration	 Response	 accepts	 or	 rejects	 a	 received	 Port
Configuration	LMP.

3

A	Transfer	Type	for	Every	Purpose
This	 chapter	 takes	 a	 closer	 look	 at	 USB’s	 four	 transfer	 types:	 control,	 bulk,
interrupt,	 and	 isochronous.	 Each	 type	 has	 features	 that	make	 it	 suitable	 for
specific	purposes.

Control	transfers
Control	 transfers	 have	 two	 uses.	 For	 all	 devices,	 control	 transfers	 carry	 the
standard	requests	 that	 the	host	uses	 to	 learn	about	and	configure	devices	on
attachment.	 Control	 transfers	 can	 also	 carry	 requests	 defined	 by	 a	 class	 or
vendor	for	any	purpose.

Availability
Every	device	must	support	control	transfers	using	the	default	pipe	at	endpoint
zero.	 A	 device	 may	 also	 have	 additional	 pipes	 for	 control	 transfers,	 but	 in
reality	there’s	no	need	for	more	than	one.	Even	if	a	device	needs	to	send	a	lot
of	control	requests,	hosts	allocate	bandwidth	for	control	transfers	according	to
the	number	and	size	of	 requests,	not	by	 the	number	of	control	endpoints	 so
additional	control	endpoints	offer	no	advantage.

Structure
Chapter	 2	 introduced	 control	 transfers	 and	 their	 Setup,	 Data,	 and	 Status
stages.	Each	stage	consists	of	one	or	more	transactions.
Every	 control	 transfer	 must	 have	 a	 Setup	 stage	 and	 a	 Status	 stage.	 Not	 all
transfers	have	Data	stages,	though	a	specific	request	can	require	a	Data	stage.
Because	 every	 control	 transfer	 requires	 transferring	 information	 in	 both
directions,	 the	 control	 transfer’s	 message	 pipe	 uses	 both	 the	 IN	 and	 OUT
endpoint	addresses.
In	a	control	write	transfer,	the	data	in	the	Data	stage	travels	from	the	host	to
the	device.	Control	transfers	that	have	no	Data	stage	are	also	considered	to	be

control	write	 transfers.	 In	 a	 control	 read	 transfer,	 the	data	 in	 the	Data	 stage
travels	from	the	device	to	the	host.	Figure	3-1	and	Figure	3-2	show	the	stages
of	control	read	and	control	write	transfers	at	low	and	full	speeds	on	a	low/full-
speed	bus.	There	are	differences,	described	later	in	this	chapter,	for	some	high-
speed	transfers,	low-	and	full-speed	transfers	with	USB	2.0	hubs	on	high-speed
buses,	and	Enhanced	SuperSpeed	transfers.
In	the	Setup	stage,	the	host	begins	a	Setup	transaction	by	sending	information
about	the	request.	The	token	packet’s	SETUP	PID	identifies	the	transaction	as
a	 Setup	 transaction	 that	 begins	 a	 control	 transfer.	 The	 data	 packet	 contains
eight	 bytes	 of	 information	 about	 the	 request	 including	 the	 request	 number,
whether	or	not	the	transfer	has	a	Data	stage,	and	if	so,	in	which	direction	the
data	will	travel.
The	USB	2.0	and	USB	3.1	 specifications	define	 standard	 requests.	Successful
enumeration	requires	specific	responses	to	some	requests,	such	as	the	request
that	sets	a	device’s	address.	For	other	requests,	a	device	can	return	STALL	to
indicate	 that	 the	 device	 doesn’t	 support	 the	 request.	 A	 STALL	 ends	 the
transfer.	A	 class	may	 require	 a	device	 to	 support	 class-specific	 requests,	 and
devices	can	support	requests	defined	by	a	vendor-provided	driver.
When	present,	the	Data	stage	consists	of	one	or	more	transactions.	Depending
on	the	request,	 the	host	or	peripheral	may	be	 the	source	of	 the	data	 in	 these
transactions,	but	all	data	packets	in	this	stage	are	in	the	same	direction.
The	 Status	 stage	 consists	 of	 one	 IN	 or	 OUT	 transaction	 where	 the	 device
reports	 the	success	or	 failure	of	 the	 transfer.	The	source	of	 the	Status	 stage’s
data	packet	is	the	receiver	of	the	data	in	the	Data	stage.	When	a	transfer	has	no
Data	stage,	the	device	sends	the	Status	stage’s	data	packet.	On	completing	or
abandoning	the	current	transfer,	the	host	can	begin	a	new	control	transfer.

Figure	3-1.	A	USB	2.0	control	write	transfer	contains	a	Setup	transaction,	zero	or
more	 Data	 transactions,	 and	 a	 Status	 transaction.	 Not	 shown	 are	 the	 PING
protocol	used	 in	 some	high-speed	 transfers	with	multiple	data	packets	 and	 the
split	 transactions	 used	 with	 low-	 and	 full-speed	 devices	 on	 a	 high-speed	 bus.
Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0.

Figure	3-2.	A	USB	2.0	control	read	transfer	contains	a	Setup	transaction,	one	or
more	 data	 transactions,	 and	 a	 status	 transaction.	 Not	 shown	 are	 the	 split
transactions	 used	 with	 low-and	 full-speed	 devices	 on	 a	 high-speed	 bus.
Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0.

High	speed	differences
As	described	in	Chapter	2,	if	a	high-speed	control	write	transfer	has	more	than
one	data	packet	in	the	Data	stage	and	the	device	returns	NYET	after	receiving

a	 data	 packet,	 the	 host	may	 use	 the	 PING	protocol	 before	 sending	 the	 next
data	packet.
If	a	host	is	performing	a	control	transfer	with	a	low-	or	full-speed	device	on	a
high-speed	 bus,	 the	 host	 uses	 split	 transactions	 for	 all	 of	 the	 transfer’s
transactions.	To	the	device,	 the	transaction	is	no	different	than	a	transaction
with	a	USB	1.1	host.	The	USB	2.0	or	USB	3.1	hub	nearest	the	device	initiates
transactions	with	 the	 device	 and	 returns	 data	 and	 status	 information	 to	 the
host.

Enhanced	SuperSpeed	differences
On	 an	 Enhanced	 SuperSpeed	 bus,	 the	 Setup	 stage’s	 Setup	 DP	 contains	 the
eight	bytes	of	Setup	data.	The	Data	Packet	Header	uses	the	following	values:

Sequence	Number	=	0
Data	Length	=	8
Setup	=	1

Figure	 3-3	 shows	 the	 structure	 of	 an	 Enhanced	 SuperSpeed	 control	 write
transfer.	The	host	begins	 the	 transfer	with	a	Setup	DP,	and	on	 receiving	 the
packet	without	error,	the	device	responds	with	an	ACK	TP.	If	the	transfer	has
a	Data	stage,	the	host	sends	one	or	more	DPs,	and	the	device	accepts	each	DP
with	 an	 ACK	 TP.	 If	 the	 transfer	 has	 multiple	 Data	 packets,	 the	 Sequence
Numbers	in	the	Data	and	ACK	packets	increment	for	each	Data	packet.	In	the
Status	stage,	the	host	sends	a	STATUS	TP,	and	the	device	returns	ACK.
Figure	 3-4	 shows	 the	 structure	 of	 an	 Enhanced	 SuperSpeed	 control	 read
transfer.,	 which	 is	 identical	 to	 a	 control	 write	 transfer	 except	 for	 the	 Data
stage.	In	the	Data	stage,	the	host	sends	one	or	more	ACK	TPs,	and	the	device
responds	to	each	with	a	DP.
A	device	can	control	the	flow	of	a	control	transfer	by	responding	to	the	Setup
DP	with	an	ACK	TP	with	NumP	=	0	and	Sequence	Number	=	0.	The	device
then	requests	to	start	the	Data	and	Status	stages	by	sending	an	ERDY	TP.
In	 the	Data	 or	 Status	 stage,	 an	 endpoint	 can	 return	 a	 STALL	 or	NRDY	TP
instead	of	ACK.	A	STALL	ends	the	transfer.	NRDY	halts	the	transfer	until	the
device	returns	ERDY.

Figure	3-3.	A	Setup	Data	packet	initiates	an	Enhanced	SuperSpeed	control	write
transfer.	 A	 Status	 TP	 initiates	 the	 Status	 stage.	 Information	 source:	 Universal
Serial	Bus	3.1	Specification,	Revision	1.0.

Figure	 3-4.	 An	 Enhanced	 SuperSpeed	 control	 read	 transfer	 is	 identical	 to	 a
control	write	 transfer	 except	 for	 the	Data	 stage.	 Information	 source:	Universal
Serial	Bus	3.1	Specification,	Revision	1.0.

Data	size
In	a	control	transfer’s	Data	stage,	the	allowed	maximum	data	packet	size	varies
with	bus	speed:

Bus	Speed Maximum	Data	Packet	Size

Low 8

Full 8,	16,	32,	or	64

High 64

SuperSpeed/SuperSpeedPlus 512

These	bytes	include	only	the	information	transferred	in	the	data	packet	(USB
2.0)	or	Data	Packet	Payload	(Enhanced	SuperSpeed),	excluding	PID	and	CRC
bits.
In	the	Data	stage,	all	data	packets	except	the	last	must	be	the	maximum	packet
size	for	the	endpoint.	The	maximum	packet	size	for	the	default	control	pipe	is
in	 the	 device	 descriptor	 that	 the	 host	 retrieves	 during	 enumeration.	 If	 a
transfer	has	more	data	than	will	fit	in	one	data	transaction,	the	host	sends	or
receives	the	data	in	multiple	transactions.
For	some	control	read	transfers,	the	amount	of	data	returned	by	the	device	can
vary.	If	the	amount	is	less	than	the	requested	number	of	bytes	and	is	an	even
multiple	 of	 the	 endpoint’s	maximum	packet	 size,	 the	 device	 should	 indicate
when	 it	 has	 no	more	 data	 to	 send	 by	 returning	 a	 ZLP	 (USB	 2.0)	 or	 a	 zero-
length	Data	Payload	(Enhanced	SuperSpeed)	in	response	to	a	request	for	data
after	the	device	has	sent	all	of	its	data.

Speed
The	host	must	make	its	best	effort	to	ensure	that	all	control	transfers	complete
as	quickly	as	possible.	A	USB	2.0	host	controller	reserves	a	portion	of	the	bus
bandwidth	 for	 control	 transfers:	 10%	 of	 each	 frame	 for	 low-	 and	 full-speed
endpoints	 and	 20%	 of	 each	 microframe	 for	 high-speed	 endpoints.	 An
Enhanced	 SuperSpeed	 host	 reserves	 20%	 of	 the	 bus	 bandwidth	 for	 control
transfers.	 If	 the	 control	 transfers	 don’t	 need	 all	 of	 the	 reserved	 bandwidth,
other	transfers	can	use	what	remains.	If	the	bus	has	other	unused	bandwidth,
control	transfers	can	use	more	than	the	reserved	amount.	The	host	attempts	to
parcel	out	the	available	time	as	fairly	as	possible	to	all	devices.	A	single	frame,
microframe,	 or	 bus	 interval	 can	 contain	multiple	 transactions	 for	 the	 same
transfer,	 or	 a	 transfer’s	 transactions	 can	 be	 spread	 among	 multiple
(micro)frames	or	bus	intervals.
There	 are	 two	 opinions	 on	 whether	 control	 transfers	 are	 appropriate	 for
transferring	 data	 other	 than	 enumeration	 and	 configuration	 data.	 Some

believe	control	transfers	should	be	reserved	as	much	as	possible	for	servicing
the	 standard	 USB	 requests	 and	 performing	 other	 infrequent	 configuration
tasks.	 This	 approach	 helps	 ensure	 that	 the	 transfers	 complete	 quickly	 by
keeping	 the	 reserved	 bandwidth	 as	 open	 as	 possible.	 But	 the	 USB
specifications	 don’t	 forbid	 other	 uses	 for	 control	 transfers,	 and	 some	 see	 no
problem	 in	using	 control	 transfers	 for	 any	purpose.	Low-speed	devices	have
no	other	option	except	periodic	interrupt	transfers	that	can	waste	bandwidth	if
data	transfers	are	infrequent.
Control	 transfers	aren’t	 the	most	efficient	way	to	transfer	data.	Each	transfer
has	 significant	 overhead.	At	 low	 speed,	 a	 single	 control	 transfer	with	 8	 data
bytes	uses	over	1/3	of	a	frame’s	bandwidth,	though	the	transfer’s	transactions
may	travel	in	multiple	frames.	In	a	control	transfer	with	multiple	data	packets
in	the	Data	stage,	the	data	may	travel	in	the	same	or	different	(micro)frames	or
bus	 intervals.	 On	 a	 busy	 bus,	 all	 control	 transfers	 may	 have	 to	 share	 the
reserved	portion	of	the	bandwidth.
The	 USB	 specifications	 define	 timing	 limits	 that	 apply	 to	 control	 requests
except	 for	class	 requests	 that	 specify	a	 faster	 response.	Where	stricter	 timing
isn’t	 specified,	 in	 a	 transfer	where	 the	 host	 requests	 data	 from	 the	 device,	 a
device	may	delay	 as	 long	 as	 500	ms	 before	making	 the	 data	 available	 to	 the
host.	To	 find	out	 if	data	 is	available,	a	USB	2.0	host	 sends	a	 token	packet	 to
request	 the	 data.	 If	 the	 data	 is	 ready,	 the	 device	 returns	 the	 data	 in	 that
transaction’s	data	packet.	Otherwise	the	device	returns	NAK	to	advise	the	host
to	 retry	 later.	The	host	keeps	 trying	at	 intervals	 for	up	 to	500	ms.	Enhanced
SuperSpeed	 devices	 can	 delay	 communications	 by	 setting	 NumP	 =	 0	 and
Sequence	 Number	 =	 0	 in	 response	 to	 a	 Setup	 DP	 or	 by	 sending	 NRDY	 in
response	to	requested	or	received	data.
In	a	transfer	where	the	host	sends	data	to	the	device,	if	the	host	sends	data	at
the	maximum	rate	the	device	can	accept	the	data,	a	USB	2.0	device	can	take	up
to	 5	 seconds	 to	 accept	 all	 of	 the	 data	 and	 complete	 the	 Status	 stage.	 Once
begun,	the	Status	stage	must	complete	within	50	ms.
A	 device	 operating	 at	 Enhanced	 SuperSpeed	 must	 complete	 each	 of	 the
following	within	50	ms	(though	additional	delays	by	the	host	may	extend	the
time):	 time	 between	 Setup	 packet	 and	 first	 Data	 stage,	 time	 between
consecutive	Data	stages,	and	time	between	last	Data	stage	and	Status	stage.	In
a	 control	 transfer	with	no	Data	 stage,	 the	device	must	 complete	 the	 transfer
within	50	ms.

The	host	 and	 its	 drivers	 aren’t	 required	 to	 enforce	 the	 timing	 limits,	 but	 all
devices	 should	 comply	 with	 the	 limits	 to	 ensure	 proper	 operation	 with	 any
host.	For	USB	2.0	and	Enhanced	SuperSpeed	hubs,	the	recommended	average
response	time	is	under	5	ms.

Detecting	and	handling	errors
If	 a	 USB	 2.0	 device	 doesn’t	 return	 an	 expected	 handshake	 packet	 during	 a
control	transfer,	the	host	retries.	On	receiving	no	response	after	a	typical	total
of	 three	 tries,	 the	 host	 notifies	 the	 software	 that	 requested	 the	 transfer	 and
stops	communicating	with	the	endpoint	until	the	problem	is	resolved,	such	as
by	 re-enumerating	 the	 device.	 The	 two	 retries	 include	 only	 those	 sent	 in
response	to	no	handshake	at	all.	A	NAK	triggers	a	retry	but	doesn’t	increment
the	error	count.
Control	transfers	use	data	toggles	(USB	2.0)	or	Sequence	Numbers	(Enhanced
SuperSpeed)	to	protect	against	lost	data.	In	the	Data	stage	of	a	USB	2.0	control
read	 transfer,	 on	 receiving	 data	 from	 the	 device,	 the	 host	 normally	 returns
ACK	 and	 then	 sends	 an	OUT	 token	 packet	 to	 begin	 the	 Status	 stage.	 If	 the
device	 for	 any	 reason	doesn’t	 see	 the	ACK	 returned	 after	 the	 transfer’s	 final
data	 packet,	 the	 device	 must	 interpret	 a	 received	 OUT	 token	 packet	 as
evidence	that	the	Status	stage	has	begun.
Devices	must	accept	all	error-free	Setup	packets.	If	a	new	Setup	packet	arrives
before	 a	 previous	 control	 transfer	 completes,	 the	 device	 must	 abandon	 the
previous	transfer	and	start	the	new	transfer.

Device	responsibilities
A	USB	2.0	device	has	these	responsibilities	for	transfers	on	a	control	endpoint:

Send	ACK	in	response	to	every	Setup	packet	received	without	error.
For	 supported	 control	 write	 requests,	 send	 ACK	 in	 response	 to	 received
data	in	the	Data	stage	(if	present)	and	return	a	ZLP	in	the	Status	stage.
For	 supported	 control	 read	 requests,	 send	 data	 in	 response	 to	 IN	 token
packets	in	the	Data	stage	and	ACK	the	received	ZLP	in	the	Status	stage.
For	unsupported	requests,	return	STALL	in	the	Data	or	Status	stage.

For	all	but	the	Setup	stage,	one	or	more	NAKs	preceding	ACK,	ZLP,	data,	or
STALL	are	acceptable	up	to	the	timing	limit	for	the	stage.
An	Enhanced	SuperSpeed	device	has	 these	 responsibilities	 for	 transfers	on	a

control	endpoint:
Send	an	ACK	TP	in	response	to	Setup	data	received	without	error	in	DPs.
For	 supported	 control	write	 requests,	when	 there	 is	 a	Data	 stage,	 send	 an
ACK	TP	 in	 response	 to	 received	data	 in	DPs.	 In	 the	Status	 stage,	 send	an
ACK	TP	in	response	to	a	received	STATUS	TP.
For	supported	control	read	requests,	receive	acknowledgments	and	requests
to	send	data	in	ACK	TPs	and	send	data	in	DPs.	In	the	Status	stage,	send	an
ACK	TP	in	response	to	a	received	STATUS	TP.
For	unsupported	requests,	return	a	STALL	TP	in	the	Data	or	Status	stage.

For	 all	 but	 the	 Setup	 stage,	 one	or	more	NRDY	TPs	preceding	 an	ACK	TP,
data,	or	STALL	TP	are	acceptable	up	to	the	timing	limit	for	the	stage.

Bulk	transfers
Bulk	transfers	are	useful	for	transferring	data	when	time	isn’t	critical.	A	bulk
transfer	can	send	large	amounts	of	data	without	clogging	the	bus	because	the
transfers	defer	to	the	other	transfer	types,	waiting	until	time	is	available.	Uses
for	bulk	transfers	include	sending	data	to	a	printer	and	reading	and	writing	to
a	drive.	On	an	otherwise	idle	bus,	bulk	transfers	are	the	fastest	transfer	type	for
large	amounts	of	data.

Availability
Low	speed	doesn’t	support	bulk	transfers.	Devices	aren’t	required	to	support
bulk	 transfers,	 but	 a	 specific	 device	 class	may	 require	 them.	 For	 example,	 a
mass-storage	device	must	have	a	bulk	endpoint	in	each	direction.

Structure
A	 USB	 2.0	 bulk	 transfer	 consists	 of	 one	 or	 more	 IN	 or	 OUT	 transactions
(Figure	 3-5).	 All	 data	 travels	 in	 one	 direction.	 Transferring	 data	 in	 both
directions	requires	a	separate	pipe	and	transfer	for	each	direction.
A	 bulk	 transfer	 ends	 successfully	 when	 the	 expected	 amount	 of	 data	 has
transferred	or	when	a	transaction	contains	less	than	the	endpoint’s	maximum
packet	size,	including	zero	data	bytes.	The	USB	2.0	specification	doesn’t	define
a	protocol	 for	 indicating	 the	number	of	data	bytes	 in	 a	bulk	 transfer.	When
needed,	the	device	and	host	can	use	a	class-specific	or	vendor-defined	protocol

to	pass	this	information.	For	example,	a	transfer	can	begin	with	a	header	that
specifies	the	number	of	bytes	to	be	transferred,	or	the	device	or	host	can	use	a
class-specific	or	vendor-defined	protocol	to	request	a	quantity	of	data.

High	speed	differences
To	conserve	bus	time,	a	host	may	use	the	PING	protocol	in	some	high-speed
bulk	 transfers.	 If	 a	 high-speed	 bulk	 OUT	 transfer	 has	 more	 than	 one	 data
packet	and	the	device	returns	NYET	after	receiving	a	packet,	the	host	may	use
PING	to	find	out	when	it’s	OK	to	send	more	data.	In	a	bulk	transfer	on	a	high-
speed	bus	with	a	low-	or	full-speed	device,	the	host	uses	split	transactions	for
all	of	the	transfer’s	transactions.

Enhanced	SuperSpeed	differences
Figure	3-6	shows	Enhanced	SuperSpeed	bulk	IN	and	OUT	transactions.	In	an
IN	 transaction,	 the	host	 sends	 an	ACK	TP	 to	 request	one	or	more	DPs	 and
acknowledge	 previous	 data,	 if	 any,	 and	 the	 device	 sends	 DP(s),	 NRDY,	 or
STALL.	On	receiving	a	DP,	the	host	returns	an	ACK	TP.	If	the	host	requests
multiple	DPs	by	 setting	NumP	>	1,	 the	device	doesn’t	have	 to	wait	 for	 each
ACK	before	sending	the	next	packet.	If	NumP	>	0	in	an	ACK	TP	that	the	host
sends	in	response	to	received	data,	the	packet	also	serves	as	a	request	for	more
data.	 In	 an	 OUT	 transaction,	 the	 host	 sends	 data	 in	 DPs,	 and	 the	 device
acknowledges	receiving	data	 in	ACK	TPs	or	returns	NRDY	or	STALL.	After
an	endpoint	has	 sent	NRDY,	a	host	 can	attempt	 to	 resume	communications
even	if	the	endpoint	hasn’t	sent	ERDY.

Figure	 3-5.	 USB	 2.0	 bulk	 and	 interrupt	 transfers	 have	 identical	 structure,	 but
different	scheduling	by	the	host.	Not	shown	are	the	PING	protocol	used	in	some
high-speed	 bulk	 OUT	 transfers	 with	 multiple	 data	 packets	 or	 the	 split
transactions	 used	 with	 low-	 and	 full-speed	 devices	 on	 a	 high-speed	 bus.
Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0.

Enhanced	 SuperSpeed	 bulk	 transfers	 can	 use	 a	 Stream	 Protocol	 to	 transfer
multiple,	 independent	data	 streams	using	a	 single	endpoint.	A	class	or	other
host	driver	can	define	uses	for	the	streams.	Each	stream	has	its	own	endpoint
buffer.	 A	 CStream	 ID	 value	 identifies	 the	 current	 stream	 in	 Data	 Packet
Headers	and	in	ACK,	NRDY,	and	ERDY	TPs.

Figure	3-6.	Enhanced	SuperSpeed	bulk	and	interrupt	transfers	use	ACK	TPs	to
request	 and	 acknowledge	 data.	 Information	 source:	 Universal	 Serial	 Bus	 3.1
Specification,	Revision	1.0.

Data	size
The	allowed	maximum	data	bytes	in	a	bulk	transaction’s	data	packet	vary	with
the	bus	speed:

Bus	Speed Maximum	Data	Packet	Size

Full 8,	16,	32,	or	64

High 512

SuperSpeed/SuperSpeedPlus 1024

These	bytes	include	only	the	information	transferred	in	the	data	packet	(USB
2.0)	or	Data	Packet	Payload	(Enhanced	SuperSpeed),	excluding	PID	and	CRC

bits.
During	enumeration,	 the	host	 reads	 the	maximum	packet	 size	 for	 each	bulk
endpoint	from	the	device’s	descriptors.	The	amount	of	data	in	a	transfer	may
be	 less	 than,	 equal	 to,	 or	 greater	 than	 the	maximum	packet	 size.	 If	 the	 data
doesn’t	 fit	 in	a	single	packet,	 the	host	uses	multiple	 transactions	 to	complete
the	transfer.

Speed
The	host	controller	guarantees	that	bulk	transfers	will	complete	eventually	but
doesn’t	reserve	bandwidth	for	them.	Control	transfers	are	guaranteed	to	have
10%	 of	 the	 bandwidth	 at	 low	 and	 full	 speeds	 and	 20%	 at	 high	 speed	 and
Enhanced	SuperSpeed.	Interrupt	and	isochronous	transfers	may	use	 the	rest.
So	if	a	bus	is	very	busy,	a	bulk	transfer	can	take	a	long	time.
However,	 when	 the	 bus	 is	 otherwise	 idle,	 bulk	 transfers	 can	 use	 the	 most
bandwidth	of	any	type	and	have	 low	overhead	and	thus	are	the	fastest	of	all.
When	a	full-speed	bulk	endpoint’s	maximum	packet	size	is	less	than	64,	some
host	 controllers	 schedule	 no	more	 than	 one	 packet	 per	 frame	 even	 if	more
bandwidth	is	available.	Thus	for	best	performance,	a	full-speed	bulk	endpoint
should	have	a	maximum	packet	size	of	64.
At	 full	 speed	on	an	otherwise	 idle	bus,	up	 to	nineteen	64-byte	bulk	 transfers
can	transfer	up	to	1,216	data	bytes	per	frame,	for	a	data	rate	of	1.216	MB/s.	In
theory,	 at	high	 speed	on	an	otherwise	 idle	bus,	up	 to	 thirteen	512-byte	bulk
transfers	can	transfer	up	to	6,656	data	bytes	per	microframe,	for	a	data	rate	of
53.248	 MB/s.	 Real-world	 performance	 varies	 with	 the	 host-controller
hardware	 and	 driver	 and	 the	 host	 architecture,	 including	 latencies	 when
accessing	 system	memory.	 Some	 high-speed	 hosts	 can	 transfer	 bulk	 data	 at
around	 50	 MB/s.	 A	 SuperSpeed	 bus	 is	 capable	 of	 transferring	 around	 460
MB/s	 in	 bulk	 transfers.	 A	 SuperSpeedPlus	 bus	 is	 capable	 of	 transferring
around	1.1	GB/s	in	bulk	transfers.

Detecting	and	handling	errors
If	a	USB	2.0	device	doesn’t	return	an	expected	handshake	packet,	the	host	tries
up	 to	 twice	more.	A	host	 also	 retries	on	 receiving	NAK.	The	class	or	device
driver	determines	whether	the	host	eventually	gives	up	on	receiving	multiple
NAKs.	For	Enhanced	SuperSpeed	endpoints,	a	device	uses	NRDY	and	ERDY
to	cause	the	host	to	stop	requesting	to	send	or	receive	data	when	an	endpoint

isn’t	 ready	 to	 receive	data	or	has	no	data	 to	 send.	Data	 toggles	 (USB	2.0)	or
Sequence	Numbers	(Enhanced	SuperSpeed)	detect	lost	or	repeated	data.

Device	responsibilities
A	USB	2.0	device	has	these	responsibilities	for	transfers	on	a	bulk	endpoint:

For	OUT	transfers,	ACK	data	received	in	data	packets.
For	 IN	 transfers,	 return	 data	 in	 data	 packets	 in	 response	 to	 IN	 token
packets.

One	or	more	NAKs	preceding	ACK	or	data	 are	 acceptable	up	 to	 the	 timing
limit	for	the	transfer,	if	any.
An	Enhanced	SuperSpeed	device	has	 these	 responsibilities	 for	 transfers	on	a
bulk	endpoint:

For	OUT	transfers,	send	ACK	TPs	to	acknowledge	data	received	in	DPs.
For	 IN	 transfers,	 receive	 requests	 to	 send	 data	 and	 acknowledgments	 of
received	data	in	ACK	TPs	and	send	data	in	DPs.

One	or	more	NRDY	TPs	preceding	an	ACK	TP	or	data	are	acceptable	up	to
the	timing	limit,	if	any,	for	the	transfer.

Interrupt	transfers
Interrupt	transfers	are	useful	when	data	has	to	transfer	without	delay.	Typical
applications	 include	 keyboards,	 pointing	 devices,	 game	 controllers,	 and	 hub
status	reports.	Users	don’t	want	a	noticeable	delay	between	pressing	a	key	or
moving	a	mouse	 and	 seeing	 the	 result	on	 screen.	A	hub	needs	 to	 report	 the
attachment	or	removal	of	devices	promptly.	Low-speed	devices,	which	support
only	control	and	interrupt	transfers,	are	likely	to	use	interrupt	transfers.
At	 low	 and	 full	 speeds,	 the	 bandwidth	 available	 for	 interrupt	 endpoints	 is
limited,	but	high	speed	and	Enhanced	SuperSpeed	loosen	the	limits.
Interrupt	 transfers	 are	 interrupt-like	 because	 they	 guarantee	 fast	 response
from	the	host.	For	both	bulk	and	interrupt	endpoints,	firmware	typically	uses
interrupts	 to	 detect	 new	 received	 data.	 On	 a	 USB	 2.0	 bus,	 both	 bulk	 and
interrupt	endpoints	must	wait	for	the	host	to	request	data	before	sending	data.
Enhanced	SuperSpeed	bulk	 and	 interrupt	 endpoints	 can	notify	 the	host	 that
they	have	data	to	send	by	sending	an	ERDY	TP	but	still	must	wait	for	the	host
to	request	data	packets.

Availability
All	 speeds	 allow	 interrupt	 transfers.	 Devices	 aren’t	 required	 to	 support
interrupt	transfers,	but	a	device	class	may	require	it.	For	example,	a	HID-class
device	must	support	interrupt	IN	transfers	for	sending	data	to	the	host.

Structure
A	USB	2.0	interrupt	transfer	consists	of	one	or	more	IN	transactions	or	one	or
more	 OUT	 transactions.	 Transferring	 data	 in	 both	 directions	 requires	 a
separate	transfer	and	pipe	for	each	direction.
On	the	bus,	interrupt	transactions	are	identical	to	bulk	transactions	(Figure	3-
5	and	Figure	3-6)	with	these	differences:

Interrupt	transactions	have	guaranteed	maximum	latency	and	thus	different
scheduling	by	the	host.
The	host	doesn’t	use	the	PING	protocol	in	high-speed	interrupt	transfers.
Enhanced	SuperSpeed	interrupt	transfers	don’t	support	Streams.
On	an	Enhanced	SuperSpeed	bus,	after	receiving	NRDY,	a	host	must	wait
for	 ERDY	 before	 resuming	 communications	 with	 an	 interrupt	 endpoint.
Waiting	is	optional	for	bulk	endpoints.

An	interrupt	transfer	ends	successfully	when	the	expected	amount	of	data	has
transferred	or	when	a	transaction	contains	less	than	the	endpoint’s	maximum
packet	size,	including	zero	data	bytes.	The	USB	specification	doesn’t	define	a
protocol	 for	 specifying	 the	 amount	 of	 data	 in	 an	 interrupt	 transfer.	 When
needed,	the	device	and	host	can	use	a	class-specific	or	vendor-defined	protocol
to	pass	this	information.

High	speed	differences
In	an	interrupt	transfer	on	a	high-speed	bus	with	a	low-	or	full-speed	device,
the	 host	 uses	 split	 transactions	 for	 all	 of	 the	 transfer’s	 transactions.	 Unlike
high-speed	bulk	OUT	transfers,	high-speed	interrupt	OUT	transfers	can’t	use
the	PING	protocol	when	a	transfer	has	multiple	transactions.

Enhanced	SuperSpeed	differences
The	host	schedules	ACK	TPs	to	an	IN	endpoint	until	the	device	has	sent	all	of
the	transfer’s	data,	or	the	device	returns	a	Data	Packet	Header	with	the	End	Of
Burst	bit	set,	or	the	device	returns	a	NRDY	or	STALL	TP.	The	host	sends	DPs

to	 an	OUT	 endpoint	 until	 the	 host	 has	 no	more	 data	 to	 send	 or	 the	 device
returns	a	NRDY	or	STALL	TP.	After	receiving	NRDY,	the	host	must	receive
an	 ERDY	TP	 to	 resume	 communications	with	 the	 endpoint.	 To	 ensure	 fast
response	 when	 a	 device	 is	 ready	 to	 communicate,	 the	 host’s	 delay	 between
receiving	an	ERDY	and	sending	an	ACK	TP	is	at	most	2×	the	service	interval
specified	in	the	endpoint’s	descriptor.
The	 USB	 3.1	 specification	 advises	 that	 Enhanced	 SuperSpeed	 interrupt
transfers	are	intended	only	for	small	amounts	of	data	that	must	transfer	within
defined	 service	 intervals.	 In	 other	 words,	 to	 transfer	 large	 blocks	 of	 data,
another	transfer	type	such	as	bulk	is	a	better	choice.

Data	size
The	 allowed	maximum	 data	 bytes	 in	 an	 interrupt	 transaction’s	 data	 packet
varies	with	bus	speed	and	the	number	of	packets	per	microframe	(high	speed)
or	the	number	of	packets	per	bus	interval	and	the	bMaxBurst	value	(Enhanced
SuperSpeed):

Bus	Speed Maximum	Data	Packet
Size

Maximum	Guaranteed
Packets/Interval

Low 1-8 1	/	10	frames

Full 1-64 1	/	frame

High 1-1024 1	/	microframe

513-1024 2	/	microframe

683-1024 3	/	microframe

SuperSpeed/SuperSpeedPlus 1-1024	and	bMaxBurst	=
0

1	/	bus	interval

1024	and	bMaxBurst	>	0 3	/	bus	interval

These	bytes	include	only	the	information	transferred	in	the	data	packet	(USB
2.0)	or	Data	Packet	Payload	(SuperSpeed/SuperSpeedPlus),	excluding	PID	and
CRC	bits.	 If	a	 transfer’s	data	doesn’t	 fit	 in	a	 single	 transaction,	 the	host	uses
multiple	transactions.
The	USB	2.0	and	USB	3.1	specifications	require	interrupt	endpoints	in	a	default
interface	 to	 have	 a	maximum	 packet	 size	 of	 64	 bytes	 or	 less.	 To	 use	 a	 larger
maximum	packet	size,	the	device	driver	on	the	host	must	support	selecting	an
alternate	interface	or	configuration.

Speed
An	 interrupt	 transfer	 guarantees	 a	 maximum	 latency,	 or	 time	 between
transaction	attempts.	In	other	words,	there	is	no	guaranteed	transfer	rate,	just
the	 guarantee	 that	 the	 host	 will	make	 bandwidth	 available	 for	 a	 transaction
attempt	in	each	maximum	latency	period.
A	 low-speed	 endpoint	 can	 request	 only	 up	 to	 8	 bytes	 every	 10	ms.	Devices
with	endpoints	that	need	to	transfer	more	than	800	bytes/s	shouldn’t	use	low
speed.	A	full-speed	endpoint	can	request	up	to	64	bytes	per	frame,	or	64	kB/s.
A	 high-speed	 endpoint	 can	 request	 up	 to	 three	 1024-byte	 packets	 per
microframe	 for	 a	 maximum	 throughput	 of	 24.576	 MB/s.	 A	 high-speed
endpoint	that	requests	more	than	1024	bytes	per	microframe	is	called	a	high-
bandwidth	 endpoint.	 For	 hosts	 that	 don’t	 support	 high-bandwidth	 interrupt
endpoints,	the	maximum	throughput	is	8.192	MB/s.	If	the	host’s	driver	doesn’t
support	 alternate	 interfaces,	 the	 maximum	 is	 the	 64	 kB/s	 allowed	 for	 the
default	interface.	An	Enhanced	SuperSpeed	endpoint	can	request	a	burst	of	up
to	three	1024-byte	packets	per	bus	interval	for	a	maximum	data	throughput	of
24.576	MB/s,	the	same	as	for	high	speed.
The	endpoint	descriptor	 stored	 in	 the	device	 specifies	 the	maximum	 latency
period.	For	 low-speed	devices,	 the	maximum	 latency	 can	be	 any	 value	 from
10–255	 ms.	 For	 full	 speed,	 the	 range	 is	 1–255	 ms.	 For	 high	 speed	 and
Enhanced	SuperSpeed,	the	range	is	125	μs	to	4.096	s	in	increments	of	125	μs.
In	addition,	a	high-speed	or	Enhanced	SuperSpeed	interrupt	endpoint	with	a
maximum	latency	of	125	μs	can	request	1,	2,	or	3	transactions	per	interval.
The	host	can	begin	each	transaction	at	any	time	up	to	the	specified	maximum
latency	since	the	previous	transaction	began.	So,	for	example,	on	a	full-speed
bus	with	a	10-ms	maximum	latency,	five	transfers	could	take	as	long	as	50	ms
or	 as	 little	 as	 5	ms.	OHCI	 host	 controllers	 for	 low	 and	 full	 speeds	 schedule
transactions	using	periods	of	1,	2,	4,	8,	16,	or	32	ms.	So	for	a	full-speed	device
that	requests	a	maximum	anywhere	from	8	to	15	ms,	an	OHCI	host	will	begin
a	transaction	every	8	ms,	while	a	maximum	latency	from	32	to	255	will	cause	a
transaction	attempt	every	32	ms.	However,	devices	shouldn’t	rely	on	behavior
that	 is	 specific	 to	 a	 type	 of	 host	 controller	 and	 should	 assume	only	 that	 the
host	complies	with	the	specification.	Chapter	8	has	more	about	host-controller
types.
Because	the	host	is	free	to	transfer	data	more	quickly	than	the	requested	rate,

interrupt	 transfers	 don’t	 guarantee	 a	 precise	 rate	 of	 delivery.	 The	 only
exceptions	are	when	the	maximum	latency	equals	the	fastest	possible	rate.	For
example,	 on	 a	 USB	 1.1	 host,	 a	 full-speed	 interrupt	 pipe	 configured	 for	 1
transaction	/	ms	will	have	reserved	bandwidth	for	one	transaction	per	frame.
A	 class	driver	or	device	driver	 for	 an	 interrupt	 IN	 endpoint	 can	 request	 the
host	controller	to	schedule	an	IN	transaction	in	each	interval.	The	HID-class
driver	is	an	example.	Or	a	driver	can	request	the	host	controller	to	schedule	an
IN	 transaction	 only	 when	 an	 application	 has	 requested	 data.	 The	WinUSB
driver	is	an	example.	For	interrupt	OUT	data,	the	driver	requests	transactions
only	when	an	application	or	other	software	component	has	provided	data	 to
send.
Enhanced	SuperSpeed	interrupt	and	isochronous	transfers	combined	can	use
no	 more	 than	 90%	 of	 the	 total	 bandwidth.	 High-speed	 interrupt	 and
isochronous	transfers	combined	can	use	no	more	than	80%	of	a	microframe.
Full-speed	 isochronous	 transfers	 and	 low-	 and	 full-speed	 interrupt	 transfers
combined	can	use	no	more	than	90%	of	a	frame.	The	section	More	about	time-
critical	transfers	below	has	more	about	the	capabilities	and	limits	of	interrupt
transfers.

Detecting	and	handling	errors
If	a	device	doesn’t	return	an	expected	handshake	packet,	host	controllers	retry
up	to	twice	more.	On	receiving	NAK,	a	USB	2.0	host	may	retry	without	limit.
For	example,	a	keyboard	might	sit	idle	for	days	before	someone	presses	a	key.
A	host	driver	can	 increment	an	error	count	on	every	 incomplete	 transaction
(those	with	no	 received	handshake	packet),	 reset	 the	 count	when	 the	device
returns	data	or	ACK,	 and	 stop	 communications	 to	 the	 endpoint	 if	 the	 error
count	reaches	a	defined	number.	These	errors	should	be	rare,	yet	a	device	that
is	NAKing	for	a	long	time	might	accumulate	enough	errors	to	cause	the	host
to	stop	communicating.	If	you	can’t	change	the	driver	to	cause	it	to	reset	the
error	 counter	 and	 retry	 in	 this	 situation,	 a	 solution	 is	 for	 the	device	 to	 send
data	periodically,	defining	a	“no	operation”	code	if	needed,	to	reset	the	error
counter.
Enhanced	 SuperSpeed	 endpoints	 use	 NRDY	 and	 ERDY	 as	 described	 in
Chapter	2	to	cause	the	host	to	stop	requesting	to	send	or	receive	data	when	an
endpoint	 isn’t	 ready	 to	 receive	data	or	has	no	data	 to	 send	and	 to	enable	an
endpoint	to	request	to	resume	communications.

Interrupt	 transfers	 can	 use	 data	 toggles	 (USB	 2.0)	 or	 Sequence	 Numbers
(Enhanced	 SuperSpeed)	 to	 ensure	 that	 all	 data	 is	 received	without	 errors.	A
receiving	 endpoint	 that	 cares	 only	 about	 getting	 the	 most	 recent	 data	 can
ignore	the	data	toggle	or	Sequence	Number.

Device	responsibilities
Device	 responsibilities	 for	 interrupt	 endpoints	 are	 the	 same	 as	 for	 bulk
endpoints.

Isochronous	transfers
Isochronous	 transfers	are	 streaming,	 real-time	 transfers	 that	are	useful	when
data	 must	 arrive	 at	 a	 constant	 rate	 or	 within	 a	 specific	 time	 limit	 and
occasional	 errors	 are	 tolerable.	 At	 full	 speed	 and	 Enhanced	 SuperSpeed,
isochronous	 transfers	 can	 transfer	 more	 data	 per	 frame	 or	 bus	 interval
compared	 to	 interrupt	 transfers,	 but	 the	 transfer	 type	 doesn’t	 support
automatic	resending	of	data	received	with	errors.
Examples	 of	 uses	 for	 isochronous	 transfers	 include	 audio	 and	 video	 to	 be
played	 in	real	 time.	Data	 that	will	eventually	be	consumed	at	a	constant	rate
doesn’t	always	require	an	isochronous	transfer.	For	example,	a	host	can	use	a
bulk	transfer	to	send	a	music	file	to	a	device.	After	receiving	the	file,	the	device
can	stream	the	music	on	request.
Nor	does	the	data	in	an	isochronous	transfer	have	to	be	real-time	data	such	as
audio	and	video.	An	isochronous	transfer	is	a	way	to	ensure	that	any	block	of
data	has	reserved	bandwidth	on	a	busy	bus.	Unlike	with	bulk	transfers,	a	host
guarantees	 that	 a	 configuration’s	 requested	 isochronous	 bandwidth	 will	 be
available,	so	the	completion	time	is	predictable.

Availability
Low	 speed	doesn’t	 support	 isochronous	 transfers.	Devices	 aren’t	 required	 to
support	 isochronous	 transfers	 but	 a	 device	 class	 may	 require	 them.	 For
example,	many	audio-and	video-class	devices	use	isochronous	endpoints.

Structure
Isochronous	 means	 that	 the	 data	 has	 a	 fixed	 transfer	 rate,	 with	 a	 defined
number	of	bytes	transferring	in	every	frame,	microframe,	or	bus	interval.

A	USB	2.0	isochronous	transfer	consists	of	one	or	more	IN	transactions	or	one
or	more	OUT	transactions	with	bandwidth	reserved	for	 the	 transfer	at	equal
intervals.	Transferring	data	in	both	directions	requires	a	separate	transfer	and
pipe	 for	 each	 direction.	High-speed	 and	 Enhanced	 SuperSpeed	 isochronous
transfers	 are	more	 flexible.	 They	 can	 request	 as	many	 as	 3	 transactions	 per
microframe	 (USB	 2.0),	 48	 transactions	 per	 bus	 interval	 (SuperSpeed),	 or	 96
transactions	 per	 bus	 interval	 (SuperSpeedPlus)	 or	 as	 little	 as	 1	 transaction
every	32,768	microframes	or	bus	intervals.
Figure	 3-7	 shows	 the	 packets	 in	 full-speed	 isochronous	 IN	 and	 OUT
transactions.	 An	 isochronous	 transfer	 is	 one	 way.	 The	 transactions	 in	 a
transfer	must	all	be	IN	transactions	or	all	OUT	transactions.	Transferring	data
in	both	directions	requires	a	separate	pipe	and	transfer	for	each	direction.
The	USB	2.0	specification	doesn’t	define	a	protocol	for	specifying	the	amount
of	data	in	an	isochronous	transfer.	When	needed,	the	device	and	host	can	use
a	class-specific	or	vendor-defined	protocol	to	pass	this	information.
Before	 requesting	 a	 device	 configuration	 that	 consumes	 isochronous
bandwidth,	the	host	controller	determines	whether	the	requested	bandwidth	is
available	 by	 comparing	 the	 available	 unreserved	 bus	 bandwidth	 with	 the
maximum	 packet	 size	 and	 requested	 transfer	 rate	 of	 the	 configuration’s
isochronous	endpoint(s).
Every	 device	with	 isochronous	 endpoints	must	 have	 a	 default	 interface	 that
requests	no	isochronous	bandwidth	so	the	host	can	configure	the	device	even
if	 the	 bus	 has	 no	 available	 reservable	 bandwidth.	 In	 addition	 to	 the	 default
interface	and	an	alternate	interface	that	requests	the	optimum	bandwidth	for	a
device,	 a	device	 can	 support	 additional	 alternate	 interfaces	 that	have	 smaller
isochronous	 data	 packets	 or	 transfer	 fewer	 isochronous	 packets	 per
microframe.	 The	 device	 driver	 can	 then	 request	 to	 use	 an	 interface	 that
transfers	data	at	a	slower	rate	if	needed.	Or	the	driver	can	try	again	later	in	the
hope	that	the	bandwidth	will	be	available.	After	the	host	configures	the	device
and	 selects	 an	 interface,	 the	 transfers	 are	 guaranteed	 to	 have	 the	 time	 they
need.
Each	transaction	has	overhead	and	must	share	the	bus	with	other	devices.	The
host	can	schedule	a	transaction	anywhere	within	a	scheduled	(micro)frame	or
bus	 interval.	 Isochronous	 transfers	 may	 also	 synchronize	 to	 another	 data
source	 or	 recipient,	 SOF	 packets	 (USB	 2.0),	 or	 Isochronous	 Timestamp
Packets	 (Enhanced	 SuperSpeed).	 For	 example,	 a	 microphone’s	 input	 may

synchronize	 to	 the	 output	 of	 speakers.	 The	 descriptor	 for	 an	 isochronous
endpoint	can	specify	a	synchronization	type	and	a	usage	value	that	 indicates
whether	the	endpoint	contains	data	or	feedback	information	used	to	maintain
synchronization.

High	speed	differences
If	a	host	 is	performing	an	 isochronous	transfer	with	a	 full-speed	device	on	a
high-speed	bus,	the	host	uses	the	split	transactions	introduced	in	Chapter	2	for
all	of	the	transfer’s	transactions.	Isochronous	OUT	transactions	use	start-split
transactions	 but	 don’t	 use	 complete-splits	 because	 there	 is	 no	 status
information	 to	 report	 back	 to	 the	 host.	 Isochronous	 transfers	 don’t	 use	 the
PING	protocol.

Figure	 3-7.	 USB	 2.0	 isochronous	 transfers	 don’t	 have	 handshake	 packets,	 so
occasional	errors	must	be	acceptable.	Not	shown	are	the	split	transactions	used
with	full-speed	devices	on	a	high-speed	bus	or	the	data	PID	sequencing	in	high-
speed	transfers	with	multiple	data	packets	per	microframe.	Information	source:
Universal	Serial	Bus	Specification,	Revision	2.0.

Figure	3-8.	As	with	USB	2.0,	Enhanced	SuperSpeed	endpoints	don’t	acknowledge
isochronous	 data	 packets.	 Information	 source:	 Universal	 Serial	 Bus	 3.1
Specification,	Revision	1.0.

Enhanced	SuperSpeed	differences
Figure	 3-8	 shows	 Enhanced	 SuperSpeed	 isochronous	 IN	 and	 OUT
transactions.	The	first	DP	in	a	service	interval	has	Sequence	Number	=	0.	The
Sequence	 Number	 increments	 with	 each	 DP	 that	 follows	 in	 the	 service
interval.	In	an	IN	transaction,	the	host	sends	a	single	ACK	TP	to	request	one
or	more	DPs	 in	 a	 service	 interval,	 and	 the	 device	 sends	 the	 packet(s).	 In	 an
OUT	 transaction,	 the	host	 sends	data	 in	DPs,	 and	 the	device	 sends	nothing.
The	 endpoint	 descriptor	 specifies	 the	 length	 of	 a	 service	 interval	 and	 the
number	 of	 DPs	 per	 service	 interval.	 For	 the	 last	 data	 packet	 in	 the	 service
interval,	the	sender	sets	the	last-packet	flag	in	the	Data	Packet	Header.

Data	size
The	allowed	maximum	data	bytes	in	an	isochronous	transaction’s	data	packet
varies	with	bus	speed	and	the	number	of	packets	per	microframe	(high	speed)
or	 the	 number	 of	 packets	 per	 bus	 interval	 and	 bMaxBurst	 (Enhanced
SuperSpeed):

Bus	Speed Maximum	Data	Packet
Size

Maximum	Number	of
Packets/Interval

Full 0–1023 1	/	frame

High 0–1024 1	/	microframe

513–1024 2	/	microframe

683–1024 3	/	microframe

SuperSpeed 0–1024	and	bMaxBurst	=
0

3	/	bus	interval

1024	and	bMaxBurst	>	0 48	/	bus	interval

SuperSpeedPlus 0–1024	and	bMaxBurst	=
0

3	/	bus	interval

1024	and	bMaxBurst	>	0 96	/	bus	interval

These	bytes	include	only	the	information	transferred	in	the	data	packet	(USB
2.0)	or	Data	Packet	Payload	(Enhanced	SuperSpeed),	excluding	PID	and	CRC
bits.
If	 the	 data	 doesn’t	 fit	 in	 a	 single	 packet,	 the	 host	 completes	 the	 transfer	 in
multiple	transactions.	Within	a	USB	2.0	transfer,	 the	amount	of	data	in	each
transaction	doesn’t	have	to	be	the	same	and	doesn’t	have	to	be	the	maximum
packet	size.	For	example,	data	at	44,100	samples	/	s	could	use	a	sequence	of	9
packets	 containing	 44	 samples	 each,	 followed	 by	 1	 packet	 containing	 45
samples.
SuperSpeed	 endpoints	 can	 support	 up	 to	 3	 burst	 transactions	 per	 service
interval,	with	each	burst	consisting	of	up	to	16	DPs.	All	but	 the	 last	DP	in	a
burst	must	 be	 the	 endpoint’s	maximum	packet	 size.	 In	 addition,	 each	 burst
except	the	last	must	have	an	equal	number	of	DPs,	and	the	number	of	DPs	in
each	burst	except	the	last	must	be	2,	4,	8,	or	16.
For	example,	with	endpoint	support	for	16	DPs	per	burst,	the	quickest	way	to
send	 48	 maximum-size	 DPs	 is	 in	 3	 bursts	 of	 16	 DPs	 each.	With	 endpoint
support	for	3	bursts	per	service	interval,	all	of	the	data	can	transfer	within	one
service	interval.	But	the	sender	also	has	the	option	to	send	the	data	in	6	bursts
of	8	DPs	each,	12	bursts	of	4	DPs	each,	24	bursts	of	2	DPs	each,	or	48	non-
burst	DPs.
SuperSpeedPlus	isochronous	endpoints	have	twice	the	capacity	of	SuperSpeed
endpoints,	 with	 support	 for	 up	 to	 6	 burst	 transactions	 per	 service	 interval,
with	 each	 burst	 consisting	 of	 up	 to	 16	 DPs.	 SuperSpeedPlus	 hosts	 can	 use
bursts	of	any	size	up	to	the	maximum	size	supported	by	the	endpoint.

Speed
A	full-speed	isochronous	transaction	can	transfer	up	to	1023	bytes	per	frame,
or	up	to	1.023	MB/s.	A	high-speed	isochronous	transaction	can	transfer	up	to
1024	bytes.	A	high-speed	isochronous	endpoint	that	requires	more	than	1024
bytes	 per	microframe	 can	 request	 2	 or	 3	 transactions	 per	microframe	 for	 a
maximum	data	 throughput	of	24.576	MB/s.	A	SuperSpeed	 isochronous	non-
burst	 transaction	 can	 transfer	 up	 to	 1024	 bytes.	 A	 SuperSpeed	 isochronous
burst	transaction	can	have	up	to	sixteen	1024-byte	data	packets.	An	endpoint
can	request	up	to	3	burst	transactions	per	service	interval	for	a	maximum	data
throughput	of	49,152	kB/service	interval	or	over	393	MB/s.	A	SuperSpeedPlus
isochronous	 endpoint	 can	 request	 up	 to	 6	 burst	 transactions	 per	 service
interval	for	a	maximum	data	throughput	of	98,304	kB/service	interval	or	over
786	MB/s.
Windows	 supports	 high-bandwidth	 isochronous	 endpoints,	 which	 request
multiple	transactions	per	microframe.	High-speed	and	Enhanced	SuperSpeed
isochronous	endpoints	don’t	have	to	reserve	bandwidth	in	every	(micro)frame
or	 service	 interval	 and	 thus	 can	 request	 less	 bandwidth	 than	 full-speed
transfers.	The	minimum	requested	bandwidth	is	one	byte	every	4.096	seconds.
However,	 any	 endpoint	 can	 transfer	 less	 data	 than	 the	 maximum	 reserved
bandwidth	by	skipping	available	 transactions	or	by	transferring	 less	 than	the
maximum	 data	 per	 transfer.	 An	 Enhanced	 SuperSpeed	 isochronous	 IN
endpoint	 that	 has	no	data	 to	 transmit	 responds	 to	 a	 request	 for	 data	with	 a
zero-length	Data	Payload.
Enhanced	SuperSpeed	interrupt	and	isochronous	transfers	combined	can	use
no	 more	 than	 90%	 of	 the	 total	 bus	 bandwidth.	 High-speed	 interrupt	 and
isochronous	transfers	combined	can	use	no	more	than	80%	of	a	microframe.
Full-speed	 isochronous	 transfers	 and	 low-	 and	 full-speed	 interrupt	 transfers
combined	can	use	no	more	than	90%	of	a	frame.
The	 section	 More	 about	 time-critical	 transfers	 below	 has	 more	 about	 the
capabilities	of	isochronous	transfers.

Detecting	and	handling	errors
The	price	 for	guaranteed	on-time	delivery	of	 large	blocks	of	data	 is	no	error
correcting.	 Isochronous	 transfers	 are	 intended	 for	 uses	 where	 occasional
errors	are	acceptable.	For	example,	listeners	may	tolerate	or	not	notice	a	short

dropout	 in	 voice	 or	 music.	 In	 reality,	 under	 normal	 circumstances,	 a	 USB
transfer	should	experience	only	infrequent	errors	due	to	 line	noise.	The	USB
3.1	specification	estimates	an	error	rate	of	 less	 than	one	 in	every	1012	bits	 in
the	Enhanced	SuperSpeed	physical	 layer.	Because	isochronous	transfers	must
keep	 to	 a	 schedule,	 the	 receiver	 can’t	 request	 the	 sender	 to	 retransmit	 if	 the
receiver	 is	busy	or	detects	an	error.	A	receiver	 that	suspects	errors	could	ask
the	sender	to	resend	the	entire	transfer,	but	this	approach	isn’t	efficient.
A	device	or	host	that	doesn’t	receive	an	expected	data	packet	or	receives	a	data
packet	with	an	error	can	define	what	to	do.	The	options	include	using	the	data
as-is,	skipping	the	data,	or	inserting	a	packet	identical	to	the	previous	packet
or	other	“dummy”	data.

Device	responsibilities
A	USB	 2.0	 device	 has	 these	 responsibilities	 for	 transfers	 on	 an	 isochronous
endpoint:

For	OUT	transfers,	accept	received	data	in	data	packets.
For	IN	transfers,	return	data	in	data	packets	in	response	to	IN	tokens.

An	Enhanced	SuperSpeed	device	has	 these	 responsibilities	 for	 transfers	on	a
isochronous	endpoint:

For	OUT	transfers,	accept	data	in	DPs.
For	IN	transfers,	send	data	in	DPs	in	response	to	requests	in	ACK	TPs.

More	about	time-critical	transfers
Just	because	an	endpoint	is	capable	of	a	rate	of	data	transfer	doesn’t	mean	that
a	particular	device	and	host	will	be	able	to	achieve	the	rate.	Several	things	can
limit	 an	 application’s	 ability	 to	 send	or	 receive	data	 at	 the	 rate	 that	 a	device
requests.	 The	 limiting	 factors	 include	 bus	 bandwidth,	 the	 capabilities	 of	 the
device,	 the	 capabilities	 of	 the	 device	 driver	 and	 application	 software,	 and
latencies	in	the	host’s	hardware	and	software.

Bus	bandwidth
When	 a	 device	 requests	 more	 interrupt	 or	 isochronous	 bandwidth	 than	 is
available,	 the	 host	 refuses	 to	 configure	 the	 device.	 A	 high-speed	 interrupt
endpoint	can	request	up	to	three	1024-byte	data	packets	in	each	microframe,

using	as	much	as	40%	of	the	bus	bandwidth.	To	help	ensure	that	devices	can
enumerate	 without	 problems,	 the	 interrupt	 endpoints	 in	 default	 interfaces
must	specify	a	maximum	packet	size	of	64	bytes	or	 less.	The	device	driver	 is
then	 free	 to	 try	 to	 increase	 the	 endpoint’s	 reserved	bandwidth	by	 requesting
alternate	interface	settings	or	configurations.
However,	many	drivers	don’t	support	requesting	alternate	interface	settings	or
configurations.	 For	 example,	 under	 Windows,	 the	 human	 interface	 device
(HID)	 class	 driver	 doesn’t	 support	 selecting	 an	 alternate	 interface.	 The
WinUSB	driver	does	enable	applications	to	select	alternate	interface	settings.
Isochronous	endpoints	might	also	request	more	bandwidth	 than	 is	available.
In	particular,	Enhanced	SuperSpeed	endpoints	can	request	over	half	of	the	bus
bandwidth,	an	amount	that	might	not	be	available.	To	help	ensure	that	devices
will	 enumerate	 without	 problems,	 default	 interfaces	 must	 request	 no
isochronous	 bandwidth.	 In	 other	 words,	 a	 default	 interface	 can	 transfer	 no
isochronous	data	at	all	and	typically	includes	no	isochronous	endpoints.	After
enumeration,	 the	 device	 driver	 can	 request	 isochronous	 bandwidth	 by
requesting	an	alternate	 interface	setting	or	a	configuration	with	one	or	more
isochronous	endpoints.
A	specific	host	might	configure	and	communicate	with	a	device	that	has	non-
compliant	default	interfaces,	but	future	editions	of	the	operating	system	might
enforce	this	part	of	the	specification	and	refuse	to	configure	the	device.
In	general,	a	device	that	can	operate	using	up	to	30–40%	of	the	bus	bandwidth
has	a	good	chance	of	successful	configuration	even	on	a	busy	host.

Device	capabilities
If	 the	host	has	promised	that	the	requested	USB	bandwidth	will	be	available,
there’s	 still	 no	 guarantee	 that	 a	 device	will	 be	 ready	 to	 send	 or	 receive	 data
when	needed.
To	transfer	data	efficiently,	a	device	should	be	ready	to	send	and	receive	data
on	request.	To	send	data,	 the	device	must	write	 the	data	 into	 the	endpoint’s
buffer	so	the	data	is	ready	to	send	when	requested	by	the	host.	Otherwise,	in
all	 but	 isochronous	 transfers,	 the	 endpoint	 returns	NAK	 or	NRDY	 and	 the
host	 wastes	 time	 retrying.	 When	 receiving	 data,	 the	 device	 must	 read
previously	 received	 data	 from	 the	 endpoint’s	 buffer	 before	 new	 data	 arrives
from	the	host.	Otherwise	the	old	data	will	be	overwritten,	or	the	endpoint	will
return	NAK	or	NRDY	and	require	the	host	to	retry.

One	way	to	help	ensure	that	a	device	is	always	ready	for	a	transfer	is	to	use	a
device	 controller	 that	 supports	 multiple	 buffers	 as	 described	 in	 Chapter	 6.
Double	or	quadruple	buffering	gives	the	firmware	extra	time	to	load	the	next
data	to	transfer	or	to	retrieve	received	data.

Host	capabilities
The	capabilities	of	the	device	driver	and	application	software	on	the	host	can
also	affect	whether	transfers	occur	as	efficiently	as	possible	and	without	losing
data.
A	device	driver	requests	a	transfer	by	submitting	an	I/O	request	packet	(IRP)
to	 a	 lower-level	 driver.	 For	 interrupt	 and	 isochronous	 transfers,	 the	 host
controller	attempts	a	scheduled	transaction	only	if	the	host	has	an	outstanding
IRP	 for	 the	 endpoint.	 To	 ensure	 that	 no	 transfer	 opportunities	 are	 missed,
drivers	with	 large	amounts	of	data	to	send	or	request	 typically	submit	a	new
IRP	immediately	on	completing	the	previous	one.
The	application	software	that	uses	the	data	also	has	to	be	able	to	keep	up	with
the	 transfers.	For	 example,	 the	Windows	driver	 for	HID-class	devices	places
report	data	received	in	interrupt	transfers	in	a	buffer,	and	applications	can	use
the	 ReadFile	 API	 function	 or	 .NET	 FileStream	 methods	 to	 retrieve	 reports
from	 the	 buffer.	 If	 the	 buffer	 is	 full	 when	 a	 new	 report	 arrives,	 the	 driver
discards	 the	 oldest	 report	 and	 replaces	 it	 with	 the	 newest	 one.	 If	 the
application	 can’t	 keep	 up	 with	 reading	 the	 buffer,	 some	 reports	 are	 lost.	 A
solution	 is	 to	 increase	 the	 size	of	 the	buffer	 the	driver	uses	 to	 store	 received
data	or	increase	the	size	of	the	read	buffer	to	enable	reading	multiple	reports	at
once.
One	 way	 to	 help	 ensure	 that	 an	 application	 sends	 or	 receives	 data	 with
minimal	delay	is	to	place	the	code	that	communicates	with	the	device	driver	in
its	 own	 program	 thread.	 The	 thread	 should	 have	 few	 responsibilities	 other
than	managing	these	communications.
Doing	 fewer,	 larger	 transfers	 rather	 than	 multiple,	 small	 transfers	 can	 also
help.	A	host	 application	 can	 typically	 send	or	 request	 a	 few	 large	 chunks	 of
data	more	efficiently	than	sending	or	requesting	many	smaller	chunks.	Lower-
level	drivers	manage	the	scheduling	for	transfers	with	multiple	transactions.

Host	latencies
Also	affecting	the	performance	of	time-critical	USB	transfers	under	Windows

is	 latencies	 due	 to	 how	 the	 OS	 handles	 multi-tasking.	 Windows	 wasn’t
designed	 as	 a	 real-time	 operating	 system	 that	 can	 guarantee	 a	 rate	 of	 data
transfer	with	a	peripheral.
With	multi-tasking,	multiple	program	threads	run	at	 the	same	time,	and	the
OS	grants	a	portion	of	the	available	time	to	each	thread.	Different	threads	can
have	different	priorities,	but	under	Windows,	no	thread	has	guaranteed	CPU
time	at	a	defined	rate	such	as	once	per	ms.	Latencies	under	Windows	are	often
well	 under	 1	 ms,	 but	 in	 some	 cases	 a	 thread	 can	 keep	 other	 code	 from
executing	 for	 over	 100	 ms.	 Newer	 Windows	 editions	 and	 newer	 system
hardware	 tend	 to	 have	 improved	 performance	 over	 older	 editions	 and
hardware.
A	USB	device	and	its	software	have	no	control	over	what	other	tasks	the	host
CPU	 is	 performing	 and	 how	 fast	 the	 CPU	 performs	 them.	 If	 possible,	 the
device	 should	 handle	 any	 critical,	 real-time	 processing	 so	 the	 timing	 of	 the
host	communications	can	be	as	non-critical	as	possible.	For	example,	consider
a	full-speed	device	that	reads	a	sensor	once	per	ms.	The	device	could	attempt
to	 send	 each	 reading	 to	 the	 host	 in	 a	 separate	 interrupt	 transfer,	 but	 if	 a
transfer	fails	to	occur	for	any	reason,	the	data	will	never	catch	up.	If	the	device
instead	 collects	 a	 series	 of	 readings	 and	 transfers	 them	 using	 less	 frequent,
larger	 transfers,	 the	 timing	 of	 the	 bus	 transfers	 is	 less	 critical.	 Data
compression	 can	 also	 help	 by	 reducing	 the	 number	 of	 bytes	 that	 need	 to
transfer.

4

Enumeration:	How	the	Host	Learns
about	Devices
Before	applications	can	communicate	with	a	device,	the	host	computer	needs
to	learn	about	the	device	and	assign	a	driver.	Enumeration	is	the	exchange	of
information	that	accomplishes	these	tasks.	The	process	includes	assigning	an
address	 to	 the	 device,	 reading	 descriptors	 from	 the	 device,	 assigning	 and
loading	a	driver,	and	selecting	a	configuration	that	specifies	the	device’s	power
requirements	and	interfaces.	The	device	is	then	ready	to	transfer	data.
This	chapter	describes	the	enumeration	process,	including	the	structure	of	the
descriptors	 that	 the	 host	 reads	 from	 the	 device	 during	 enumeration.
Understanding	 enumeration	 is	 essential	 in	 creating	 the	 descriptors	 that	 will
reside	 in	 the	 device	 and	 in	 writing	 firmware	 that	 responds	 to	 enumeration
requests.

Events	and	requests
One	 of	 a	 hub’s	 duties	 is	 to	 detect	 attachment	 and	 removal	 of	 devices	 on	 its
downstream-facing	 ports.	 Each	 hub	 has	 an	 interrupt	 IN	 endpoint	 for
reporting	these	events	to	the	host.	On	system	boot-up,	hubs	inform	the	host	if
any	 devices	 are	 attached	 including	 additional	 downstream	 hubs	 and	 any
devices	 attached	 to	 those	 hubs.	 After	 boot-up,	 a	 host	 continues	 to	 poll
periodically	 (USB	 2.0)	 or	 receives	 ERDY	 TPs	 (Enhanced	 SuperSpeed)	 that
request	communications	to	learn	of	any	newly	attached	or	removed	devices.
On	 learning	 of	 a	 new	 device,	 the	 host	 sends	 requests	 to	 the	 device’s	 hub	 to
cause	 the	 hub	 to	 establish	 a	 communications	 path	 between	 the	 host	 and
device.	 The	 host	 then	 attempts	 to	 enumerate	 the	 device	 by	 issuing	 control
transfers	 containing	 standard	 USB	 requests	 to	 the	 device.	 All	 USB	 devices
must	 support	 control	 transfers,	 standard	 requests,	 and	 endpoint	 zero.	 For	 a
successful	 enumeration,	 the	 device	 must	 respond	 to	 requests	 by	 returning

requested	information	and	taking	other	requested	actions.
From	the	user’s	perspective,	enumeration	is	 invisible	and	automatic	but	may
display	a	message	that	announces	the	new	device	and	whether	the	attempt	to
configure	 it	 succeeded.	 Sometimes	 on	 first	 use,	 the	 user	 needs	 to	 assist	 in
selecting	 a	 driver	 or	 telling	 the	 host	 where	 to	 look	 for	 driver	 files.	 Under
Windows,	 when	 enumeration	 is	 complete,	 the	 new	 device	 appears	 in	 the
Device	Manager.	(Right-click	Computer,	click	Manage,	and	in	the	Computer
Management	 pane,	 select	 Device	 Manager.)	 On	 detaching,	 the	 device
disappears	 from	Device	Manager.	 In	 a	 typical	 device,	 firmware	 decodes	 and
responds	 to	 received	 requests	 for	 information.	Some	controllers	 can	manage
enumeration	entirely	in	hardware	except	possibly	for	vendor-provided	values
in	EEPROM	or	other	memory.	On	the	host	side,	the	operating	system	handles
enumeration.

Getting	to	the	Configured	state
The	 USB	 2.0	 specification	 defines	 six	 device	 states.	 During	 enumeration,	 a
device	moves	 through	the	Powered,	Default,	Address,	and	Configured	states.
(The	other	defined	states	are	Attached	and	Suspend.)	In	each	state,	the	device
has	defined	capabilities	and	behavior.

Typical	USB	2.0	sequence
The	 steps	 below	 are	 a	 typical	 sequence	 of	 events	 that	 occurs	 during
enumeration	of	a	USB	2.0	device	under	Windows.	Device	 firmware	shouldn’t
assume	 that	enumeration	requests	and	events	will	occur	 in	a	particular	order.
Different	OSes	 and	different	OS	editions	might	use	 a	different	 sequence.	To
function	successfully,	a	device	must	detect	and	respond	to	any	control	request
or	other	bus	event	at	any	time	as	required	by	the	USB	specifications.	Figure	4-
1	shows	received	requests	and	other	events	during	a	device	enumeration.

Figure	 4-1.	 To	 enumerate	 a	 newly	 attached	 device,	 the	 host	 sends	 a	 series	 of
requests	to	obtain	descriptors	and	set	the	device’s	bus	address	and	configuration.
(Screen	capture	from	Ellisys	USB	Explorer	analyzer.)

1.	The	system	has	a	new	device.	A	user	attaches	a	device	to	a	USB	port,	or	the
system	powers	up	with	a	device	attached.	The	port	may	be	on	the	root	hub	at
the	 host	 or	 on	 a	 hub	 that	 connects	 downstream	 from	 the	 host.	 The	 hub
provides	power	to	the	port,	and	the	device	is	in	the	Powered	state.	The	device
is	in	the	Attached	state	and	can	draw	up	to	100	mA	from	the	bus.
2.	The	hub	detects	 the	device.	The	hub	monitors	 the	 voltages	on	 the	 signal
lines	 (D+	 and	D-)	 at	 each	 of	 its	 ports.	 The	 hub	 has	 a	 pull-down	 resistor	 of
14.25k–-24.8kQ	on	each	line.	A	device	has	a	pull-up	resistor	of	900–1575Q	on
D+	 for	 a	 full-speed	 device	 or	 on	 D-	 for	 a	 low-speed	 device.	 High-speed-
capable	devices	attach	at	full	speed.	On	attaching	to	a	port,	the	device	connects
to	the	bus	by	bringing	the	appropriate	pull-up	line	high	so	the	hub	can	detect
that	a	device	is	attached.	Except	for	some	devices	with	weak	or	dead	batteries,
the	device	must	connect	within	1	s	after	detecting	that	VBUS	is	at	least	0.8	V.
A	device	can	continue	to	draw	100	mA	of	bus	current	for	1	s	after	connecting
regardless	of	whether	the	upstream	bus	segment	is	suspended.	On	detecting	a
device,	 the	 hub	 continues	 to	 provide	 power	 but	 doesn’t	 yet	 transmit	 USB
traffic	to	the	device.	Chapter	16	has	more	on	how	hubs	detect	devices.
3.	The	host	learns	of	the	new	device.	Each	hub	uses	its	interrupt	endpoint	to
report	events	at	the	hub.	The	report	indicates	only	whether	the	hub	or	a	port
(and	if	so,	which	port)	has	experienced	an	event.	On	learning	of	an	event,	the

host	sends	the	hub	a	Get	Port	Status	request	to	find	out	more.	Get	Port	Status
and	 the	 other	 hub-class	 requests	 used	 during	 enumeration	 are	 standard
requests	that	all	hubs	support.	The	information	returned	tells	the	host	when	a
device	is	newly	attached.
4.	The	hub	detects	whether	a	device	is	low	or	full	speed.	Just	before	resetting
the	 device,	 the	 hub	 determines	 whether	 the	 device	 is	 low	 or	 full	 speed	 by
detecting	which	signal	line	has	a	higher	voltage	when	idle.	The	hub	sends	the
information	to	the	host	in	response	to	the	next	Get	Port	Status	request.	A	USB
1.1	hub	may	 instead	detect	 the	device’s	 speed	 just	 after	 a	bus	 reset.	USB	2.0
requires	speed	detection	before	the	reset	so	the	hub	knows	whether	to	check
for	a	high-speed-capable	device	during	reset	as	described	below.
5.	The	hub	 resets	 the	device.	When	 a	 host	 learns	 of	 a	 new	device,	 the	 host
sends	 the	hub	a	Set	Port	Feature	 request	 that	 asks	 the	hub	 to	 reset	 the	port.
The	hub	places	the	device’s	USB	data	lines	in	the	Reset	condition	for	at	least	10
ms.	 Reset	 is	 a	 special	 condition	 where	 both	 D+	 and	 D-	 are	 logic	 low.
(Normally,	the	lines	have	opposite	logic	states.)	The	hub	sends	the	reset	only
to	the	new	device.	Other	hubs	and	devices	on	the	bus	don’t	see	the	reset.
6.	 The	 host	 learns	 if	 a	 full-speed	 device	 supports	 high	 speed.	 Detecting
whether	 a	 device	 supports	 high	 speed	 uses	 two	 special	 signal	 states.	 In	 the
Chirp	J	state,	only	the	D+	line	is	driven,	and	in	the	Chirp	K	state,	only	the	D-
line	is	driven.
During	the	reset,	a	device	that	supports	high	speed	sends	a	Chirp	K.	A	high-
speed-capable	 hub	 detects	 the	 Chirp	 K	 and	 responds	 with	 a	 series	 of
alternating	Chirp	K	and	Chirp	J.	On	detecting	the	pattern	KJKJKJ,	the	device
removes	 its	 full-speed	 pull-up	 and	 performs	 all	 further	 communications	 at
high	 speed.	 If	 the	 hub	 doesn’t	 respond	 to	 the	 device’s	 Chirp	 K,	 the	 device
knows	it	must	continue	to	communicate	at	full	speed.	All	high-speed	devices
must	be	capable	of	responding	to	control-transfer	requests	at	full	speed.
7.	The	hub	 establishes	 a	 signal	 path	 between	 the	 device	 and	 the	 bus.	 The
host	 verifies	 that	 the	 device	 has	 exited	 the	 reset	 state	 by	 sending	 a	Get	 Port
Status	request.	A	bit	in	the	returned	data	indicates	whether	the	device	is	still	in
the	 reset	 state.	 If	 necessary,	 the	host	 repeats	 the	 request	until	 the	device	has
exited	the	reset	state.
When	the	hub	removes	the	reset,	the	device	is	in	the	Default	state.	The	device’s
USB	 registers	 are	 in	 their	 reset	 states,	 and	 the	 device	 is	 ready	 to	 respond	 to
control	 transfers	 at	 endpoint	 zero.	 The	 device	 communicates	 with	 the	 host

using	the	default	address	of	0x00.
8.	The	host	 sends	a	Get	Descriptor	 request	 to	 learn	 the	maximum	packet
size	of	 the	default	pipe.	 The	host	 sends	 the	 request	 to	 device	 address	 0x00,
endpoint	 zero.	Because	 the	host	 enumerates	 only	 one	device	 at	 a	 time,	 only
one	device	will	respond	to	communications	addressed	to	device	address	0x00
even	if	several	devices	attach	at	once.
The	 eighth	 byte	 of	 the	 device	 descriptor	 contains	 the	maximum	packet	 size
supported	by	endpoint	zero.	The	host	may	request	64	bytes	but	after	receiving
just	one	packet	(whether	or	not	it	has	64	bytes),	may	begin	the	Status	stage	of
the	transfer.
On	 completing	 the	 Status	 stage,	Windows	may	 request	 the	 hub	 to	 reset	 the
device	 as	 in	 step	 5	 above.	 The	USB	 2.0	 specification	 doesn’t	 require	 a	 reset
here.	The	reset	is	a	precaution	that	ensures	that	the	device	will	be	in	a	known
state	when	the	reset	ends.	Windows	8	and	later	skip	the	second	reset	for	high-
speed	devices	 because	 these	devices	 typically	 don’t	 require	 a	 second	 reset.	 If
enumeration	fails	without	the	second	reset,	Windows	includes	the	reset	on	the
next	enumeration	attempt.
9.	 The	 host	 assigns	 an	 address.	 When	 the	 reset	 is	 complete,	 the	 host
controller	 assigns	 a	 unique	 address	 to	 the	 device	 by	 sending	 a	 Set	 Address
request.	The	device	completes	the	Status	stage	of	the	request	using	the	default
address	 and	 then	 implements	 the	 new	 address.	 The	 device	 is	 now	 in	 the
Address	 state.	All	 communications	 from	 this	 point	 on	 use	 the	 new	 address.
The	address	is	valid	until	the	device	is	detached,	a	hub	resets	the	port,	or	the
system	 reboots.	 On	 the	 next	 enumeration,	 the	 host	 may	 assign	 a	 different
address	to	the	device.
10.	 The	 host	 learns	 about	 the	 device’s	 abilities.	 The	 host	 sends	 a	 Get
Descriptor	request	to	the	new	address	to	read	the	device	descriptor.	This	time
the	host	retrieves	the	entire	descriptor.	The	descriptor	contains	the	maximum
packet	 size	 for	 endpoint	 zero,	 the	 number	 of	 configurations	 the	 device
supports,	and	other	information	about	the	device.
The	host	continues	to	 learn	about	the	device	by	requesting	the	configuration
descriptor(s)	specified	in	the	device	descriptor.	A	request	 for	a	configuration
descriptor	is	actually	a	request	for	the	configuration	descriptor	followed	by	all
of	its	subordinate	descriptors	up	to	the	number	of	bytes	requested.
If	 the	 host	 requests	 255	 bytes,	 the	 device	 responds	 by	 sending	 the

configuration	 descriptor	 followed	 by	 all	 of	 the	 configuration’s	 subordinate
descriptors,	 including	 interface	 descriptor(s),	 with	 each	 interface	 descriptor
followed	 by	 any	 endpoint	 descriptors	 for	 the	 interface.	 Some	 configurations
also	have	class-	or	vendor-specific	descriptors.
One	 of	 the	 configuration	 descriptor’s	 fields	 is	 the	 total	 length	 of	 the
configuration	descriptor	and	its	subordinate	descriptors.	If	the	value	is	greater
than	 255,	 the	 device	 returns	 255	 bytes.	 Windows	 then	 requests	 the
configuration	descriptor	again,	this	time	requesting	the	number	of	bytes	in	the
total	length	specified	in	the	configuration	descriptor.
Earlier	 Windows	 editions	 began	 by	 requesting	 just	 the	 configuration
descriptor’s	nine	bytes	 to	 retrieve	 the	 total	 length	 value,	 then	 requesting	 the
complete	descriptor	set.
11.	The	host	requests	additional	information	from	the	device.	The	host	then
may	request	additional	descriptors	from	the	device.	In	every	case,	a	device	that
doesn’t	support	a	requested	descriptor	should	return	STALL.
When	 the	device	descriptor	 reports	 that	 the	device	 is	USB	2.1	or	higher,	 the
host	requests	a	BOS	descriptor.	 If	 the	device	returns	 the	BOS	descriptor,	 the
host	 uses	 the	 descriptor’s	 total	 length	 value	 to	 request	 the	 BOS	 descriptor
followed	by	its	subordinate	descriptor(s).
The	host	 requests	 string	 descriptor	 zero,	which	 contains	 one	 or	more	 codes
indicating	what	languages	additional	strings	use.
If	the	device	descriptor	reports	that	the	device	contains	a	serial	number	string
descriptor,	the	host	requests	that	descriptor.
If	 the	 device	 descriptor	 indicates	 that	 the	 device	 contains	 a	 Product	 string
descriptor,	the	host	requests	that	descriptor.
For	 USB	 2.0	 and	 higher	 devices,	 if	 Windows	 doesn’t	 have	 a	 record	 of
previously	retrieving	a	Microsoft-specific	MS	OS	string	descriptor,	the	OS	may
request	that	descriptor.
If	a	BOS	descriptor	or	a	Microsoft	OS	string	descriptor	indicates	support	for
additional	 Microsoft-defined	 descriptors,	 the	 host	 may	 request	 these
descriptors.
For	USB	2.0	or	higher	devices	operating	at	 full	speed	with	an	upstream	USB
1.1	hub,	 the	host	requests	a	device	qualifier	descriptor.	A	device	 that	returns
this	descriptor	 is	capable	of	operating	at	high	speed	 if	all	upstream	ports	are
USB	2.0	or	higher.

12.	The	host	assigns	and	loads	a	device	driver	(except	for	composite	devices).
After	 learning	about	a	device	from	its	descriptors,	the	host	 looks	for	the	best
match	in	a	driver	to	manage	communications	with	the	device.	Windows	hosts
use	INF	files	to	identify	the	best	match.	The	INF	file	may	be	a	system	file	for	a
USB	class	or	a	vendor-provided	file	that	contains	the	device’s	Vendor	ID	and
Product	ID.	Chapter	9	has	more	about	INF	files	and	selecting	a	driver.
For	devices	 that	have	been	enumerated	previously,	Windows	may	use	stored
information	 instead	 of	 searching	 the	 INF	 files.	 After	 the	 operating	 system
assigns	 and	 loads	 a	 driver,	 the	 driver	 may	 request	 the	 device	 to	 resend
descriptors	or	send	other	class-specific	descriptors.
An	exception	to	this	sequence	is	composite	devices,	which	can	have	different
drivers	assigned	to	multiple	interfaces	in	a	configuration.	The	host	can	assign
these	drivers	only	after	enabling	the	interfaces,	so	the	host	must	first	configure
the	device	as	described	below.
13.	The	host’s	device	driver	 selects	a	 configuration.	After	 learning	 about	 a
device	 from	 the	 descriptors,	 the	 device	 driver	 requests	 a	 configuration	 by
sending	 a	 Set	Configuration	 request	with	 the	desired	 configuration	number.
Many	 devices	 support	 only	 one	 configuration.	 When	 a	 device	 supports
multiple	configurations,	many	drivers	just	select	the	first	configuration,	but	a
driver	can	decide	based	on	 information	 the	driver	has	about	how	 the	device
will	 be	 used,	 or	 the	 driver	 can	 ask	 the	 user	 what	 to	 do.	 On	 receiving	 the
request,	the	device	implements	the	requested	configuration.	The	device	is	now
in	the	Configured	state	and	the	device’s	interface(s)	are	enabled.
For	composite	devices,	the	host	can	now	assign	drivers.	As	with	other	devices,
the	 host	 uses	 the	 information	 retrieved	 from	 the	 device	 to	 find	 a	 driver	 for
each	active	interface	in	the	configuration.	The	device	is	then	ready	for	use.
Hubs	are	also	USB	devices,	and	the	host	enumerates	a	newly	attached	hub	in
the	 same	 way	 as	 other	 devices.	 If	 the	 hub	 has	 devices	 attached,	 the	 host
enumerates	these	after	the	hub	informs	the	host	of	their	presence.
Attached	state.	If	the	hub	isn’t	providing	power	to	a	device’s	VBUS	line,	the
device	is	in	the	Attached	state.	The	absence	of	power	may	occur	if	the	hub	has
detected	an	over-current	condition	or	if	 the	host	requests	the	hub	to	remove
power	 from	 the	 port.	 With	 no	 power	 on	 VBUS,	 the	 host	 and	 device	 can’t
communicate,	so	from	their	perspective,	the	situation	is	the	same	as	when	the
device	isn’t	attached.

Suspend	 State.	 A	 device	 enters	 the	 Suspend	 state	 after	 detecting	 no	 bus
activity,	 including	 SOF	markers,	 for	 at	 least	 3	ms.	 In	 the	 Suspend	 state,	 the
device	 should	 limit	 its	 use	of	 bus	power.	Both	 configured	 and	unconfigured
devices	must	support	this	state.	Chapter	17	has	more	about	the	Suspend	state.

Enhanced	SuperSpeed	differences
Enumerating	Enhanced	SuperSpeed	devices	has	some	differences	compared	to
USB	2.0:

On	detecting	a	downstream	Enhanced	SuperSpeed	termination	at	a	port,	a
hub	 initializes	 and	 trains	 the	 port’s	 link.	 Enumeration	 then	 proceeds	 at
SuperSpeed	or	SuperSpeedPlus	with	no	need	for	further	speed	detecting.
The	host	isn’t	required	to	reset	the	port	after	learning	of	a	new	device.
The	bus-current	limits	are	150	mA	before	configuration	and	900	mA	after
configuration.
The	host	sends	a	Set	Isochronous	Delay	request	to	inform	the	device	of	the
bus	delay	for	isochronous	packets.
The	 host	 sends	 a	 Set	 SEL	 request	 to	 inform	 the	 device	 of	 the	 system	 exit
latency	(the	amount	of	time	required	to	transition	out	of	a	low-power	state).
Protocols	for	entering	and	exiting	the	Suspend	state	differ.
For	 hubs,	 the	 host	 sends	 a	 Set	 Hub	 Depth	 request	 to	 set	 the	 hub-depth
value.

Device	removal
When	a	user	removes	a	device	from	the	bus,	the	hub	disables	the	device’s	port.
The	host	knows	that	the	removal	occurred	after	the	hub	notifies	the	host	that
an	event	has	occurred,	and	 the	host	 sends	a	Get	Port	Status	request	 to	 learn
what	 the	 event	 was.	 The	 device	 disappears	 from	 Device	 Manager	 and	 the
device’s	address	becomes	available	to	another	newly	attached	device.

Tips	for	successful	enumeration
Without	 successful	 enumeration,	 the	 device	 and	 host	 can’t	 perform	 other
communications.	 Most	 chip	 companies	 provide	 example	 enumeration	 code
that	 can	 serve	 as	 a	model	 even	 if	 your	 application	doesn’t	 exactly	match	 the
example	application.	If	your	controller	interfaces	to	an	external	CPU,	you	may
have	to	adapt	code	written	for	another	chip.

In	general,	a	device	should	assume	nothing	about	what	requests	or	events	the
host	will	initiate	and	should	concentrate	on	responding	to	requests	and	events
as	they	occur.	The	following	tips	can	help	avoid	problems.
Don’t	 assume	 requests	 or	 events	 will	 occur	 in	 a	 specific	 order.	 Some
requests,	such	as	Set	Configuration,	require	the	device	to	be	in	the	Address	or
Configured	state	so	the	request	is	valid	only	after	the	device	has	accepted	a	Set
Address	request.	But	the	host	has	some	flexibility	in	what	requests	to	issue	and
in	what	order	during	enumeration.	A	host	might	also	reset	or	suspend	the	bus
at	any	time,	and	a	device	that	has	been	connected	for	at	least	1	s	must	detect
the	event	and	respond	appropriately.
Be	ready	to	abandon	a	control	transfer	or	end	it	early.	On	receiving	a	new
Setup	packet,	 a	device	must	 abandon	any	 transfer	 in	progress	 and	begin	 the
new	 one.	 On	 receiving	 an	 OUT	 token	 packet	 (USB	 2.0)	 or	 STATUS	 TP
(Enhanced	SuperSpeed),	the	device	must	assume	that	the	host	is	beginning	the
Status	 stage	of	 the	 transfer	 even	 if	 the	device	hasn’t	 sent	all	of	 the	 requested
data	in	the	Data	stage.
Don’t	attempt	to	send	more	data	than	the	host	requests.	In	the	Data	stage	of
a	control	read	transfer,	a	device	should	send	no	more	than	the	amount	of	data
the	host	has	requested.	If	the	host	requests	nine	bytes,	the	device	should	send
no	more	than	nine	bytes.
Send	 a	 zero-length	 data	 packet	 when	 required.	 In	 some	 cases,	 the	 device
returns	less	than	the	requested	amount	of	data,	and	the	amount	of	data	is	an
exact	multiple	of	the	endpoint’s	maximum	packet	size.	On	receiving	a	request
for	more	data,	the	device	should	indicate	that	it	has	no	more	data	by	returning
a	ZLP	(USB	2.0)	or	a	zero-length	Data	Payload	(Enhanced	SuperSpeed).
Stall	unsupported	requests.	A	device	shouldn’t	assume	it	knows	every	request
the	 host	 might	 send.	 The	 device	 should	 return	 STALL	 in	 response	 to	 any
request	the	device	doesn’t	support.
Don’t	set	the	address	too	soon.	In	a	Set	Address	request,	the	device	should	set
its	new	address	only	after	the	Status	stage	of	the	request	is	complete.
Be	ready	 to	 enter	 the	Suspend	 state.	A	host	 can	 suspend	 the	bus	when	 the
device	is	in	any	powered	state.	Except	within	1	s	after	the	device	connects,	the
device	must	reduce	its	use	of	bus	power	when	the	bus	is	in	the	Suspend	state.
Test	 under	 different	 host-controller	 types.	 Devices	 should	 be	 able	 operate
with	 any	 host	 controller	 that	 complies	with	 the	 specifications.	 For	 example,

some	full-speed	host	controllers	schedule	multiple	stages	of	a	control	transfer
in	a	single	frame,	while	others	don’t.	Devices	should	be	able	to	handle	either
way.	Chapter	8	has	more	about	host	controllers.

Descriptors
USB	descriptors	are	 the	data	 structures	 that	enable	 the	host	 to	 learn	about	a
device.	Each	descriptor	contains	information	about	the	device	as	a	whole	or	an
element	of	the	device.
All	USB	devices	must	 respond	 to	 requests	 for	 the	 standard	USB	descriptors.
The	device	must	store	the	contents	of	its	descriptors	and	respond	to	requests
for	the	descriptors.

Types
Table	 4-1	 lists	 the	 descriptors	 defined	 in	 the	 USB	 2.0	 and	 USB	 3.1
specifications.	Except	for	compound	devices,	each	device	has	one	and	only	one
device	descriptor	that	contains	information	about	the	device	and	specifies	the
number	 of	 configurations	 the	 device	 supports.	 For	 each	 configuration,	 a
device	has	a	configuration	descriptor	with	information	about	the	device’s	use
of	power	 and	 the	number	of	 interfaces	 the	 configuration	 supports.	 For	 each
interface,	 the	device	has	 an	 interface	descriptor	 that	 specifies	 the	number	of
endpoints.	 Each	 endpoint	 has	 an	 endpoint	 descriptor	 that	 contains
information	needed	to	communicate	with	the	endpoint.	An	interface	with	no
endpoint	descriptors	must	use	the	control	endpoint	for	all	communications.

Table	 4-1:	 The	 bDescriptorType	 field	 in	 a	 descriptor	 contains	 a	 value	 that
identifies	 the	 descriptor	 type.	 Information	 source:	 Universal	 Serial	 Bus
Specification,	 Revision	 2.0	 and	 Universal	 Serial	 Bus	 3.1	 Specification,	 Revision
1.0.
bDescriptorType Descriptor	Type Required?

0x01 device Yes.

0x02 configuration Yes.

0x03 string No	unless	a	class	or	vendor	driver
requires	it.	Optional	descriptive
text.

0x04 interface Yes.

0x05 endpoint Yes	to	use	other	than	endpoint

zero.

0X06 device_qualifier Yes	for	devices	that	support	both
full	and	high	speeds.	Not	allowed
for	other	devices.

0x07 other_speed_configuration Yes	for	devices	that	support	both
full	and	high	speeds.	Not	allowed
for	other	devices.

0x08 interface_power No	(proposed	but	never	approved
or	implemented).

0x09 OTG Yes	for	OTG	devices.

0x0A debug No.

0x0B interface_association Yes	for	some	composite	devices.

0x0C security For	wireless	devices.

0x0D key 	

0x0E encryption	type 	

0x0F binary	device	object	store	(BOS) Yes	for	Enhanced	SuperSpeed
devices,	wireless	devices,	and
devices	that	support	link	power

0x10 device	capability management.

0x11 wireless	endpoint	companion For	wireless	devices.

0x30 SuperSpeed	endpoint	companion Yes	for	endpoints	in	Enhanced
SuperSpeed	devices.

0x31 SuperSpeedPlus	isochronous
endpoint	companion

Yes	for	SuperSpeedPlus
isochronous	endpoints	that
request	more	than	48	KB	per
service	interval.

On	receiving	a	request	 for	a	configuration	descriptor,	a	device	should	return
the	configuration	descriptor	and	all	of	the	configuration’s	interface,	endpoint,
and	other	subordinate	descriptors	up	to	the	requested	number	of	bytes.	There
is	no	 standard	 request	 to	 retrieve,	 for	 example,	 only	 an	 endpoint	descriptor.
Devices	 that	 support	 both	 full	 and	 high	 speeds	 support	 two	 additional
descriptor	 types:	 device_qualifier	 and	 other_speed_configuration.	 These	 and
their	 subordinate	 descriptors	 contain	 information	 about	 the	 device	 when
using	the	speed	not	currently	in	use.
Enhanced	SuperSpeed	devices	must	provide	a	binary	device	object	store	(BOS)
descriptor	 and	 at	 least	 two	 subordinate	 device	 capability	 descriptors:	 a
SuperSpeed	USB	descriptor	and	a	USB	2.0	Extension	descriptor.	Other	devices

and	 device	 functions	 may	 also	 use	 BOS	 and	 device	 capability	 descriptors.
Every	 Enhanced	 SuperSpeed	 endpoint	 descriptor	 has	 a	 subordinate
SuperSpeed	endpoint	companion	descriptor.
A	string	descriptor	can	store	text	such	as	the	vendor	or	device	name	or	a	serial
number.	 Another	 descriptor	may	 contain	 an	 index	 value	 that	 points	 to	 the
string	 descriptor.	 The	 host	 reads	 string	 descriptors	 using	 Get	 Descriptor
requests.
Class-	 and	vendor-specific	descriptors	offer	 a	 structured	way	 for	 a	device	or
interface	to	provide	more	detailed	information	about	a	function.	For	example,
if	an	interface	descriptor	specifies	that	the	interface	belongs	to	the	HID	class,
the	interface	also	has	a	HID	class	descriptor.
Standard	 descriptors	 begin	 with	 a	 bLength	 value	 that	 gives	 the	 descriptor’s
length	 in	 bytes	 followed	 by	 a	 bDescriptorType	 value	 that	 identifies	 the
descriptor’s	type.
In	a	Get	Descriptor	request,	 the	Setup	stage’s	data	packet	passes	wValue	and
wLength	values	to	the	device.	The	wValue	field	identifies	the	descriptor	being
requested.	 The	 wLength	 field	 is	 the	 number	 of	 bytes	 the	 host	 is	 requesting
from	the	device.	Chapter	5	has	more	about	the	Get	Descriptor	request.
Some	class-	or	vendor-specific	descriptors	modify	or	extend	other	descriptors.
In	 the	descriptors	 returned	 in	 response	 to	 a	 request	 for	 a	 configuration	 and
subordinate	 descriptors,	 a	 descriptor	 that	 extends	 or	 modifies	 a	 descriptor
follows	the	descriptor	being	extended	or	modified.	Like	standard	descriptors,
these	 class-	 and	 vendor-specific	 descriptors	 begin	 with	 a	 bLength	 value
followed	by	a	bDescriptorType	value.
For	descriptors	 that	don’t	modify	or	 extend	a	 standard	descriptor,	 such	as	 a
request	 for	 a	 HID-class	 report	 descriptor,	 the	 host	 uses	 a	 Get	 Descriptor
request	 that	 specifies	 the	 class-	 or	 vendor-specific	 descriptor	 type	 and	 the
index	of	the	request.	The	class	specification	or	vendor	defines	the	format	for
these	descriptors.
Each	descriptor	below	begins	with	bLength	and	bDescriptorType	 fields.	The
other	fields	vary	with	the	descriptor	type.
Multiple-byte	 values	 in	 descriptors	 travel	 on	 the	 bus	 in	 little-endian	 order
(from	least-significant	byte	(LSB)	to	most	significant	byte	(MSB).	For	example,
Vendor	ID	0x0925	transmits	as	0x25	followed	by	0x09.

Device
The	 device	 descriptor	 is	 the	 first	 descriptor	 the	 host	 reads	 on	 device
attachment.	 The	 descriptor	 contains	 information	 the	 host	 needs	 to	 retrieve
additional	information	from	the	device.	A	host	retrieves	a	device	descriptor	by
sending	a	Get	Descriptor	request	with	the	high	byte	of	the	Setup	transaction’s
wValue	field	set	to	0x01.
The	 descriptor	 (Table	 4-2)	 provides	 information	 about	 the	 device,	 its
configurations,	and	any	classes	the	device	belongs	to.
bcdUSB	 is	 the	USB	 specification	 version	 that	 the	 device	 and	 its	 descriptors
comply	with.	The	value	is	in	BCD	(binary-coded	decimal)	format.	If	you	think
of	 the	 version’s	 value	 as	 a	 decimal	 number,	 the	 upper	 byte	 represents	 the
integer,	 the	next	 four	bits	 are	 tenths,	 and	 the	 final	 four	bits	 are	hundredths.
USB	1.1	is	0x0110	(not	0x0101);	USB	2.0	is	0x0200;	USB	2.1	is	0x0210;	USB	3.0
is	0x0300;	USB	3.1	is	0x0310.
A	device	with	bcdUSB	=	0x0210	or	higher	must	support	the	BOS	descriptor.	A
device	or	device	wire	adapter	that	complies	with	Wireless	USB	V1.0	should	set
bcdUSB	to	0x0250.
bDeviceClass	 specifies	 the	 class	 for	devices	whose	 function	 is	defined	at	 the
device	level.	Values	from	0x01	to	0xFE	are	reserved	for	classes	defined	by	USB
specifications.	 Table	 4-3	 shows	 defined	 codes.	 Vendor-defined	 classes	 use
0xFF.	Most	devices	 specify	 their	 class	 or	 classes	 in	 interface	descriptors.	 For
these	devices,	bDeviceClass	in	the	device	descriptor	equals	0x00	if	the	function
doesn’t	use	an	interface	association	descriptor	or	0xEF	if	the	function	uses	an
interface	association	descriptor.
bDeviceSubclass	 can	 specify	 a	 subclass	 within	 a	 class.	 A	 subclass	 can	 add
support	for	additional	features	and	abilities	shared	by	a	group	of	functions	in	a
class.	If	bDeviceClass	is	0x00,	bDeviceSubclass	must	be	0x00.	If	bDeviceClass
is	in	the	range	0x01–0xFE,	bDeviceSubclass	equals	0x00	or	a	code	defined	for
the	device’s	class.	Vendor-defined	subclasses	in	standard	classes	use	0xFF.
bDeviceProtocol	can	specify	a	protocol	for	the	selected	class	and	subclass.	For
example,	a	USB	2.0	hub	uses	this	field	to	indicate	whether	the	hub	is	currently
supporting	 high	 speed	 and	 if	 so,	 if	 the	 hub	 supports	 one	 or	 multiple
transaction	 translators.	 If	 bDeviceClass	 is	 in	 the	 range	 0x01–0xFE,	 the
protocol	is	0x00	or	a	code	defined	by	the	device’s	class.
bMaxPacketSize0	 specifies	 the	maximum	packet	size	 for	endpoint	zero.	The

host	uses	this	information	in	the	requests	that	follow	the	request	for	the	device
descriptor.	For	USB	2.0,	the	maximum	packet	size	equals	the	field’s	value	and
must	be	8	for	low	speed;	8,	16,	32,	or	64	for	full	speed;	and	64	for	high	speed.
For	 Enhanced	 SuperSpeed,	 the	 maximum	 packet	 size	 equals	 2bMaxPacketSize0

and	 bMaxPacketSize0	must	 equal	 9,	 which	 translates	 to	 a	maximum	 packet
size	of	512.
idVendor	 is	a	Vendor	ID	assigned	by	the	USB-IF	to	members	of	the	USB-IF
and	others	who	pay	an	administrative	fee.	The	host	may	have	an	INF	file	that
contains	 this	 value,	 and	 if	 so,	Windows	may	 use	 the	 value	 to	 help	 select	 a
driver	for	the	device.	Except	for	devices	used	only	in-house	where	the	user	is
responsible	for	preventing	conflicts,	every	device	descriptor	must	have	a	valid
Vendor	ID	in	this	field.

Table	4-2:	The	device	descriptor	identifies	the	product	and	its	manufacturer,	sets
the	 maximum	 packet	 size	 for	 endpoint	 zero,	 and	 can	 specify	 a	 device	 class.
Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x12)

1 bDescriptorType 1 The	constant	DEVICE	(0x01)

2 bcdUSB 2 USB	specification	release	number	(BCD)

4 bDeviceClass 1 Class	code

5 bDeviceSubclass 1 Subclass	code

6 bDeviceProtocol 1 Protocol	Code

7 bMaxPacketSize0 1 Maximum	packet	size	for	endpoint	zero

8 idVendor 2 Vendor	ID

10 idProduct 2 Product	ID

12 bcdDevice 2 Device	release	number	(BCD)

14 iManufacturer 1 Index	of	string	descriptor	for	the	manufacturer

15 iProduct 1 Index	of	string	descriptor	for	the	product

16 iSerialNumber 1 Index	of	string	descriptor	for	the	serial	number

17 bNumConfigurations 1 Number	of	possible	configurations

idProduct	is	a	Product	ID	that	identifies	the	vendor’s	device.	The	owner	of	the
Vendor	ID	assigns	the	Product	ID.	Both	the	device	descriptor	and	the	device’s

INF	 file	 on	 the	host	may	 contain	 this	 value,	 and	 if	 so,	 the	host	may	use	 the
value	 to	 help	 select	 a	 driver	 for	 the	 device.	 Each	Product	 ID	 is	 specific	 to	 a
Vendor	ID,	so	multiple	vendors	can	use	the	same	Product	ID	without	conflict.
bcdDevice	is	the	device’s	release	number	in	BCD	format.	The	vendor	assigns
this	value.	The	host	may	use	this	value	to	help	select	a	driver	for	the	device.
iManufacturer	is	an	index	that	points	to	a	string	describing	the	manufacturer
or	zero	if	there	is	no	manufacturer	descriptor.
iProduct	 is	an	 index	that	points	 to	a	string	describing	the	product	or	zero	 if
there	is	no	string	descriptor.
iSerialNumber	is	an	index	that	points	to	a	string	containing	the	device’s	serial
number	or	zero	if	there	is	no	serial	number.	Serial	numbers	are	useful	if	users
may	 have	more	 than	 one	 identical	 device	 on	 the	 bus	 and	 the	 host	 needs	 to
remember	which	device	is	which	even	after	rebooting	or	moving	the	devices	to
different	 ports.	A	 serial	 number	 also	 enables	 a	 host	 to	 determine	whether	 a
device	 is	 the	same	one	used	previously	or	a	new	installation	of	a	device	with
the	 same	 Vendor	 ID	 and	 Product	 ID.	 Devices	 with	 the	 same	 Vendor	 ID,
Product	 ID,	 and	 device	 release	 number	 should	 not	 share	 a	 serial	 number.
Mass-storage	 devices	 that	 use	 the	 bulk-only	 protocol	 must	 have	 serial
numbers.

Table	4-3:	The	bDeviceClass	 field	 in	the	device	descriptor	can	name	a	class	 the
device	belongs	to.	Information	source:	usb.org.
bDeviceClass Description

0x00 The	interface	descriptor	specifies	the	class	and	the	function	doesn’t	use	an
interface	association	descriptor.	(See	0xEF	below.)

0x02 Communications	device	(can	instead	be	declared	at	the	interface	level)

0x09 Hub
bDeviceSubclass	=	0x00
		bDeviceProtocol	=	0x00:	Full	speed
		bDeviceProtocol	=	0x01:	High	speed	with	single	Transaction	Translator
		bDeviceProtocol	=	0x02:	High	speed	with	multiple	Transaction
Translators
		bDeviceProtocol	=	0x03:	SuperSpeed/SuperSpeedPlus

0x0F Personal	healthcare	device	(declaring	at	the	interface	level	preferred)

0xDC Diagnostic	device	(can	instead	be	declared	at	the	interface	level)
bDeviceSubclass	=	0x01
		bDeviceProtocol	=	0x01:	USB2	Compliance	Device

0xE0 Wireless	Controller	(Bluetooth	only.	All	other	protocols	must	be	declared

http://usb.org

at	the	interface	level.)
bDeviceSubclass	=	0x01
		bDeviceProtocol	=	0x01:	Bluetooth	programming	interface	(should	also
be	declared	at	the	interface	level)
bDeviceSubclass	=	0x04:	Bluetooth	AMP	controller	(should	also	be
declared	at	the	interface	level)

0xEF Miscellaneous
bDeviceSubclass	=	0x01
		bDeviceProtocol	=	0x01:	active	sync
		bDeviceProtocol	=	0x02:	Palm	sync
		bDeviceSubclass	=	0x02
bDeviceProtocol	=	0x01:	interface	association	descriptor
		bDeviceProtocol	=	0x01:	wire	adapter	multifunction	peripheral
(Wireless	USB)

0xFF Vendor-specific	(can	instead	be	declared	at	the	interface	level)

bNumConfigurations	 equals	 the	 number	 of	 configurations	 the	 device
supports	at	the	current	operating	speed.

Device_qualifier
Devices	 that	 support	 both	 full	 and	high	 speeds	must	have	 a	device_qualifier
descriptor	 (Table	 4-4).	 When	 a	 device	 switches	 speeds,	 the	 values	 of	 some
fields	 in	 the	 device	 descriptor	 may	 change.	 The	 device_qualifier	 descriptor
contains	the	values	for	these	fields	at	the	speed	not	currently	in	use.	In	other
words,	 the	 contents	 of	 fields	 in	 the	 device	 and	 device_qualifier	 descriptors
swap	depending	on	which	speed	is	 in	use.	A	host	retrieves	a	device_qualifier
descriptor	by	sending	a	Get	Descriptor	request	with	the	high	byte	of	the	Setup
transaction’s	wValue	field	equal	to	0x06.
The	 Vendor	 ID,	 Product	 ID,	 device	 release	 number,	 manufacturer	 string,
product	 string,	 and	 serial-number	 string	 don’t	 change	 when	 the	 speed
changes,	so	the	device_qualifier	descriptor	doesn’t	include	these	fields.

Configuration
After	 retrieving	 the	 device	 descriptor,	 a	 host	 can	 retrieve	 the	 device’s
configuration,	interface,	and	endpoint	descriptors.
Each	device	has	at	 least	one	configuration	 that	 specifies	 the	device’s	 features
and	abilities.	Many	devices	need	only	a	 single	configuration,	but	with	driver
support,	 a	 device	 with	multiple	 uses	 or	multiple	 options	 for	 power	 use	 can
support	multiple	 configurations.	Only	 one	 configuration	 is	 active	 at	 a	 time.

Each	configuration	requires	a	descriptor	with	 information	about	 the	device’s
use	of	power	and	the	number	of	interfaces	supported	(Table	4-5).
Each	 configuration	 descriptor	 has	 subordinate	 descriptors,	 including	 one	 or
more	 interface	 descriptors	 and	 endpoint	 descriptors	 as	 needed.	 A	 host
retrieves	a	configuration	descriptor	and	its	subordinate	descriptors	by	sending
a	Get	Descriptor	request	with	the	high	byte	of	the	Setup	transaction’s	wValue
field	equal	to	0x02	and	the	wLength	field	equal	to	wTotalLength.
The	host	selects	a	configuration	with	the	Set	Configuration	request	and	reads
the	current	configuration	number	with	a	Get	Configuration	request.
wTotalLength	equals	the	number	of	bytes	in	the	configuration	descriptor	and
all	of	its	subordinate	descriptors.
bNumInterfaces	 equals	 the	 number	 of	 interfaces	 in	 the	 configuration.	 The
minimum	is	0x01.
bConfigurationValue	 identifies	the	configuration	for	Get	Configuration	and
Set	Configuration	requests	and	must	be	0x01	or	higher.	A	Set	Configuration
request	 with	 a	 value	 of	 zero	 causes	 the	 device	 to	 enter	 the	 Not	 Configured
state.
iConfiguration	 is	 an	 index	 to	a	 string	 that	describes	 the	configuration.	This
value	is	zero	if	there	is	no	string	descriptor.
bmAttributes	 has	 bit	 6	 =	 1	 if	 the	 device	 is	 self-powered	 and	 zero	 if	 bus
powered.	Bit	 5	=	 1	 if	 the	device	 supports	 the	 remote	wakeup	 feature,	which
enables	a	device	in	the	Suspend	state	to	tell	 the	host	that	the	device	wants	to
communicate.	The	other	bits	in	the	field	are	unused.	Bits	4..0	must	be	zero.	Bit
7	must	equal	1	for	compatibility	with	USB	1.0

Table	 4-4:	 In	 a	 device	 that	 supports	 both	 full	 and	 high	 speeds,	 the
device_qualifier	 descriptor	 contains	 information	 about	 the	 device	 when
operating	in	the	speed	not	currently	in	use.	Information	source:	Universal	Serial
Bus	Specification,	Revision	2.0
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x0A)

1 bDescriptorType 1 The	constant	DEVICE_QUALIFIER	(0x06)

2 bcdUSB 2 USB	specification	release	number	(BCD)

4 bDeviceClass 1 Class	code

5 bDeviceSubclass 1 Subclass	code

6 bDeviceProtocol 1 Protocol	Code

7 bMaxPacketSize0 1 Maximum	packet	size	for	endpoint	zero

8 bNumConfigurations 1 Number	of	possible	configurations

9 Reserved 1 For	future	use

bMaxPower	 specifies	how	much	bus	current	a	device	requires.	For	USB	2.0,
bMax-Power	is	in	units	of	2	mA.	If	the	device	requires	200	mA,	bMaxPower	=
100	(0x64).	For	SuperSpeed,	bMaxPower	is	 in	units	of	8	mA.	The	maximum
bus	current	a	device	can	request	in	this	descriptor	is	500	mA	for	USB	2.0	and
900	mA	for	Enhanced	SuperSpeed.	If	the	requested	current	isn’t	available,	the
host	will	refuse	to	configure	the	device.	A	driver	may	then	request	an	alternate
configuration	if	available.
When	a	device	and	host	 support	USB	Power	Delivery	Rev.	2.0,	v1.0,	 the	host
can	retrieve	a	device’s	power	needs	from	a	different	descriptor	as	described	in
Chapter	17.

Other_speed_configuration
The	 second	 descriptor	 unique	 to	 devices	 that	 support	 both	 full	 and	 high
speeds	is	the	other_speed_configuration	descriptor	(Table	4-6).	The	structure
of	the	descriptor	is	identical	to	that	of	the	configuration	descriptor.	The	only
difference	 is	 that	 the	 other-speed_configuration	 descriptor	 describes	 the
configuration	when	the	device	 is	operating	at	 the	speed	not	currently	 in	use.
The	descriptor	has	subordinate	descriptors	just	as	the	configuration	descriptor
does.

Table	4-5:	The	configuration	descriptor	 specifies	 the	maximum	amount	of	bus
current	 the	 device	 will	 require	 and	 gives	 the	 total	 length	 of	 the	 subordinate
descriptors.	 Information	 source:	Universal	 Serial	Bus	 Specification,	Revision	2.0
and	Universal	Serial	Bus	3.1	Specification,	Revision	1.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x09)

1 bDescriptorType 1 The	constant	CONFIGURATION	(0x02)

2 wTotalLength 2 The	number	of	bytes	in	the	configuration	descriptor	and	all
of	its	subordinate	descriptors

4 bNumInterfaces 1 Number	of	interfaces	in	the	configuration

5 bConfigurationValue 1 Identifier	for	Set	Configuration	and	Get	Configuration
requests

6 iConfiguration 1 Index	of	string	descriptor	for	the	configuration

7 bmAttributes 1 Self/bus	power	and	remote	wakeup	settings

8 bMaxPower 1 Bus	power	required	in	units	of	2	mA	(USB	2.0)	or	8	mA
(Enhanced	SuperSpeed).

A	 host	 retrieves	 an	 other_speed_configuration	 descriptor	 by	 sending	 a	 Get
Descriptor	request	with	the	high	byte	of	 the	Setup	transaction’s	wValue	field
equal	to	0x07.

Interface	association
An	 interface	 association	 descriptor	 (IAD)	 identifies	 multiple	 interfaces
associated	 with	 a	 function	 (Table	 4-7).	 In	 relation	 to	 a	 device	 and	 its
descriptors,	 the	 term	 interface	 refers	 to	 a	 feature	 or	 function	 a	 device
implements.
Most	 device	 classes	 specify	 the	 class	 at	 the	 interface	 level	 rather	 than	 at	 the
device	level.	Assigning	functions	to	interfaces	enables	a	single	configuration	to
support	multiple	 functions.	When	 two	or	more	 interfaces	 in	a	 configuration
are	associated	with	the	same	function,	the	interface	association	descriptor	tells
the	host	which	interfaces	are	associated.	For	example,	a	video-camera	function
may	use	one	interface	to	control	the	camera	and	another	to	carry	video	data.
The	 Interface	 Association	 Descriptors	 ECN	 says	 that	 the	 descriptor	 must	 be
supported	by	future	implementations	of	devices	that	use	multiple	interfaces	to
manage	 a	 single	 device	 function.	 Devices	 that	 comply	 with	 the	 video	 and
audio-class	2.0	specifications	must	use	interface	association	descriptors.	Class
specifications	that	predate	the	IAD	don’t	require	it.	For	example,	the	audio	1.0
class	 specification	 defines	 a	 class-specific	 descriptor	 to	 associate	 audio
interfaces	in	a	function.	Hosts	that	don’t	support	the	IAD	ignore	it.	Windows
began	supporting	the	descriptor	with	Windows	XP	SP2.	In
Enhanced	 SuperSpeed	 devices,	 every	 function	with	multiple	 interfaces	must
use	an	IAD.

Table	4-6:	The	other_speed_configuration	descriptor	has	 the	 same	 fields	as	 the
configuration	 descriptor	 but	 contains	 information	 about	 the	 device	 when	 it

operates	 in	 the	speed	not	currently	 in	use.	 Information	source:	Universal	Serial
Bus	Specification,	Revision	2.0	and	Universal	Serial	Bus	3.1	Specification,	Revision
1.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x09)

1 bDescriptorType 1 The	constant	OTHER_SPEED_CONFIGURATION	(0x07)

2 wTotalLength 2 The	number	of	bytes	in	the	configuration	descriptor	and	all
of	its	subordinate	descriptors

4 bNumInterfaces 1 Number	of	interfaces	in	the	configuration

5 bConfigurationValue 1 Identifier	for	Set	Configuration	and	Get	Configuration
requests

6 iConfiguration 1 Index	of	string	descriptor	for	the	configuration

7 bmAttributes 1 Self/bus	power	and	remote	wakeup	settings

8 MaxPower 1 Bus	power	required	in	units	of	2	mA	(USB	2.0)	or	8	mA
(SuperSpeed/SuperSpeedPlus).

To	 enable	 hosts	 to	 identify	 devices	 that	 use	 the	 Interface	 Association
descriptor,	the	device	descriptor	should	contain	the	following	values:

bDeviceClass	=	0xEF	(miscellaneous	device	class)
bDeviceSubClass	=	0x02	(common	class)
bDeviceProtocol	=	0x01	(interface	association	descriptor)

These	codes	together	form	the	Multi-interface	Function	Device	Class	Codes.
A	host	retrieves	an	interface	association	descriptor	as	one	of	 the	subordinate
descriptors	 sent	 in	 response	 to	 a	 request	 for	 a	 configuration	descriptor.	The
IAD	precedes	the	interface	descriptors	that	the	IAD	specifies.
bFirstInterface	 identifies	 the	 interface	 number	 of	 the	 first	 of	 multiple
interfaces	 associated	 with	 a	 function.	 The	 interface	 number	 is	 the	 value	 of
bInterfaceNumber	 in	 the	 interface	 descriptor.	 The	 interface	 numbers	 of
associated	interfaces	must	be	contiguous.
bInterfaceCount	equals	 the	number	of	contiguous	 interfaces	associated	with
the	function.
bFunctionClass	 is	 a	 class	 code	 for	 the	 function	 shared	 by	 the	 associated
interfaces.	For	classes	 that	don’t	 specify	a	value	 to	use,	 the	preferred	value	 is
the	bInterfaceClass	value	from	the	descriptor	of	the	first	associated	interface.

Values	from	0x01–0xFE	are	reserved	for	USB-defined	classes.	0xFF	indicates	a
vendor-defined	class.	Zero	is	not	allowed.

Table	4-7:	The	 interface	association	descriptor	can	 link	multiple	 interfaces	 to	a
single	 function.	 Information	 source:	 Universal	 Serial	 Bus	 3.1	 Specification,
Revision	1.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x08)

1 bDescriptorType 1 The	constant	Interface	Association	(0x0B)

2 bFirstInterface 1 Number	identifying	the	first	interface	associated	with	the
function

3 bInterfaceCount 1 The	number	of	contiguous	interfaces	associated	with	the
function

4 bFunctionClass 1 Class	code

5 bFunctionSubClass 1 Subclass	code

6 bFunctionProtocol 1 Protocol	code

7 iFunction 1 Index	of	string	descriptor	for	the	function

bFunctionSubClass	 is	 a	 subclass	 code	 for	 the	 function	 shared	 by	 the
associated	interfaces.	For	classes	that	don’t	specify	a	value	to	use,	the	preferred
value	is	the	bInterfaceSubClass	value	from	the	descriptor	of	the	first	associated
interface.
bInterfaceProtocol	 is	 a	 protocol	 code	 for	 the	 function	 shared	 by	 the
associated	interfaces.	For	classes	that	don’t	specify	a	value	to	use,	the	preferred
value	is	the	bInterfaceProtocol	value	from	the	descriptor	of	the	first	associated
interface.
iFunction	is	an	index	to	a	string	that	describes	the	function.	This	value	is	zero
if	there	is	no	string	descriptor.

Interface
The	interface	descriptor	provides	information	about	a	function	or	feature	that
a	 device	 implements.	 The	 descriptor	 contains	 class,	 subclass,	 and	 protocol
information	and	the	number	of	endpoints	the	interface	uses	(Table	4-8).
A	configuration	can	have	multiple	interfaces	that	are	active	at	the	same	time.
The	 interfaces	 may	 be	 associated	 with	 a	 single	 function	 or	 they	 may	 be

unrelated.	 Each	 interface	 has	 its	 own	 interface	 descriptor	 and	 subordinate
descriptors.	 Each	 of	 these	 interfaces	 can	 also	 have	 one	 or	 more	 alternate
interface	settings.	Interface	settings	are	mutually	exclusive;	only	one	is	active	at
a	time.	Each	setting	has	an	interface	descriptor	and	subordinate	descriptors	as
needed.	Devices	 that	use	 isochronous	 transfers	must	have	 alternate	 interface
settings	because	the	default	interface	can	request	no	isochronous	bandwidth.

Table	 4-8:	 The	 interface	 descriptor	 specifies	 the	 number	 of	 subordinate
endpoints	and	may	specify	a	USB	class.	Information	source:	Universal	Serial	Bus
Specification,	Revision	2.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x09)

1 bDescriptorType 1 The	constant	Interface	(0x04)

2 bInterfaceNumber 1 Number	identifying	this	interface

3 bAlternateSetting 1 A	number	that	identifies	a	descriptor	with	alternate	settings
for	this	bInterfaceNumber.

4 bNumEndpoints 1 Number	of	endpoints	supported	not	counting	endpoint	zero

5 bInterfaceClass 1 Class	code

6 bInterfaceSubclass 1 Subclass	code

7 bInterfaceProtocol 1 Protocol	code

8 iInterface 1 Index	of	string	descriptor	for	the	interface

A	 host	 retrieves	 interface	 descriptors	 as	 subordinate	 descriptors	 sent	 in
response	to	a	request	for	a	configuration	descriptor.
bInterfaceNumber	 identifies	 the	 interface.	 In	 a	 composite	 device,	 a
configuration	 has	multiple	 interfaces	 that	 are	 active	 at	 the	 same	 time.	 Each
interface	must	 have	 a	 descriptor	 with	 a	 unique	 value	 in	 this	 field.	 The	 first
interface	is	0x00.
bAlternateSetting	 identifies	 the	 default	 interface	 setting	 or	 an	 alternate
setting.	 For	 each	 bInterfaceNumber,	 the	 device	 provides	 an	 interface
descriptor	with	bAlternateSetting	=	0x00.	This	interface	is	the	default	setting.
A	descriptor	for	an	alternate	setting	has	the	same	value	in	bInterfaceNumber,
a	 unique	 value	 in	 bAlternateSetting,	 and	 different	 values	 as	 needed	 in	 the
descriptor’s	final	five	bytes	and	different	subordinate	descriptors	as	needed.
For	each	bInterfaceNumber,	only	one	bAlternateSetting	is	active	at	a	time.	The

alternate	 settings	 enable	 the	 host	 to	 request	 an	 interface	 with	 different
bandwidth	or	other	 requirements	and	capabilities.	The	Get	 Interface	 request
retrieves	 the	 currently	 active	 bAlternateSetting.	 The	 Set	 Interface	 request
selects	the	bAlternateSetting	that	a	specific	bInterfaceNumber	should	use.
bNumEndpoints	 equals	 the	 number	 of	 endpoints	 the	 interface	 supports	 in
addition	to	endpoint	zero.	For	a	device	that	supports	only	endpoint	zero,	this
field	is	zero.
bInterfaceClass	 is	 similar	 to	 bDeviceClass	 in	 the	 device	 descriptor,	 but	 for
devices	with	a	class	specified	by	the	interface.	Table	4-9	shows	defined	codes.
Values	 0x01–0xFE	 are	 reserved	 for	 USB-defined	 classes.	 0xFF	 indicates	 a
vendor-defined	class.	Zero	is	reserved.
bInterfaceSubClass	is	similar	to	bDeviceSubClass	in	the	device	descriptor,	but
for	devices	with	a	class	defined	by	the	interface.	If	bInterfaceClass	equals	0x00,
bInterfaceSubclass	must	 equal	 0x00.	 If	 bInterfaceClass	 is	 in	 the	 range	 0x01–
0xFE,	bInterfaceSubclass	equals	0x00	or	a	code	defined	for	the	interface’s	class.
0xFF	indicates	a	vendor-defined	subclass.
bInterfaceProtocol	is	similar	to	bDeviceProtocol	in	the	device	descriptor,	but
for	 devices	 whose	 class	 is	 defined	 by	 the	 interface.	 The	 field	 can	 specify	 a
protocol	 for	 the	 selected	 bInterfaceClass	 and	 bInterfaceSubClass.	 If
bInterfaceClass	is	in	the	range	0x01–0xFE,	bInterfaceProtocol	must	equal	0x00
or	a	code	defined	for	the	interface’s	class.	The	value	0xFF	indicates	a	vendor-
defined	protocol.
iInterface	is	an	index	to	a	string	that	describes	the	interface.	This	value	is	zero
if	there	is	no	string	descriptor.

Endpoint
Each	endpoint	specified	in	an	interface	descriptor	has	an	endpoint	descriptor
(Table	4-10).	Endpoint	zero	never	has	a	descriptor	because	every	device	must
support	 endpoint	 zero,	 the	 device	 descriptor	 contains	 the	maximum	 packet
size,	and	the	USB	specifications	define	everything	else	about	the	endpoint.	A
host	retrieves	endpoint	descriptors	as	subordinate	descriptors	sent	in	response
to	a	request	for	a	configuration	descriptor.
Devices	 in	 the	 audio	 1.0	 class	 extend	 the	 endpoint	 descriptor	 with	 two
additional	 bytes	 of	 audio-specific	 information.	 These	 bytes	 are	 the	 only
allowed	extension	that	changes	the	length	of	a	standard	descriptor	type.	Other

specifications	 define	 separate,	 subordinate	 descriptors	 that	 return	 extended
information.	 For	 example,	 USB	 3.1	 defines	 the	 endpoint	 companion
descriptor	 to	 return	 endpoint	 information	 that	 is	 specific	 to	 Enhanced
SuperSpeed.
bEndpointAddress	specifies	the	endpoint	number	and	direction.	Bits	3..0	are
the	endpoint	number.	Low-speed	devices	can	have	a	maximum	of	3	endpoint
numbers	 (usually	 in	 the	 range	0–2),	while	other	devices	 can	have	16	 (0–15).
Bit	7	is	the	direction,	with	OUT	=	0	and	IN	=	1.	Bits	6..4	are	unused	and	must
be	zero.
bmAttributes	 sets	 bits	 1..0	 to	 specify	 the	 type	 of	 transfer	 the	 endpoint
supports:	00b=control,	01b=isochronous,	10b=bulk,	11b=interrupt.	Bits	7..6	are
reserved	and	must	be	zeros.	The	functions	of	the	remaining	bits	vary	with	the
endpoint	type	and	speed.

Table	4-9:	The	bInterfaceClass	field	in	the	interface	descriptor	can	name	a	class
the	 interface	belongs	 to.	 Information	 source:	Universal	 Serial	Bus	Specification,
Revision	2.0	and	USB-IF	class	specifications.
Class	Code Description

0x00 Reserved

0x01 Audio

0x02 Communications	device:	communication	interface

0x03 Human	interface	device

0x05 Physical

0x06 Image
bInterfaceSubclass	=	0x01
		bInterfaceProtocol	=	0x01:	Imaging	device

0x07 Printer

0x08 Mass	storage

0x09 Hub	(must	also	be	declared	in	the	device	descriptor)

0x0A Communications	device:	data	interface

0x0B Smart	Card

0x0D Content	Security
bInterfaceSubclass	=	0x01
		bInterfaceProtocol	=	0x01:	Content	security	device

0x0E Video

0x0F Personal	healthcare	device	(can	instead	be	declared	at	the	device	level)

0x10 Audio/Video	(AV):
bInterfaceSubclass	=	0x01
		bInterfaceProtocol	=	0x00:	AVControl	Interface
bInterfaceSubclass	=	0x02
		bInterfaceProtocol	=	0x00:	AVData	Video	Streaming	Interface
bInterfaceSubclass	=	0x03
		bInterfaceProtocol	=	0x00:	AVData	Audio	Streaming	Interface

0xDC Diagnostic	device	(can	instead	be	declared	at	the	device	level)
bInterfaceSubclass=	0x01
		bInterfaceProtocol	=	0x01:	USB2	compliance	device

0xE0 Wireless	controller
bInterfaceSubclass	=	0x01
		bInterfaceProtocol	=	0x01:	Bluetooth	programming	interface	(should	also	be	declared	at
the	device	level)
		bInterfaceProtocol	=	0x02:	UWB	Radio	control	interface	(Wireless	USB)
		bInterfaceProtocol	=	0x03:	RNDIS
		bInterfaceProtocol	=	0x04:	Bluetooth	AMP	controller	(should	also	be	declared	at	the
device	level)
		bInterfaceSubclass	=	0x02:	Host	and	device	wire	adapters	(Wireless	USB)
		bInterfaceProtocol	=	0x01:	Host	wire	adapter	control/data	interface
		bInterfaceProtocol	=	0x02:	Device	wire	adapter	control/data	interface
		bInterfaceProtocol	=	0x03:	Device	wire	adapter	isochronous	interface

0xEF Miscellaneous	
		bInterfaceSubclass	=	0x01
		bInterfaceProtocol	=	0x01:	active	sync
		bInterfaceProtocol	=	0x02:	Palm	sync
		bInterfaceSubclass	=	0x02
		bInterfaceProtocol	=	0x01:	Interface	Association	Descriptor
		bInterfaceProtocol	=	0x02:	Wire	Adapter	Multifunction	Peripheral	programming
interface
		bInterfaceSubclass	=	0x03:	Cable	based	association	framework	(Wireless	USB)
		bInterfaceProtocol	=	0x01:	Cable	based	association	framework	device
		bInterfaceSubclass	=	0x04
		bInterfaceProtocol	=	0x01:	RNDIS	over	Ethernet
		bInterfaceProtocol	=	0x02:	RNDIS	over	WiFi
		bInterfaceProtocol	=	0x03:	RNDIS	over	Maxim
		bInterfaceProtocol	=	0x04:	RNDIS	over	WWAN
		bInterfaceProtocol	=	0x05:	RNDIS	for	Raw	IPv4
		bInterfaceProtocol	=	0x06:	RNDIS	for	Raw	IPv6
		bInterfaceProtocol	=	0x07:	RNDIS	for	GPRS
		bInterfaceSubclass	=	0x05:	Machine	vision	device	(USB3	Vision)
		bInterfaceProtocol	=	0x00:	USB3	Vision	Control	Interface
		bInterfaceProtocol	=	0x01:	USB0	Vision	Event	Interface
		bInterfaceProtocol	=	0x02:	USB3	Vision	Streaming	Interface

0xFE Application	specific
bInterfaceSubclass	=	0x01:	Device	firmware	upgrade
bInterfaceSubclass	=	0x02:	IrDA	bridge

bInterfaceSubclass	=	0x03:	Test	and	measurement	(USBTMC)
		bInterfaceProtocol	=	0x00:	Complies	with	USBTMC	spec
		bInterfaceProtocol	=	0x01:	Complies	with	USBTMC	USB488	subclass

0xFF Vendor	specific	(can	instead	be	declared	at	the	device	level)

Table	 4-10:	 The	 endpoint	 descriptor	 provides	 information	 about	 an	 endpoint
address.	Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x07)

1 bDescriptorType 1 The	constant	Endpoint	(0x05)

2 bEndpointAddress 1 Endpoint	number	and	direction

3 bmAttributes 1 Transfer	type	and	supplementary	information

4 wMaxPacketSize 2 Maximum	packet	size	supported

6 bInterval 1 Service	interval	or	NAK	rate

For	 isochronous	endpoints,	bits	5..2	can	 indicate	a	synchronization	 type	and
usage	type	of	data	or	feedback.
For	Enhanced	SuperSpeed	interrupt	endpoints,	bits	5..4	indicate	a	usage	type
of	Notification	or	Periodic.	 Interrupt	 endpoints	have	 two	primary	uses	with
differing	 needs	 from	 the	 host.	 Some	 endpoints	 require	 quick	 response	 or
frequent	 data	 transfers.	 For	 example,	 users	 don’t	 want	 a	 noticeable	 delay
before	seeing	the	effect	of	pressing	a	key	or	moving	a	mouse.	These	endpoints
should	 specify	 the	 Periodic	 usage.	 Other	 endpoints	 provide	 infrequent
notifications	 or	 data	 where	 timing	 is	 less	 critical.	 An	 example	 is	 hub
notifications	 that	 inform	 the	 host	 of	 device	 attachment,	 removal,	 or	 other
events.	The	endpoints	should	specify	the	Notification	usage.	The	host	can	use
the	Usage	type	 in	deciding	whether	 to	place	a	port	 in	a	 low-power	state	 that
requires	more	time	to	exit.	Any	undefined	bits	are	reserved.
wMaxPacketSize	 specifies	 the	maximum	number	of	data	bytes	 the	endpoint
can	 transfer	 in	 a	 transaction.	The	 allowed	 values	 vary	with	 the	device	 speed
and	type	of	transfer.
For	USB	2.0,	bits	10..0	are	the	maximum	packet	size	with	a	range	of	0–1024.
For	USB	1.1,	 the	range	 is	0–1023.	In	USB	2.0,	bits	12..11	 indicate	how	many
additional	transactions	per	microframe	a	high-speed	interrupt	or	isochronous
endpoint	supports:	00b	=	no	additional	transactions	(total	of	1	/	microframe),

01b	=	one	additional	(total	of	2	/	microframe),	10b	=	2	additional	(total	of	3	/
microframe),	11b	 =	 reserved.	 In	USB	 1.1,	 these	 bits	were	 reserved	 and	 zero.
Bits	15..13	are	reserved	and	zero.
For	 Enhanced	 SuperSpeed	 bulk	 endpoints,	 wMaxPacketSize	 is	 1024.	 For
Enhanced	 SuperSpeed	 interrupt	 and	 isochronous	 endpoints,	 the	 allowed
values	 depend	 on	 the	 value	 of	 bMaxBurst	 in	 the	 SuperSpeed	 endpoint
companion	descriptor.	If	bMaxBurst	=	0,	wMaxPacketSize	can	be	in	the	range
0–1024	 for	 isochronous	 endpoints	 and	 1×1024	 for	 interrupt	 endpoints.	 If
bMaxBurst	>	0,	wMaxPacketSize	=	1024.
bInterval	 specifies	 the	 service	 interval	 for	 interrupt	 and	 isochronous
endpoints.	The	service	interval	is	a	period	within	which	the	host	must	reserve
time	 for	 an	 endpoint’s	 transactions.	 The	 period	 is	 an	 integral	 number	 of
frames	 (low	 and	 full	 speed),	 microframes	 (high	 speed),	 or	 bus	 intervals
(Enhanced	SuperSpeed).	The	allowed	range	and	usage	of	bInterval	varies	with
the	device’s	speed,	the	transfer	type,	and	the	USB	version.
For	low-speed	interrupt	endpoints,	bInterval	is	the	maximum	latency	in	ms	in
the	 range	 10–255.	 For	 all	 full-speed	 interrupt	 endpoints	 and	 for	 full-speed
isochronous	endpoints	on	1.1	devices,	the	interval	equals	bInterval	in	ms.	For
interrupt	 endpoints,	 the	 value	 may	 range	 from	 1–255.	 For	 isochronous
endpoints	in	USB	1.1	devices,	the	value	must	be	1.	For	isochronous	endpoints
in	 full-speed	 USB	 2.0	 devices,	 values	 1×16	 are	 allowed,	 and	 the	 interval	 is
2bInterval-1	in	ms,	allowing	a	range	from	1	ms	to	32.768	s.
For	high-speed	and	Enhanced	SuperSpeed	endpoints,	 the	value	 is	 in	units	of
125	μs.	The	value	for	interrupt	and	isochronous	endpoints	may	range	from	1–
16,	and	the	interval	is	calculated	as	2bInterval-1,	allowing	a	range	from	125	μs	to
4.096	s.
For	 high-speed	 bulk	 and	 control	 OUT	 endpoints,	 the	 field	 can	 contain	 a
maximum	NAK	rate	for	use	 in	compliance	testing	only.	Devices	typically	set
the	 field	 to	 zero.	 For	 other	 bulk	 transfers	 and	 control	 transfers,	 the	 value	 is
reserved.

SuperSpeed	endpoint	companion
Every	 SuperSpeed	 and	SuperSpeedPlus	 endpoint	has	 a	 SuperSpeed	 endpoint
companion	 descriptor	 (Table	 4-11)	 to	 support	 Enhanced	 SuperSpeed
capabilities.	 A	 USB	 3.1	 host	 retrieves	 endpoint	 companion	 descriptors	 as

subordinate	 descriptors	 sent	 in	 response	 to	 a	 request	 for	 a	 configuration
descriptor	when	the	configuration	has	one	or	more	endpoints.
bMaxBurst	specifies	the	maximum	number	of	packets	the	endpoint	can	send
or	receive	in	a	burst	minus	one.	A	value	of	zero	means	one	packet	per	burst.
The	maximum	value	is	15,	indicating	16	packets	per	burst.	A	DP	in	a	burst	can
transmit	without	waiting	 for	 an	 acknowledgment	 of	 the	 previous	DP	 in	 the
burst.
bmAttributes	 provides	 information	 specific	 to	 bulk	 and	 isochronous
endpoints.	For	bulk	endpoints,	bits	4..0	are	a	MaxStreams	value	that	indicates
the	 maximum	 number	 of	 streams	 the	 endpoint	 supports.	 Zero	 means	 the
endpoint	doesn’t	use	streams.	For	values	1–16,	the	number	of	streams	equals
2MaxStreams	for	a	maximum	value	of	65,536.
For	isochronous	endpoints,	if	bit	7	=	0,	bits	1..0	are	a	Mult	value	that	indicates,
along	with	bMaxBurst,	the	maximum	number	of	packets	in	a	service	interval.
The	maximum	number	of	packets	equals:
(bMaxBurst	+	1)	×	(Mult	+	1)

Table	4-11:	An	Enhanced	SuperSpeed	endpoint	has	a	 companion	descriptor	 to
provide	 a	maximum	 burst	 value.	 Information	 source:	Universal	 Serial	 Bus	 3.1
Specification,	Revision	1.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x06)

1 bDescriptorType 1 The	constant
SUPERSPEED_USB_ENDPOINT_COMPANION	(0x30)

2 bMaxBurst 1 The	maximum	number	of	packets	the	endpoint	can	send	or
receive	as	part	of	a	burst	-	1.

3 bmAttributes 1 For	bulk	endpoints,	the	maximum	number	of	streams.	For
isochronous	endpoints,	the	maximum	number	of	packets	in	a
service	interval.	Bit	7	indicates	whether	to	use	a
SuperSpeedPlus	isochronous	endpoint	companion	descriptor.

4 wBytesPerInterval 2 For	periodic	interrupt	and	isochronous	endpoints,	the
maximum	number	of	bytes	the	endpoint	expects	to	transfer
per	service	interval.

Valid	values	for	Mult	are	0–2.	The	maximum	allowed	number	of	packets	thus
equals	(15	+	1)	×	(2	+	1),	or	48.	With	wMaxPacketSize	=	1024,	the	throughput

is	49,152	B/service	interval.
SuperSpeedPlus	endpoints	that	transfer	more	than	48	KB	per	service	interval
use	a	different	method,	detailed	in	the	specification,	to	specify	the	maximum
number	of	packets	per	service	interval.
wBytesPerInterval	 is	 the	maximum	number	of	bytes	a	periodic	 interrupt	or
isochronous	endpoint	expects	to	transfer	per	service	interval.

SuperSpeedPlus	isochronous	endpoint	companion
As	the	name	suggests,	 the	SuperSpeedPlus	 isochronous	endpoint	companion
descriptor	(Table	4-12)	contains	 information	about	an	 isochronous	endpoint
that	operates	above	Gen	1	speed.	An	endpoint	that	requests	more	than	48	KB
per	 service	 interval	 must	 return	 this	 descriptor	 following	 the	 endpoint
companion	descriptor.	The	descriptor	specifies	 the	total	number	of	bytes	the
endpoint	will	transfer	per	service	interval.
The	maximum	 value	 for	 dwBytesPerInterval	 is	 98,304	 (1024	 bytes/DP	 ×	 16
DPs/burst	×	6	bursts	per	service	interval.

Table	 4-12:	 A	 SuperSpeedPlus	 isochronous	 endpoint	 may	 have	 a	 companion
descriptor	 to	 provide	 additional	 information.	 Information	 source:	 Universal
Serial	Bus	3.1	Specification,	Revision	1.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x08)

1 bDescriptorType 1 The	constant	SUPERSPEED_ISOCHRONOUS
_USB_ENDPOINT_COMPANION	(0x31)

2 wReserved 2 Zero

4 dwBytesPerInterval 4 The	total	number	of	bytes	the	endpoint	will	transfer	per
service	interval

String
A	 string	 descriptor	 (Table	 4-13)	 contains	 descriptive	 text.	Other	 descriptors
can	 contain	 indexes	 to	 string	 descriptors	 that	 name	 the	 manufacturer,
product,	 serial	 number,	 configuration,	 and	 interface.	 Class-	 and	 vendor-
specific	 descriptors	 can	 contain	 indexes	 to	 additional	 string	 descriptors.
Support	 for	 string	 descriptors	 is	 optional	 though	 a	 class	 specification	 may
require	them.	A	host	retrieves	a	string	descriptor	by	sending	a	Get	Descriptor

request	 with	 the	 high	 byte	 of	 the	 Setup	 transaction’s	 wValue	 field	 equal	 to
0x03.
When	the	host	requests	a	string	descriptor,	the	low	byte	of	wValue	is	an	index
value.	An	index	value	of	zero	has	the	special	function	of	requesting	language
IDs,	while	other	index	values	request	strings.
wLANGID[0…n]	 is	 valid	 for	 string	descriptor	zero	only.	This	 field	contains
one	or	more	16-bit	 language	ID	codes	that	 indicate	the	 languages	the	strings
are	available	in.	U.S.	English	(0x0409)	is	likely	to	be	the	only	code	supported
by	 an	 OS.	 The	 wLANGID	 value	 must	 be	 valid	 for	 any	 string	 to	 be	 valid.
Devices	that	return	no	string	descriptors	must	not	return	an	array	of	language
IDs.	 The	 USB-IF	 publishes	 a	 list	 of	 identifiers	 titled	 Language	 Identifiers
(LANGIDs).
bString	is	valid	for	string	descriptors	0x01	and	higher	and	contains	a	string	in
Unicode	UTF-16LE	format.	In	this	format,	most	characters	are	encoded	as	16-
bit	 code	 units	with	 the	 low	 byte	 of	 the	 code	 unit	 transmitted	 first.	 For	U.S.
English,	 the	 low	 byte	 of	 the	 code	 unit	 is	 the	 character’s	 ASCII	 code.	 For
example,	 the	 character	A,	 encoded	as	 0x0041,	 transmits	 as	 0x41	 followed	by
0x00	 (LSB	 first).	 Some	 rarely	used	 characters	 are	 encoded	as	 surrogate	pairs
consisting	of	two	16-bit	code	units.	The	strings	are	not	null-terminated.

Table	4-13:	A	string	descriptor	identifies	a	supported	language	or	stores	a	string
of	text.	Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(variable)

1 bDescriptorType 1 The	constant	String	(0x03)

2 bSTRING	or
wLANGID

varies For	string	descriptor	zero,	an	array	of	one	or	more	Language
Identifier	codes.	For	other	string	descriptors,	a	Unicode	UTF-
16LE	string.

Binary	device	object	store	(BOS)	and	device	capability
Some	devices	use	additional	descriptors	to	store	information	that	is	specific	to
a	technology	or	a	device	function.	To	provide	a	standard	way	to	provide	this
information,	 the	Wireless	 USB	 specification	 introduced	 two	 new	 descriptor
types:	 the	binary	device	object	 store	 (BOS)	and	device	capability	descriptors.
The	 Universal	 Serial	 Bus	 3.1	 Specification,	 Revision	 1.0	 also	 contains	 the

definitions	 for	 these	descriptors.	Other	USB	specifications	and	the	Microsoft
OS2	descriptors	make	use	of	the	descriptors.
The	 binary	 device	 object	 store	 (BOS)	 descriptor	 (Table	4-14)	 functions	 as	 a
base	descriptor	for	one	or	more	related	device	capability	descriptors.	A	device
capability	 descriptor	 (Table	 4-15)	 provides	 information	 about	 a	 specific
capability	or	technology.
The	USB	3.1	specification	defines	these	device	capability	descriptors:

CONTAINER_ID	provides	a	128-bit	universally	unique	 identifier	 (UUID)
that	identifies	the	device	instance.	The	descriptor	is	mandatory	for	USB	3.1
hubs	and	optional	for	other	Enhanced	SuperSpeed	devices.
PLATFORM	defines	a	device	capability	specific	to	a	particular	platform	or
operating	system.	Microsoft	OS	2.0	descriptors	use	this	descriptor.
PRECISION_TIME_MEASUREMENT	 indicates	 that	 a	 USB	 3.1	 hub	 or
other	device	supports	precision	time	measurement	(PTM)	capability.	PTM
uses	measurements	of	link	delays	and	propagation	delays	through	a	hub	to
provide	more	accurate	 timing	of	bus	 interval	boundaries	 at	devices.	Hubs
that	support	SuperSpeedPlus	must	provide	this	descriptor.	The	descriptor	is
optional	for	other	Enhanced	SuperSpeed	devices	including	USB	3.0	hubs.
SUPERSPEED_USB	 indicates	which	speeds	 the	device	 supports	up	 to	and
including	SuperSpeed,	the	lowest	speed	that	provides	full	functionality,	and
power-management	 capabilities.	 All	 Enhanced	 SuperSpeed	 devices	 must
provide	this	descriptor.
SUPERSPEED_PLUS	 describes	 features	 and	 capabilities	 for	 operating	 at
SuperSpeedPlus.	All	SuperSpeedPlus	devices	must	provide	this	descriptor.
USB	 2.0	 EXTENSION	 indicates	 that	 a	 device	 supports	 the	 Link	 Power
Management	 protocol	 when	 operating	 at	 low,	 full,	 or	 high	 speed.	 All
Enhanced	 SuperSpeed	 devices	 must	 provide	 this	 descriptor	 and	 must
support	Link	Power	Management	when	operating	at	high	speed.	The	USB
2.0	 Link	 Power	Management	Addendum	 to	 the	USB	 2.0	 specification	 also
defines	 this	 descriptor,	 and	 USB	 2.0	 devices	 that	 support	 Link	 Power
Management	 provide	 this	 descriptor	 (and	 declare	 themselves	 as	 USB	 2.1
devices).

Table	 4-14:	 A	 binary	 device	 object	 store	 (BOS)	 descriptor	 provides	 a	 way	 to
support	 descriptors	 that	 store	 additional	 information	 about	 a	 device.

Information	source:	Universal	Serial	Bus	3.1	Specification,	Revision	1.0.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x05).

1 bDescriptorType 1 BOS	(0x0F)

2 wTotalLength 2 The	number	of	bytes	in	this	descriptor	and	all	of	its
subordinate	descriptors

4 bNumDeviceCaps 1 The	number	of	device	capability	descriptors	subordinate	to
this	BOS	descriptor.

The	 USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0	 specification	 defines	 these	 device
capability	descriptors:

POWER_DELIVERY_CAPABILITY	describes	power	delivery	support	and
features.
BATTERY_INFO_CAPABILITY	describes	battery	 features.	Devices	whose
POWER_DELIVERY_CAPABILITY	descriptor	reports	a	battery	as	a	power
source	support	this	descriptor.
PD_CONSUMER_PORT_CAPABILITY	 describes	 power	 consumption
features	 and	 capabilities.	 Devices	 whose
POWER_DELIVERY_CAPABILITY	descriptor	reports	 they	are	capable	of
consuming	power	support	this	descriptor.
PD_PROVIDER_PORT_CAPABILITY	describes	power	providing	 features
and	 capabilities.	 Devices	 whose	 POWER_DELIVERY_CAPABILITY
descriptor	 reports	 they	 are	 capable	 of	 providing	 power	 support	 this
descriptor.

The	Wireless	Universal	Serial	Bus	Specification	defines	these	device	capability
descriptors:

Wireless_USB	describes	capabilities	of	Wireless	USB	devices.
Wireless_USB_Ext	describes	capabilities	of	Wireless	USB	1.1	devices.

The	Device	 Class	Definition	 for	 Billboard	Devices	 defines	 a	 device	 capability
descriptor	for	devices	that	support	the	billboard	function

Table	 4-15:	 A	 device	 capability	 descriptor	 can	 provide	 information	 that	 is
specific	to	a	technology	or	another	aspect	of	a	device	or	its	function.	Information
source:	Universal	Serial	Bus	3.1	Specification,	Revision	1.0.

Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	length	in	bytes	(varies).

1 bDescriptorType 1 DEVICE	CAPABILITY	(0x10)

2 bDevCapabilityType 1 0x01	=	Wireless_USB
0x02	=	USB	2.0	EXTENSION
0x03	=	SUPERSPEED_USB
0x04	=	CONTAINER	ID
0x05	=	PLATFORM
0x06	=	POWER_DELIVERY_CAPABILITY
0x07	=	BATTERY_INFO_CAPABILITY
0x08	=	PD_CONSUMER_PORT_CAPABILITY
0x09	=	PD_PROVIDER_PORT_CAPABILITY
0x0A	=	SUPERSPEED_PLUS
0x0B	=	PRECISION_TIME_MEASUREMENT
0x0C	=	Wireless_USB_Ext
0x0D	=	Billboard
0x00,	0x0E–0xFF	(reserved)

3 Capability-Dependent varies Capability-specific	data	and	format.

A	host	retrieves	a	BOS	descriptor	and	all	of	 its	 subordinate	device	capability
descriptors	by	sending	a	Get	Descriptor	request	with	the	high	byte	of	the	Setup
transaction’s	 wValue	 field	 set	 to	 0x0F	 and	 the	 wLength	 field	 equal	 to	 the
descriptor’s	wTotalLength	value.	There	is	no	request	for	reading	only	a	device
capability	descriptor.

OTG	descriptor
Devices	 that	 support	 OTG’s	 Host	 Negotiation	 Protocol	 (HNP)	 or	 Session
Request	Protocol	(SRP)	have	an	OTG	descriptor	that	indicates	the	supported
protocols.	Chapter	21	has	more	about	this	descriptor.

Microsoft	OS	descriptors
Microsoft	OS	descriptors	 enable	 storing	Windows-specific	 information	 such
as	data	that	enables	identifying	a	device	that	uses	Microsoft’s	WinUSB	driver.
Placing	the	 information	 in	descriptors	means	the	 information	 is	available	on
attachment	instead	of	requiring	access	to	an	INF	file	or	other	resource	on	the
PC.
Windows	versions	beginning	with	Windows	XP	SP1	support	Microsoft	OS	1
descriptors.	Windows	8.1	and	later	support	Microsoft	OS	2	descriptors,	which

overcome	some	weaknesses	and	limits	of	the	OS	1	descriptors.	Chapter	15	has
more	about	using	Microsoft	OS	descriptors.

Updating	descriptors	to	USB	2.0
To	update	descriptors	for	a	USB	1.1	device	to	USB	2.0,	all	except	some	devices
that	 have	 isochronous	 endpoints	 require	 just	 one	 change:	 in	 the	 device
descriptor,	 bcdUSB	 must	 be	 0x0200	 or	 greater.	 A	 USB	 2.0	 device’s	 default
interface(s)	must	request	no	isochronous	bandwidth	so	an	interface	that	wants
to	do	isochronous	transfers	must	have	at	 least	one	alternate	interface	setting,
and	 the	 alternate	 interface	 descriptor	 will	 have	 at	 least	 one	 subordinate
endpoint	descriptor.

Updating	descriptors	to	USB	3.1
To	update	descriptors	for	a	USB	3.0	device	to	USB	3.1,	many	SuperSpeed-only
devices	 require	 just	 one	 change:	 in	 the	 device	 descriptor,	 bcdUSB	 must	 be
0x0310.
Devices	that	support	SuperSpeedPlus	must	have	a	SuperSpeedPlus	USB	device
capability	descriptor.
SuperSpeedPlus	devices	with	isochronous	endpoints	that	request	more	than	48
KB	 per	 service	 interval	 must	 have	 a	 SuperSpeedPlus	 Isochronous	 Endpoint
Companion	descriptor.
Hubs	 and	 devices	 that	 support	 PTM	 require	 a	 precision	 time	measurement
device	capability	descriptor.

5

Control	Transfers:	Structured
Requests	for	Critical	Data
Of	 USB’s	 four	 transfer	 types,	 control	 transfers	 have	 the	 most	 complex
structure.	They’re	also	the	only	transfer	type	to	have	functions	defined	by	the
USB	specification.	This	chapter	looks	in	greater	detail	at	control	transfers	and
the	standard	requests	defined	in	the	specification.

Elements	of	a	control	transfer
Control	transfers	enable	the	host	and	a	device	to	exchange	information	about
the	 device’s	 capabilities	 and	 other	 class-specific	 or	 vendor-specific
information.	 As	 Chapter	 3	 explained,	 a	 control	 transfer	 consists	 of	 a	 Setup
stage,	a	Data	stage	(not	used	or	optional	for	some	transfers),	and	a	Status	stage.
Each	stage	consists	of	one	or	more	transactions.
The	 packet	 descriptions	 below	 apply	 to	 USB	 2.0	 transfers.	 Enhanced
SuperSpeed	 transfers	 exchange	 the	 same	 information	 but	 use	 Enhanced
SuperSpeed’s	packet	structures	and	protocols	as	described	in	Chapter	3.
Multiple-byte	values	 in	control-transfer	 requests	 and	 responses	 travel	on	 the
bus	in	little-endian	order,	from	least-significant	byte	(LSB)	to	most	significant
byte	(MSB).	For	example,	a	wIndex	value	of	0x0001	transmits	as	0x01	followed
by	0x00.

Setup	stage
The	Setup	stage	consists	of	a	Setup	transaction,	which	identifies	the	transfer	as
a	 control	 transfer	 and	 transmits	 the	 request	 and	 other	 information	 that	 the
device	needs	to	complete	the	request.
Devices	must	return	ACK	for	every	Setup	transaction	received	without	error.
An	endpoint	 that	 is	 in	 the	middle	of	another	control	 transfer	must	abandon
that	transfer	and	acknowledge	the	new	Setup	transaction.

Token	packet
Purpose:	 identifies	 the	 receiver	 and	 identifies	 the	 transaction	 as	 a	 Setup
transaction.
Sent	by:	the	host.
PID:	SETUP.
Additional	contents:	device	and	endpoint	addresses.

Data	packet
Purpose:	transmits	the	request	and	related	information.
Sent	by:	the	host.
PID:	DATA0.
Additional	contents:	eight	bytes	in	five	fields:
bmRequestType	 specifies	 the	direction	of	data	flow,	the	type	of	request,	and
the	recipient.
Bit	7	(Direction)	names	the	direction	of	data	flow	for	data	 in	the	Data	stage.
Host	to	device	(OUT)	or	no	Data	stage	is	zero;	device	to	host	(IN)	is	1.
Bits	6..5	(Request	Type)	specify	whether	the	request	is	one	of	USB’s	standard
requests	 (00b),	 a	 request	 defined	 for	 a	 specific	USB	 class	 (01b),	 or	 a	 request
defined	 by	 a	 vendor-specific	 driver	 for	 use	 with	 a	 particular	 product	 or
products	(10b).

Bits	 4..0	 (Recipient)	 define	 whether	 the	 request	 is	 directed	 to	 the	 device
(00000b)	 or	 to	 a	 specific	 interface	 (00001b),	 endpoint	 (00010b),	 or	 other
element	(00011b)	in	the	device.

bRequest	identifies	the	request.
wValue	can	pass	request-specific	information	to	the	device.	Each	request	can
define	 the	meaning	of	 these	 two	bytes	 in	 its	own	way.	For	example,	 in	a	Set
Address	request,	wValue	contains	the	device’s	address.
wIndex	can	pass	request-specific	information	to	the	device.	A	typical	use	is	to
pass	 an	 index	 or	 offset	 such	 as	 an	 interface	 or	 endpoint	 number,	 but	 each
request	can	define	the	meaning	of	these	two	bytes	in	any	way.	When	passing
an	endpoint	index,	bits	3..0	specify	the	endpoint	number,	and	bit	7	=	0	for	a
Control	or	OUT	endpoint	or	1	for	an	IN	endpoint.	When	passing	an	interface
index,	bits	7..0	are	the	interface	number.	All	undefined	bits	are	zero.

wLength	is	two	bytes	that	contain	the	number	of	data	bytes	in	the	Data	stage
that	 follows.	 For	 a	 host-to-device	 transfer,	 wLength	 is	 the	 exact	 number	 of
bytes	the	host	 intends	to	transfer.	For	a	device-to-host	transfer,	wLength	is	a
maximum	number	of	bytes	to	transfer,	and	the	device	may	return	this	many
bytes	or	fewer.	If	the	field	is	zero,	the	transfer	has	no	Data	stage.

Handshake	packet
Purpose:	transmits	the	device’s	acknowledgment.
Sent	by:	the	device.
PID:	ACK.
Additional	contents:	none.	The	handshake	packet	consists	of	the	PID	alone.
Comments:	If	the	device	detects	an	error	in	the	received	Setup	or	Data	packet,
the	device	returns	no	handshake.	The	device’s	hardware	typically	handles	the
error	checking	and	sending	of	the	ACK	with	no	firmware	support	needed.

Data	stage
The	 Data	 stage,	 when	 present,	 consists	 of	 one	 or	 more	 IN	 or	 OUT
transactions.	 A	 Data	 stage	 with	 IN	 transactions	 sends	 data	 to	 the	 host.	 An
example	 is	 the	 Get	 Descriptor	 request,	 where	 the	 device	 sends	 a	 requested
descriptor	to	the	host.	A	Data	stage	with	OUT	transactions	sends	data	to	the
device.	An	example	is	the	HID-class	request	Set	Report,	where	the	host	sends	a
report	 to	 a	 device.	 If	 wLength	 in	 the	 Setup	 transaction	 equals	 0x0000,	 the
transfer	has	no	Data	stage.	For	example,	in	the	Set	Configuration	request,	the
host	passes	a	configuration	value	to	the	device	in	the	wValue	field	of	the	Setup
stage’s	data	packet,	so	the	transaction	has	no	need	for	a	Data	stage.
In	the	device	descriptor,	bMaxPacketSize0	specifies	the	maximum	number	of
data	bytes	per	packet.	 If	 all	of	 the	data	can’t	 fit	 in	one	packet,	 the	 stage	uses
multiple	 transactions.	The	 transactions	 in	 the	Data	 stage	 are	 all	 in	 the	 same
direction.	When	the	Data	stage	is	present	but	there	is	no	data	to	transfer,	the
data	packet	is	a	ZLP.
The	host	uses	split	transactions	in	the	Data	stage	when	the	device	is	low	or	full
speed	and	a	hub	between	the	device	and	host	connects	upstream	at	high	speed.
The	host	may	use	the	PING	protocol	when	the	device	is	high	speed,	the	Data
stage	 uses	 OUT	 transactions,	 and	 the	 stage	 has	 more	 than	 one	 data
transaction.

Each	 IN	 or	 OUT	 transaction	 in	 the	 Data	 stage	 contains	 token,	 data,	 and
handshake	packets.

Token	packet
Purpose:	identifies	the	receiver	and	identifies	the	transaction	as	an	IN	or	OUT
transaction.
Sent	by:	the	host.
PID:	If	the	request	requires	the	device	to	send	data	to	the	host,	the	PID	is	IN.
If	the	request	requires	the	host	to	send	data	to	the	device,	the	PID	is	OUT.
Additional	contents:	the	device	and	endpoint	addresses.

Data	packet
Purpose:	transfers	all	or	a	portion	of	the	data	specified	in	the	wLength	field	of
the	Setup	transaction’s	data	packet.
Sent	by:	 the	 device	 if	 the	 token	 packet’s	 PID	 is	 IN	 or	 the	 host	 if	 the	 token
packet’s	PID	is	OUT.
PID:	 The	 first	 packet	 is	 DATA1.	 Any	 additional	 packets	 in	 the	 Data	 stage
alternate	DATA0/DATA1.
Additional	contents:	The	host	sends	data	or	a	ZLP.	A	device	may	send	data,	a
ZLP,	STALL	(unsupported	request	or	halted	endpoint),	or	NAK.

Handshake	packet
Purpose:	the	data	packet’s	receiver	returns	status	information.
Sent	by:	the	receiver	of	the	Data	stage’s	data	packet.	If	the	token	packet’s	PID
is	IN,	the	host	sends	the	handshake	packet.	If	the	token	packet’s	PID	is	OUT,
the	device	sends	the	handshake	packet.
PID:	A	device	may	return	ACK	(data	received	without	error),	NAK	(endpoint
busy),	 or	 STALL	 (unsupported	 request	 or	 halted	 endpoint).	 A	 high-speed
device	 that	 is	 receiving	multiple	 data	 packets	may	 return	NYET	 to	 indicate
that	 the	 current	 transaction’s	 data	 was	 accepted	 but	 the	 endpoint	 isn’t	 yet
ready	for	another	data	packet.	A	host	can	return	only	ACK.
Additional	contents:	none.	The	handshake	packet	consists	of	the	PID	alone.
Comments:	 If	 the	receiver	detected	an	error	 in	the	token	or	data	packet,	 the
receiver	returns	no	handshake	packet.

Status	Stage
The	Status	stage	completes	the	transfer.	In	some	cases	(such	as	after	receiving
the	first	packet	of	a	device	descriptor	during	enumeration),	the	host	may	begin
the	 Status	 stage	 before	 the	 Data	 stage	 has	 completed,	 and	 the	 device	 must
detect	 the	 token	 packet	 of	 the	 Status	 stage,	 abandon	 the	 Data	 stage,	 and
complete	the	Status	stage.

Token	packet
Purpose:	identifies	the	receiver	and	indicates	the	direction	of	the	Status	stage’s
data	packet.
Sent	by:	the	host.
PID:	the	opposite	of	the	direction	of	the	previous	transaction’s	data	packet.	If
the	Data	stage’s	PID	was	OUT	or	if	there	was	no	Data	stage,	the	Status	stage’s
PID	is	IN.	If	the	Data	stage’s	PID	was	IN,	the	Status	stage’s	PID	is	OUT.
Additional	contents:	the	device	and	endpoint	addresses.

Data	packet
Purpose:	enables	the	receiver	of	the	Data	stage’s	data	to	indicate	the	status	of
the	transfer.
Sent	by:	the	device	if	the	Status	stage’s	token	packet’s	PID	is	IN	or	the	host	if
the	Status	stage’s	token	packet’s	PID	is	OUT.
PID:	DATA1
Additional	 contents:	 The	 host	 sends	 a	 ZLP.	 A	 device	 may	 send	 a	 ZLP
(success),	NAK	(busy),	or	STALL	(unsupported	request	or	halted	endpoint).
Comments:	For	most	standard	requests,	a	ZLP	from	the	device	indicates	that
the	 device	 has	 performed	 the	 requested	 action	 (if	 any).	 An	 exception	 is	 Set
Address,	where	the	device	takes	the	requested	action	after	the	Status	stage	has
completed.

Handshake	packet
Purpose:	 The	 sender	 of	 the	 Data	 stage’s	 data	 indicates	 the	 status	 of	 the
transfer.
Sent	by:	the	receiver	of	the	Status	stage’s	data	packet.	If	the	Status	stage’s	token
packet’s	PID	is	IN,	the	host	sends	the	handshake	packet;	if	the	token	packet’s
PID	is	OUT,	the	device	sends	the	data	packet.

PID:	 A	 device	 may	 return	 ACK	 (success),	 NAK	 (busy),	 or	 STALL
(unsupported	request	or	halted	endpoint).	The	host	returns	ACK	in	response
to	a	data	packet	received	without	error.
Additional	contents:	none.	The	handshake	packet	consists	of	the	PID	alone.
Comments:	The	Status	 stage’s	handshake	packet	 is	 the	 final	 transmission	 in
the	transfer.	If	 the	receiver	detected	an	error	in	the	token	or	data	packet,	 the
receiver	returns	no	handshake	packet.
For	 any	 request	 that’s	 expected	 to	 take	many	milliseconds	 to	 carry	 out,	 the
request	 should	 define	 an	 alternate	 way	 to	 determine	 when	 the	 request	 has
completed.	Doing	so	ensures	 that	 the	host	doesn’t	waste	a	 lot	of	 time	asking
for	an	acknowledgment	that	will	take	a	long	time	to	appear.	An	example	is	the
Set	Port	Feature(PORT_RESET)	request	sent	to	a	hub.	The	reset	signal	lasts	at
least	 10	 ms.	 Rather	 than	 make	 the	 host	 wait	 this	 long	 for	 the	 device	 to
complete	 the	 request,	 the	 hub	 acknowledges	 receiving	 the	 request	when	 the
hub	first	places	the	port	in	the	reset	state.	When	the	reset	is	complete,	the	hub
sets	a	bit	that	the	host	can	retrieve	at	its	leisure	using	a	Get	Port	Status	request.

Handling	errors
A	device	might	 receive	 a	 request	 that	 firmware	doesn’t	 support.	Or	 a	device
may	be	unable	to	respond	because	the	endpoint	 is	 in	the	Halt	condition,	 the
firmware	has	crashed,	or	 the	device	 is	no	 longer	attached	 to	 the	bus.	A	host
may	also	decide	to	end	a	transfer	early	for	any	reason.
An	example	of	an	unsupported	request	is	one	that	uses	a	request	code	that	the
device’s	 firmware	doesn’t	know	how	to	respond	to.	Or	a	device	may	support
the	request	but	other	 information	 in	 the	Setup	stage	doesn’t	match	what	 the
device	 expects	 or	 supports.	 On	 these	 occasions,	 a	 Request	 Error	 condition
exists	 and	 the	 device	 notifies	 the	 host	 by	 returning	 STALL.	 Devices	 must
respond	to	the	Setup	transaction	with	an	ACK,	so	the	STALL	transmits	in	the
Data	or	Status	 stage.	When	possible,	 the	device	 should	 return	STALL	 in	 the
Data	stage.
On	failing	to	get	a	response	or	on	detecting	an	error	in	received	data	or	a	Halt
condition	at	the	endpoint,	the	host	abandons	the	transfer.	The	host	then	tries
to	re-establish	communications	with	the	endpoint	by	sending	the	token	packet
for	a	new	Setup	transaction.	If	a	new	token	packet	doesn’t	cause	the	device	to
recover,	the	host	requests	the	device’s	hub	to	reset	the	device’s	port.

The	host	may	 also	 end	 a	 transfer	 early	 by	 beginning	 the	 Status	 stage	 before
completing	 all	 of	 the	Data	 stage’s	 transactions.	 In	 this	 case,	 the	 device	must
respond	to	the	Status	stage	in	the	same	way	as	if	all	of	the	data	had	transferred.

Device	firmware
USB	2.0	device	firmware	typically	performs	the	steps	below	to	support	control
transfers.	 The	 implementation	 details	 vary	 with	 the	 device	 architecture	 and
programming	language.

Control	write	requests	with	a	data	stage
To	complete	a	control	write	request	with	a	Data	stage,	the	device	must	detect
the	 request	 in	 the	Setup	 stage,	 accept	 the	data	 in	 the	Data	 stage,	 and	 send	a
ZLP	in	the	Status	stage.
1.	Device	hardware	detects	a	received	Setup	packet,	stores	the	contents	of	the
transaction’s	data	packet,	returns	ACK,	and	triggers	an	interrupt.
2.	On	detecting	the	interrupt,	the	device	decodes	the	request	and	ensures	that
endpoint	 zero	 is	 ready	 to	 accept	 data	 that	 arrives	 following	 an	 OUT	 token
packet.	The	endpoint	must	also	return	ACK	in	response	to	a	new	Setup	packet
if	the	host	decides	to	abandon	the	transfer.	The	endpoint	should	return	a	ZLP
in	response	to	an	IN	token	packet,	which	indicates	that	the	host	is	ending	the
transfer	early.
3.	 The	 Data	 stage	 begins	 when	 the	 host	 sends	 an	 OUT	 token	 packet	 to
endpoint	zero.	The	endpoint	stores	the	data	that	follows	the	token	packet	and
returns	ACK	in	the	handshake	packet.	The	hardware	triggers	an	interrupt.
4.	On	detecting	the	interrupt,	the	device	processes	the	received	data	as	needed.
5.	 If	 the	 Data	 stage	 has	 additional	 data	 packets,	 steps	 3	 and	 4	 repeat	 for
additional	OUT	transactions	up	to	the	wLength	value	in	the	Setup	transaction.
6.	 To	 complete	 the	 transfer,	 the	 host	 sends	 an	 IN	 token	 packet,	 the	 device
responds	with	a	ZLP,	and	the	host	returns	ACK.

Control	write	requests	with	no	data	stage
To	 complete	 a	 control	 write	 request	 without	 a	 Data	 stage,	 the	 device	 must
detect	the	request	in	the	Setup	stage	and	send	a	ZLP	in	the	Status	stage.
1.	The	hardware	detects	a	Setup	packet,	stores	the	contents	of	the	transaction’s
data	packet,	returns	ACK,	and	triggers	an	interrupt.

2.	 On	 detecting	 the	 interrupt,	 the	 device	 decodes	 the	 request,	 does	 what	 is
needed	 to	 perform	 the	 requested	 action,	 and	 ensures	 that	 endpoint	 zero	 is
ready	to	respond	to	an	IN	token	packet.	The	endpoint	must	also	return	ACK
in	response	to	a	new	Setup	packet	if	the	host	decides	to	abandon	the	transfer.
3.	 To	 complete	 the	 transfer,	 the	 host	 sends	 an	 IN	 token	 packet,	 the	 device
responds	with	a	ZLP,	and	the	host	returns	ACK.

Control	read	requests
To	complete	a	control	read	request,	the	device	must	detect	the	request	in	the
Setup	 stage,	 send	 data	 in	 the	 Data	 stage,	 and	 acknowledge	 a	 received
handshake	in	the	Status	stage.
1.	The	hardware	detects	a	Setup	packet,	stores	the	contents	of	the	transaction’s
data	packet,	returns	ACK,	and	triggers	an	interrupt.
2.	On	detecting	the	interrupt,	the	device	decodes	the	request	and	ensures	that
endpoint	 zero	 is	 ready	 to	 send	 the	 requested	 data	 on	 receiving	 an	 IN	 token
packet.	The	endpoint	must	also	return	ACK	in	response	to	a	new	Setup	packet
if	the	host	decides	to	abandon	the	transfer.	The	endpoint	must	return	a	ZLP	in
response	to	an	OUT	packet	if	the	host	begins	the	Status	stage	early.
3.	The	Data	stage	begins	when	the	host	sends	an	IN	token	packet	to	endpoint
zero.	The	device	hardware	sends	the	data,	detects	the	received	ACK	from	the
host,	and	triggers	an	interrupt.
4.	On	detecting	the	interrupt,	a	device	that	has	more	data	to	send	ensures	that
the	endpoint	is	ready	to	send	the	data	on	receiving	another	IN	token	packet,
and	steps	3	and	4	repeat.
5.	On	receiving	an	OUT	token	packet	followed	by	a	ZLP,	the	endpoint	returns
ACK	to	complete	the	transfer.

Standard	requests
Table	 5-1	 summarizes	 the	 requests	 defined	 in	 the	 USB	 2.0	 and	 USB	 3.1
specifications.

Table	5-1:	The	USB	2.0	and	3.1	 specifications	define	 these	 requests	 for	 control
transfers.	Information	source:	Universal	Serial	Bus	Specification,	Revision	2.0	and
Universal	Serial	Bus	3.1	Specification,	Revision	1.0.
Request	Code	Request Target wValue wIndex Data	Stage

Name Data	Source wLength;
Contents

0x00	Get	Status device,
interface,	or
endpoint

0x0000 0x0000
(device),
interface,	or
endpoint

device 0x0002;	status

0x01	Clear	Feature device,
interface,	or
endpoint

feature 0x0000
(device),
interface,	or
endpoint

none 0x0000

0x03	Set	Feature device,
interface,	or
endpoint

feature 0x0000
(device),
interface,	or
endpoint

none 0x0000

0x05	Set	Address device device	address 0x0000 none 0x0000

0x06	Get	Descriptor device descriptor
type	and
index

0x0000	or
language	ID

device descriptor
length;
descriptor

0x07	Set	Descriptor device descriptor
type	and
index

0x0000	or
language	ID

host descriptor
length;
descriptor

0x08	Get	Configuration device 0x0000 0x0000 device 0x0001;
configuration

0x09	Set	Configuration device configuration 0x0000 none 0x0000

0x0A	Get	Interface interface 0x0000 interface device 0x0001;
alternate
setting

0x0B	Set	Interface interface interface interface none 0x0000

0x0C	Synch	Frame endpoint 0x0000 endpoint device 0x002;	frame
number

0x30	Set	SEL device 0x0000 0x0000 host 0x0006;	exit
latency	values

0x31	Set	Isochronous
Delay

device Delay	in	ns 0x0000 none 0x0000

Get	Status
Purpose:	The	host	requests	the	status	of	the	features	of	a	device,	interface,	or
endpoint.
Request	number	(bRequest):	0x00
Source	of	data:	device

Data	length	(wLength):	0x0002
wValue:	0x0000
wIndex:	For	a	device,	0x0000.	For	an	interface,	the	interface	number.	For	an
endpoint,	the	endpoint	number.
Data	packet	in	the	Data	stage:	the	device,	interface,	or	endpoint	status.
Supported	states:	Default:	undefined.	Address:	OK	for	address	zero,	endpoint
zero.	Otherwise	the	device	returns	STALL.	Configured:	OK.
Behavior	 on	 error:	 The	 device	 returns	 STALL	 if	 the	 target	 interface	 or
endpoint	doesn’t	exist.
Comments:	For	requests	directed	to	devices	operating	at	USB	2.0	speeds,	two
status	bits	are	defined.	Bit	zero	is	the	Self-Powered	field:	0	=	bus-powered,	1	=
self-powered.	The	host	 can’t	 change	 this	 value.	Bit	 1	 is	 the	Remote	Wakeup
field.	 The	 default	 on	 reset	 is	 zero	 (disabled).	 Enhanced	 SuperSpeed	 devices
support	the	Self-Powered	bit	and	use	bits	2–4	for	power-management	options.
Bit	2	=	1	means	the	device	is	enabled	to	initiate	U1	entry.	Bit	3	=	1	means	the
device	is	enabled	to	initiate	U2	entry.	Bit	4	=	1	means	the	device	is	enabled	to
send	Latency	Tolerance	Messages.
For	a	request	directed	to	the	first	interface	in	a	function	on	a	USB	3.1	bus,	bit	0
=	 1	 if	 the	 function	 supports	 remote	 wakeup,	 and	 bit	 1	 =	 1	 if	 the	 host	 has
enabled	the	function	for	remote	wakeup.	For	requests	directed	to	an	interface
on	a	USB	2.0	bus,	all	bits	are	reserved.
For	 requests	 directed	 to	 an	 endpoint,	 only	 bit	 zero	 is	 defined.	 Bit	 0	 =	 1
indicates	a	Halt	condition.
See	Set	Feature	and	Clear	Feature	for	more	about	Remote	Wakeup	and	Halt.
All	non-assigned	bits	are	reserved.

Clear	Feature
Purpose:	 The	 host	 requests	 to	 disable	 a	 feature	 on	 a	 device,	 interface,	 or
endpoint.
Request	number	(bRequest):	0x01
Source	of	data:	no	Data	stage
Data	length	(wLength):	0x0000
wValue:	the	feature	to	disable

wIndex:	 For	 a	 device	 feature,	 0x0000.	 For	 an	 interface	 feature,	 the	 interface
number.	For	an	endpoint	feature,	the	endpoint	number.
Supported	states:	Default:	undefined.	Address:	OK	for	address	zero,	endpoint
zero.	Otherwise	the	device	returns	a	STALL.	Configured:	OK.
Behavior	on	error:	 If	 the	 feature,	device,	or	endpoint	specified	doesn’t	exist,
or	if	the	feature	can’t	be	cleared,	the	device	responds	with	STALL.	Behavior	is
undefined	if	wLength	>	0x0000.
Comments:	 For	 USB	 2.0,	 this	 request	 can	 clear	 the
DEVICE_REMOTE_WAKEUP	and	ENDPOINT_HALT	features.	The	request
does	not	clear	the	TEST_MODE	feature.
For	 Enhanced	 SuperSpeed,	 this	 request	 can	 clear	 the	 ENDPOINT_HALT,
LTM_ENABLE,	 U1_ENABLE,	 and	 U2_ENABLE	 features.	 (To	 clear	 the
FUNCTION_SUSPEND	feature,	see	Set	Feature.)
Clear	 Feature(ENDPOINT_HALT)	 resets	 a	 bulk,	 interrupt,	 or	 isochronous
data	 toggle	 to	 DATA0	 (USB	 2.0)	 or	 Sequence	 Number	 to	 zero	 (Enhanced
SuperSpeed)	and	resets	an	Enhanced	SuperSpeed	bulk	endpoint’s	burst	size.
Hubs	support	additional	features.
See	also	Set	Feature	and	Get	Status.

Set	Feature
Purpose:	 The	 host	 requests	 to	 enable	 a	 feature	 on	 a	 device,	 interface,	 or
endpoint.
Request	number	(bRequest):	0x03
Source	of	data:	no	Data	stage
Data	length	(wLength):	0x0000
wValue:	the	feature	to	enable
wIndex:	The	 low	byte	 equals	 0x00	 for	 a	device,	 the	 interface	number	 for	 an
interface,	 or	 the	 endpoint	 number	 for	 an	 endpoint.	 For	 an	 Enhanced
SuperSpeed	 FUNCTION_SUSPEND	 request,	 the	 high	 byte	 can	 request	 the
Suspend	state	(bit	0	=	1)	or	normal	operation	(bit	0	=	1)	and	remote	wakeup
enabled	(bit	1	=	1)	or	disabled	(bit	1	=	0).	To	set	the	TEST	MODE	Feature,	the
high	byte	of	wIndex	=	the	test	selector	value.
Supported	states:	For	 features	other	than	TEST_MODE:	Default:	undefined.
Address:	 OK	 for	 address	 zero,	 endpoint	 zero.	 Otherwise	 the	 device	 returns

STALL.	Configured:	OK.	High	speed	must	support	the	TEST_MODE	feature
in	the	Default,	Address,	and	Configured	states.
Behavior	 on	 error:	 If	 the	 endpoint	 or	 interface	 specified	 doesn’t	 exist,	 the
device	responds	with	STALL.
Comments:	 USB	 2.0	 and	 Enhanced	 SuperSpeed	 devices	 may	 use	 these
features:	 ENDPOINT_HALT	 applies	 to	 endpoints.	 Bulk	 and	 interrupt
endpoints	must	support	the	Halt	condition.	Events	that	cause	a	Halt	condition
are	transmission	errors	and	the	device’s	receiving	a	Set	Feature	request	to	halt
the	 endpoint.	 DEVICE_REMOTE_WAKEUP	 applies	 to	 devices.	 When	 the
host	has	set	this	feature,	a	device	in	the	Suspend	state	can	request	the	host	to
resume	 communications.	 TEST_MODE	 causes	 an	 upstream-facing	 port	 to
enter	 a	 test	mode.	OTG	devices	 use	 the	 b_hnp_enable,	 a_hnp_support,	 and
a_alt_hnp_support	 features	 in	 role	 swapping.	 Wireless	 USB	 devices	 use
WUSB_DEVICE.
Enhanced	 SuperSpeed	 devices	 can	 support	 additional	 features:
FUNCTION_SUSPEND	can	place	a	function	in	the	Suspend	state	and	enable
or	disable	remote	wakeup.	U1_ENABLE	and	U2_ENABLE	enable	low-power
states.	LTM_ENABLE	enables	sending	Latency	Tolerance	Messages	for	power
management.	LDM_ENABLE	 is	used	 in	Precision	Time	Measurement.	OTG
devices	use	B3_NTF_HOST_REL	and	B3_RSP_ENABLE	in	role	swapping.
Hubs	 support	 additional	 features.	The	Get	 Status	 request	 tells	 the	host	what
features,	if	any,	are	enabled.	Also	see	Clear	Feature.

Set	Address
Purpose:	The	host	specifies	an	address	to	use	in	future	communications	with
the	device.
Request	number	(bRequest):	0x05
Source	of	data:	no	Data	stage
Data	length	(wLength):	0x0000
wValue:	new	device	address.	Allowed	values	are	0x0001–0x007F.	Each	device
on	the	bus,	including	the	root	hub,	has	a	unique	address.
wIndex:	0x0000
Supported	states:	Default,	Address.
Behavior	on	error:	not	specified.

Comments:	When	 a	 hub	 enables	 a	 port	 after	 power-up	 or	 attachment,	 the
port	uses	the	default	address	of	0x0000	until	completing	a	Set	Address	request
from	the	host.
This	request	is	unlike	most	other	requests	because	the	device	doesn’t	carry	out
the	 request	until	 the	device	has	 completed	 the	Status	 stage	of	 the	 request	by
sending	a	ZLP.	The	host	 sends	 the	Status	 stage’s	 token	packet	 to	 the	default
address,	so	the	device	must	detect	and	respond	to	this	packet	before	changing
its	address.
After	completing	this	request,	all	communications	use	the	new	address.
A	 device	 using	 the	 default	 address	 of	 0x0000	 is	 in	 the	 Default	 state.	 After
completing	 a	 Set_	Address	 request	 to	 set	 an	 address	 other	 than	 0x0000,	 the
device	enters	the	Address	state.
A	 device	must	 send	 the	 handshake	 packet	 within	 50	ms	 after	 receiving	 the
request	 and	 must	 implement	 the	 request	 within	 2	 ms	 after	 completing	 the
Status	stage.

Get	Descriptor
Purpose:	The	host	requests	a	specific	descriptor.
Request	number	(bRequest):	0x06
Source	of	data:	device
Data	 length	 (wLength):	 the	 number	 of	 bytes	 to	 return.	 If	 the	 descriptor	 is
longer	than	wLength,	the	device	returns	up	to	wLength	bytes.	If	the	descriptor
is	 shorter	 than	 wLength,	 the	 device	 returns	 the	 entire	 descriptor.	 If	 the
descriptor	 is	shorter	 than	wLength	and	 is	an	even	multiple	of	 the	endpoint’s
maximum	packet	 size,	 the	device	 returns	 a	ZLP	 in	 response	 to	 a	 request	 for
more	data	after	the	device	has	sent	the	descriptor.	The	host	detects	the	end	of
the	 data	 on	 receiving	 either	 the	 requested	 amount	 of	 data	 or	 a	 data	 packet
containing	less	than	the	maximum	packet	size	(including	a	ZLP).
wValue:	 High	 byte:	 descriptor	 type.	 Low	 byte:	 descriptor	 index,	 to	 specify
which	 descriptor	 to	 return	when	 there	 are	multiple	 descriptors	 of	 the	 same
type.
wIndex:	for	string	descriptors,	Language	ID.	Otherwise	0x0000.
Data	packet	in	the	Data	stage:	the	requested	descriptor.
Supported	states:	Default,	Address,	Configured.

Behavior	 on	 error:	 A	 device	 that	 doesn’t	 support	 the	 specified	 descriptor
should	return	STALL.
Comments:	Hosts	can	request	the	following	standard	descriptor	types:	device,
device_qualifier,	 configuration,	 other_speed	 configuration,	 BOS,	 and	 string.
On	 receiving	 a	 request	 for	 a	 configuration	 or	 other_speed	 configuration
descriptor,	the	device	should	return	the	requested	descriptor	followed	by	all	of
its	 subordinate	 interface,	 endpoint,	 endpoint	 companion,	 and	 class-specific
descriptors,	up	to	the	number	of	bytes	requested.	A	class	or	vendor	can	define
additional	descriptors	that	the	host	can	request,	such	as	the	HID-class	report
descriptor.	See	also	Set	Descriptor.

Set	Descriptor
Purpose:	The	host	adds	a	descriptor	or	updates	an	existing	descriptor.
Request	number	(bRequest):	0x07
Source	of	data:	host
Data	 length	 (wLength):	 The	 number	 of	 bytes	 the	 host	 will	 transfer	 to	 the
device.
wValue:	 high	 byte:	 descriptor	 type.	 (See	 Get	 Descriptor).	 Low	 byte:	 a
descriptor	index	that	specifies	which	descriptor	the	device	is	sending	when	it
has	multiple	descriptors	of	the	same	type.
wIndex:	For	string	descriptors,	Language	ID.	Otherwise	0x0000.
Data	packet	in	the	Data	stage:	descriptor	length.
Supported	states:	Address	and	Configured.
Behavior	on	error:	A	device	that	doesn’t	support	the	request	or	the	specified
descriptor	should	return	STALL.
Comments:	This	request	makes	it	possible	for	the	host	to	add	new	descriptors
or	change	an	existing	descriptor.	Few	devices	support	this	request,	which	can
enable	errant	code	to	place	incorrect	information	in	a	descriptor.	See	also	Get
Descriptor.

Get	Configuration
Purpose:	The	host	requests	the	value	of	the	current	device	configuration.
Request	number	(bRequest):	0x08
Source	of	data:	device

Data	length	(wLength):	0x0001
wValue:	0x0000
wIndex:	0x0000
Data	packet	in	the	Data	stage:	Configuration	value
Supported	states:	Address	(returns	zero),	Configured
Behavior	on	error:	not	specified.
Comments:	A	device	that	isn’t	configured	returns	0x00	in	the	Data	stage.	See
also	Set	Configuration.

Set	Configuration
Purpose:	The	host	requests	the	device	to	use	the	specified	configuration.
Request	number	(bRequest):	0x09
Source	of	data:	no	Data	stage
Data	length	(wLength):	0x0000
wValue:	 The	 low	 byte	 specifies	 a	 configuration.	 If	 the	 value	 matches	 a
configuration	 supported	 by	 the	 device,	 the	 device	 implements	 the	 requested
configuration.	A	value	of	0x00	indicates	not	configured,	and	the	device	should
enter	 the	 Address	 state	 and	wait	 for	 a	 new	 Set	 Configuration	 request	 to	 be
configured.
wIndex:	0x0000
Supported	states:	Address,	Configured.
Behavior	 on	 error:	 If	 wValue	 isn’t	 equal	 to	 0x0000	 or	 a	 configuration
supported	by	the	device,	the	device	returns	STALL.
Comments:	 After	 completing	 a	 Set	 Configuration	 request	 specifying	 a
supported	 configuration,	 the	 device	 enters	 the	 Configured	 state.	 Many
standard	requests	require	the	device	to	be	in	the	Configured	state.	See	also	Get
Configuration.	 This	 request	 resets	 bulk,	 interrupt,	 and	 isochronous	 data
toggles	to	DATA0	(USB	2.0)	and	resets	Sequence	Numbers	to	zero	(Enhanced
SuperSpeed)	and	resets	the	burst	size	of	Enhanced	SuperSpeed	bulk	endpoints.

Get	Interface
Purpose:	 For	 interfaces	 that	 have	 alternate,	 mutually	 exclusive	 settings,	 the
host	requests	the	currently	active	interface	setting.

Request	number	(bRequest):	0x0A
Source	of	data:	device
Data	length	(wLength):	0x0001
wValue:	0x0000
wIndex:	interface	number	(bInterfaceNumber)
Data	packet	in	the	Data	stage:	the	current	setting	(bAlternateSetting)
Supported	states:	Configured
Behavior	on	error:	If	the	interface	doesn’t	exist,	the	device	returns	STALL.
Comments:	The	wIndex	value	is	 the	bInterfaceNumber	value	of	an	interface
descriptor	 and	 indicates	 which	 interface	 the	 request	 applies	 to.	 In	 the	 Data
stage,	 the	 device	 returns	 a	 bAlternateSetting	 value,	 which	 identifies	 which
alternate	interface	setting	the	device	is	currently	using.	Each	alternate	interface
has	 an	 interface	 descriptor	 and	 subordinate	 descriptors	 as	 needed.	 Many
interfaces	support	only	one	interface	setting.	See	also	Set	Interface.

Set	Interface
Purpose:	 For	 interfaces	 that	 have	 alternate,	mutually	 exclusive,	 settings,	 the
host	requests	the	device	to	use	a	specific	interface	setting.
Request	number	(bRequest):	0x0B
Source	of	data:	no	Data	stage
Data	length	(wLength):	0x0000
wValue:	alternate	setting	to	select	(bAlternateSetting)
wIndex:	interface	number	(bInterfaceNumber)
Supported	states:	Configured
Behavior	 on	 error:	 If	 the	 requested	 interface	 or	 setting	 doesn’t	 exist,	 the
device	returns	STALL.
Comments:	This	request	resets	bulk,	 interrupt,	and	isochronous	data	toggles
to	 DATA0	 (USB	 2.0)	 and	 resets	 Sequence	 Numbers	 to	 zero	 (Enhanced
SuperSpeed)	and	resets	the	burst	size	of	Enhanced	SuperSpeed	bulk	endpoints.
See	also	Get	Interface.

Synch	Frame
Purpose:	The	device	sets	and	reports	an	endpoint’s	synchronization	frame.

Request	number	(bRequest):	0x0C
Source	of	data:	host
Data	length	(wLength):	0x0002
wValue:	0x0000
wIndex:	endpoint	number
Data	packet	in	the	Data	stage:	frame	number
Supported	 states:	 Default:	 undefined.	 Address:	 The	 device	 returns	 STALL.
Configured:	OK.
Behavior	 on	 error:	 An	 endpoint	 that	 doesn’t	 support	 the	 request	 should
return	STALL.
Comments:	 In	 isochronous	 transfers,	 a	 device	 endpoint	 may	 request	 data
packets	 that	 vary	 in	 size	 according	 to	 a	 sequence.	For	 example,	 an	 endpoint
may	send	a	repeating	sequence	of	8,	8,	8,	64	bytes.	The	Synch	Frame	request
enables	 the	 host	 and	 endpoint	 to	 agree	 on	 which	 frame	 will	 begin	 the
sequence.	 On	 receiving	 a	 Synch	 Frame	 request,	 an	 endpoint	 returns	 the
number	of	the	frame	that	will	precede	the	beginning	of	a	new	sequence
This	request	is	rarely	used	because	there	is	rarely	a	need	for	the	information	it
provides.

Set	SEL
Purpose:	 For	 Enhanced	 SuperSpeed	 devices,	 sets	 system	 exit	 latencies	 for
power	management.
Request	number	(bRequest):	0x30
Source	of	data:	host
Data	length	(wLength):	0x0006
wValue:	0x0000
wIndex:	0x0000
Contents	of	data	packet	in	the	Data	stage:	exit	latency	values.
Supported	states:	Address,	Configured.
Behavior	on	 error:	A	device	 that	 doesn’t	 support	 the	 request	 should	 return
STALL.
Comments:	 Chapter	 17	 has	 more	 on	 Enhanced	 SuperSpeed	 power

management.

Set	Isochronous	Delay
Purpose:	For	Enhanced	SuperSpeed	devices,	provides	a	calculated	delay	value
in	ns	indicating	the	amount	of	time	between	when	a	host	begins	to	transmit	an
isochronous	packet	and	when	a	device	begins	to	receive	the	packet.
Request	number	(bRequest):	0x31
Source	of	data:	host
Data	length	(wLength):	0x0000
wValue:	Delay	(ns)
wIndex:	0x0000
Supported	states:	Default,	Address,	Configured.
Behavior	 on	 error:	 a	 device	 that	 doesn’t	 support	 the	 request	 should	 return
STALL.
Comments:	the	wValue	field	can	range	from	0x0000	to	0xFFFF.

Other	requests
In	addition	to	the	requests	defined	in	the	USB	2.0	and	USB	3.1	specifications,	a
device	may	respond	to	class-specific	and	vendor-specific	control	requests.

Class-specific	requests
A	class	can	define	mandatory	and	optional	requests.	Class	drivers	on	the	host
should	support	mandatory	requests	and	may	support	optional	requests.	Some
requests	are	unrelated	to	the	standard	requests	while	other	requests	build	on
standard	 requests	 by	 defining	 class-specific	 fields.	 An	 example	 of	 a	 request
that’s	unrelated	to	standard	requests	is	the	Get	Max	LUN	request	supported	by
some	mass-storage	devices.	The	host	uses	this	request	to	find	out	the	number
of	logical	units	the	interface	supports.	An	example	of	a	request	that	builds	on
an	 existing	 request	 is	 the	 Get	 Port	 Status	 request	 for	 hubs.	 This	 request	 is
structured	like	the	standard	Get	Status	request	but	bits	4..0	=	00011b	 indicate
that	the	request	applies	to	a	port	on	a	hub	rather	than	the	device,	an	interface,
or	an	endpoint.	The	wIndex	field	contains	the	port	number.

Vendor-defined	requests

Implementing	a	vendor-defined	request	in	a	control	transfer	requires	all	of	the
following:

Vendor-defined	fields	as	needed	in	the	Setup	and	Data	stages	of	the	request.
Bits	6..5	in	the	Setup	stage’s	data	packet	are	set	to	10b	to	indicate	a	vendor-
defined	request.
In	the	device,	code	that	detects	the	request	number	in	the	Setup	packet	and
knows	how	to	respond.
In	the	host,	a	vendor-provided	device	driver	that	supports	the	request.	The
driver	can	expose	a	function	that	enables	applications	to	initiate	the	request.

6

Chip	Choices
This	chapter	is	a	guide	to	selecting	USB	device-controller	hardware.	Available
controllers	 include	 microcontrollers	 and	 high-end	 processors	 with	 built-in
USB	 support,	 USB	 interface	 chips,	 and	 special-function	 chips.	 Chapter	 21
discusses	controllers	for	use	in	embedded	hosts	and	OTG	devices.

Components	of	a	USB	device
Every	USB	device	must	have	the	intelligence	to	detect	and	respond	to	requests
and	other	events	at	the	USB	port.	A	processor	with	embedded	firmware	or	an
application-specific	integrated	circuit	(ASIC)	can	perform	these	functions	in	a
device.
Device-controller	 chips	 vary	 in	 how	 they	 implement	 USB	 communications
and	 in	 how	 much	 firmware	 support	 the	 communications	 require.	 Some
controllers	require	little	more	than	the	ability	to	access	buffers	to	provide	and
retrieve	USB	data.	Other	controllers	require	device	 firmware	to	handle	more
of	 the	 protocols	 including	managing	 the	 sending	 of	 descriptors	 to	 the	 host,
setting	 data-toggle	 values,	 and	 ensuring	 that	 endpoints	 return	 appropriate
handshake	packets.	In	general,	low-level	firmware	isn’t	portable	among	chips
with	different	architectures,	but	chip	companies	provide	example	firmware	for
common	tasks	and	applications.
Some	device	controllers	are	microcontrollers	that	include	a	processor	and	on-
chip	 program	 and	 data	 memory	 or	 an	 interface	 to	 these	 components	 in
external	 memory.	 Other	 device	 controllers	 must	 interface	 to	 an	 external
processor	 that	 handles	 non-USB	 tasks	 and	 communicates	 with	 the	 USB
controller	as	needed.	These	chips	are	sometimes	called	USB	interface	chips	to
distinguish	them	from	microcontrollers	with	USB	capabilities.
For	 high-volume	 products	 and	 products	 that	 require	 fast	 performance,	 an
option	is	a	custom-designed	ASIC.	Several	sources	offer	synthesizable	VHDL
and	Verilog	source	code	for	ASICs	that	function	as	USB	controllers.

Inside	a	USB	2.0	controller
A	 typical	 USB	 2.0	 controller	 contains	 a	 USB	 transceiver,	 a	 serial	 interface
engine,	buffers	to	hold	USB	data,	and	registers	to	store	configuration,	status,
and	control	information	relating	to	USB	communications.

The	transceiver
The	 USB	 transceiver	 is	 the	 hardware	 interface	 between	 the	 device’s	 USB
connector	and	the	circuits	that	control	USB	communications.	The	transceiver
is	 typically	 embedded	 in	 the	 controller	 chip,	 but	 some	 controllers	 allow
interfacing	to	an	external	transceiver.	Another	term	for	the	transceiver	is	PHY
(physical	layer).

The	serial	interface	engine
The	 circuits	 that	 interface	 to	 the	 transceiver	 form	 a	 unit	 called	 the	 serial
interface	 engine	 (SIE).	 The	 SIE	 handles	 sending	 and	 receiving	 data	 in
transactions.	The	SIE	doesn’t	interpret	or	use	the	data	but	just	places	provided
data	 on	 the	 bus	 and	 stores	 any	 data	 received.	 A	 typical	 SIE	 does	 all	 of	 the
following:

Detects	incoming	packets.
Sends	packets.
Detects	 and	 generates	 Start-of-Packet,	 End-of-Packet,	 Reset,	 and	 Resume
signaling.
Encodes	 and	 decodes	 data	 for	 the	 bus	 using	 NRZI	 encoding	 with	 bit
stuffing.
Checks	and	generates	CRC	values.
Checks	and	generates	Packet	IDs.
Converts	 between	 USB’s	 serial	 data	 and	 parallel	 data	 in	 registers	 or
memory.

The	 UTMI+	 Low	 Pin	 Interface	 (ULPI)	 is	 an	 8-	 or	 12-line	 interface	 that
connects	 a	 PHY	 to	 an	 SIE.	 The	 interface,	 a	 product	 of	 the	 non-profit	ULPI
Working	 Group,	 evolved	 from	 the	 previous	 USB	 2.0	 Transceiver	Macrocell
Interface	(UTMI)	and	UTMI+	interfaces.

Buffers
USB	 controllers	 use	 buffers	 to	 store	 received	 data	 and	 data	 that’s	 ready	 to

transmit	on	the	bus.	In	some	controllers,	such	as	PLX	Technology’s	USB	3380,
a	 processor	 accesses	 the	 buffers	 by	 reading	 and	 writing	 to	 registers,	 while
others,	 such	as	Cypress	Semiconductor’s	EZ-USB	series,	 reserve	a	portion	of
data	memory	for	the	buffers.
To	enable	faster	transfers,	some	chips	have	double	buffers	that	can	store	two
full	 sets	of	data	 in	each	direction.	While	one	block	 is	 transmitting,	 firmware
can	write	the	next	block	of	data	into	the	other	buffer	so	the	data	is	ready	to	go
as	 soon	 as	 the	 first	 block	 finishes	 transmitting.	 In	 the	 receive	 direction,	 the
extra	buffer	enables	a	new	transaction’s	data	to	arrive	before	the	firmware	has
retrieved	the	data	from	the	previous	transaction.	The	hardware	automatically
switches,	 or	 ping-pongs,	 between	 the	 two	 buffers.	 Some	 controllers,	 such	 as
the	Cypress	EZ-USB	FX2LP,	support	quadruple	buffers,	while	the	SuperSpeed
Cypress	EZ-USB	FX3	can	use	configurable	data	buffers	of	any	available	size	in
system	memory.

Configuration,	status,	and	control	Information
USB	 controller	 chips	 typically	 contain	 registers	 that	 hold	 information	 about
what	endpoints	are	enabled,	the	number	of	bytes	received,	the	number	of	bytes
ready	to	transmit,	Suspend-state	status,	error-checking	information,	and	other
status	 and	control	 information.	The	number	of	 registers,	 their	 contents,	 and
how	to	access	 the	registers	vary	with	the	chip	architecture.	These	differences
are	one	reason	why	low-level	firmware	for	USB	communications	isn’t	portable
between	chip	families.

Clock
USB	communications	require	a	timing	source,	typically	provided	by	a	crystal
oscillator.	Because	USB’s	low	speed	allows	more	variation	in	clock	speed,	low-
speed	 devices	 can	 sometimes	 use	 a	 less	 expensive	 ceramic	 resonator.	 Some
controllers	 have	 on-chip	 oscillators	 and	 don’t	 require	 an	 external	 timing
source.

Other	device	components
In	addition	 to	a	USB	 interface,	 the	circuits	 in	a	 typical	USB	device	 include	a
CPU,	program	and	data	memory,	other	I/O	interfaces,	and	other	features	such
as	timers	and	counters.	These	circuits	may	be	in	the	controller	chip	or	separate
components.

CPU
The	CPU,	 or	 processor,	may	 use	 a	 general-purpose	 architecture	 such	 as	 the
8051	or	ARM,	or	the	CPU	may	have	an	architecture	developed	specifically	for
USB	 applications.	 An	 interface-only	 USB	 controller	 can	 communicate	 with
any	CPU	that	has	a	compatible	interface.

Program	memory
The	program	memory	holds	 the	code	that	 the	CPU	executes,	 including	code
for	USB	communications	and	whatever	other	tasks	the	chip	is	responsible	for.
This	memory	may	be	in	the	microcontroller	or	in	a	separate	chip.
The	program	storage	may	use	ROM,	flash	memory,	EEPROM,	MTP	memory,
or	RAM.	All	except	RAM	(unless	battery-backed)	are	nonvolatile:	the	memory
retains	 its	data	after	powering	down.	Chips	 that	can	access	memory	off-chip
may	support	a	MB	or	more	of	program	memory.
Another	name	for	the	code	stored	in	program	memory	is	firmware.	The	term
suggests	that	the	memory	is	nonvolatile	and	not	as	easily	changed	as	program
code	 that	 can	be	 loaded	 into	RAM,	 edited,	 and	 re-saved	on	disk.	This	 book
uses	 the	 term	 firmware	 to	 refer	 to	 a	 controller’s	 program	 code,	 with	 the
understanding	 that	 the	 code	may	 reside	 in	 a	 variety	of	memory	 types,	 some
more	volatile	than	others.
ROM	(read-only	memory)	must	be	mask-programmed	at	the	factory	and	can’t
be	erased.	ROM	is	practical	only	for	product	runs	in	the	thousands.
Flash	memory	is	electrically	erasable	and	thus	is	popular	for	use	during	project
development	and	for	final	code	storage	in	low-volume	projects	or	devices	that
might	require	firmware	updates	in	the	field.	Current	flash-memory	technology
enables	 10,000	 erase/reprogram	 cycles.	 Wear	 leveling	 and	 other	 memory-
management	techniques	can	dramatically	extend	the	life	of	a	memory	block.
EEPROM	 (electrically	 erasable	 programmable	 ROM)	 tends	 to	 have	 longer
access	 times	 than	 flash	 memory	 but	 is	 useful	 for	 storing	 data	 that	 changes
occasionally	such	as	configuration	data.	Cypress’	EZ-USB	controllers	can	store
firmware	 in	 EEPROM	 and	 load	 the	 firmware	 into	 RAM	 on	 powering	 up.
EEPROMs	 are	 available	with	 parallel	 interfaces	 and	with	 synchronous	 serial
interfaces	 such	 as	 Microwire,	 I2C,	 and	 SPI.	 Current	 EEPROM	 technology
enables	around	1	million	erase/reprogram	cycles.
MTP	 (multi-time-programmable)	memory	 is	 a	 newer	 technology	 similar	 to

flash	memory	 and	 is	 most	 cost-effective	 for	 small	 amounts	 of	 data	 such	 as
configuration	data.
RAM	(random-access	memory)	can	be	erased	and	rewritten	endlessly,	but	the
stored	data	disappears	when	the	chip	powers	down.	RAM	can	store	program
code	if	using	battery	backup	or	if	the	code	loads	from	a	PC	into	RAM	on	each
power	 up.	 Cypress	 Semiconductor’s	 EZ-USB	 controllers	 can	 use	 RAM	 for
program	storage	with	special	hardware	and	driver	code	that	 loads	code	from
the	host	computer	into	the	chip	on	power	up	or	attachment.	RAM	loaded	in
this	 way	 has	 no	 limit	 on	 the	 number	 of	 erase/rewrite	 cycles.	 For	 battery-
backed	RAM,	the	limit	is	the	battery	life.	Access	time	for	RAM	is	fast.

Data	memory
Data	 memory	 provides	 temporary	 storage	 during	 program	 execution.	 The
contents	of	data	memory	may	include	data	received	from	the	USB	port,	data
to	be	sent	to	the	USB	port,	values	for	use	in	calculations,	or	anything	else	the
chip	needs	to	remember	or	keep	track	of.	Data	memory	is	RAM.

Other	I/O
To	do	useful	work,	virtually	every	USB	controller	has	an	interface	to	the	world
outside	itself	in	addition	to	the	USB	port.	An	interface-only	chip	must	have	a
local	bus	or	other	interface	to	the	device’s	CPU.	Most	chips	also	have	a	series
of	 general-purpose	 input	 and	 output	 (I/O)	 pins	 that	 can	 connect	 to	 other
circuits.	 A	 chip	 may	 have	 built-in	 support	 for	 other	 interfaces,	 such	 as	 an
asynchronous	 serial	 interface	 for	 RS-232,	 synchronous	 serial	 interfaces,	 or
Ethernet.	 Some	 chips	 have	 dedicated	 interfaces	 for	 special	 purposes	 such	 as
accessing	drives	or	audio	or	video	components.

Other	features
A	device-controller	chip	may	have	features	such	as	hardware	timers,	counters,
analog-to-digital	 and	 digital-to-analog	 converters,	 and	 pulse-width-
modulation	 (PWM)	 outputs.	 Just	 about	 anything	 that	 you	 can	 find	 in	 a
general-purpose	microcontroller	is	available	in	a	USB	device	controller.

Simplifying	device	development
Project	development	will	be	easier	and	quicker	if	you	can	find	a	controller	chip
with	all	of	the	following:

A	chip	architecture	and	compiler	you’re	familiar	with.
Excellent	hardware	documentation.
Well-documented,	bug-free	example	firmware	for	an	application	similar	to
yours.
A	 development	 system	 that	 enables	 easy	 downloading	 and	 debugging	 of
firmware.

Also	 helpful	 is	 the	 ability	 to	 use	 a	 class	 driver	 included	 with	 the	 operating
system	 or	 a	 well-documented	 and	 bug-free	 driver	 provided	 by	 the	 chip
company	or	another	source.
These	 are	not	 trivial	 considerations.	The	 right	 choices	will	 save	many	hours
and	much	aggravation.

Device	requirements
In	 selecting	 a	 device	 controller	 for	 a	 project,	 these	 are	 some	 of	 the	 areas	 to
consider.
Bus	speed.	A	device’s	 rate	of	data	 transfer	depends	on	 the	 supported	speeds
on	the	device	and	bus,	the	transfer	type.	and	how	busy	the	bus	is.	As	a	device
designer,	you	don’t	control	how	busy	a	user’s	bus	will	be,	but	you	can	select	a
speed	 and	 transfer	 type	 that	 give	 the	 best	 possible	 performance	 for	 your
application.
If	 a	 product	 requires	 only	 low-speed	 interrupt	 and	 control	 transfers,	 a	 low-
speed	chip	might	save	money	in	circuit-board	design,	components,	and	cables.
But	low-speed	devices	can	transfer	only	up	to	eight	data	bytes	per	transaction,
and	 the	USB	 specification	 limits	 the	 guaranteed	 bandwidth	 for	 an	 interrupt
endpoint	to	800	bytes	per	second,	much	less	than	the	bus	speed	of	1.5	Mbps.
Plus,	implementing	low	speed’s	slower	edge	rates	increases	the	manufacturing
cost	of	low-speed	controller	chips,	so	you	may	find	a	full-speed	chip	that	can
do	the	job	at	the	same	or	lower	price.
Compared	 to	 low	 and	 full	 speeds,	 circuit-board	 design	 for	 high-speed	 and
Enhanced	 SuperSpeed	 devices	 is	more	 critical	 and	 can	 add	 to	 the	 cost	 of	 a
product.	 If	possible,	devices	 that	support	high	speed	should	also	support	 full
speed	 in	 case	 they	 are	 attached	 to	 a	 USB	 1.1	 host	 or	 hub.	 Enhanced
SuperSpeed	devices	should	also	support	a	USB	2.0	speed,	and	SuperSpeedPlus
devices	must	support	SuperSpeed.
Endpoints.	Each	endpoint	 address	 supports	 a	 transfer	 type	and	direction.	A

device	 that	 uses	 only	 control	 transfers	 needs	 just	 the	 default	 endpoint.
Interrupt,	 bulk,	 or	 isochronous	 transfers	 require	 additional	 endpoint
addresses.	 Not	 all	 chips	 support	 all	 transfer	 types.	 Not	 every	 controller
supports	 the	 maximum	 possible	 number	 of	 endpoint	 addresses,	 but	 few
devices	need	the	maximum.
Firmware	upgrades.	To	enable	firmware	upgrades	in	the	field,	a	device	should
store	program	code	in	flash	memory,	in	EEPROM,	or	in	RAM	loaded	from	the
host	 on	 attachment.	 The	USB	 specification	 for	 the	 device	 firmware	 upgrade
class	defines	a	protocol	for	loading	firmware	from	a	host	to	a	device.	Chapter	7
has	more	about	this	class.
Cables.	One	reason	why	mice	are	almost	certain	to	be	low-speed	devices	is	the
less	 stringent	 cable	 requirements	 that	 allow	 thinner,	 more	 flexible	 cables.
However,	a	cable	on	a	low-speed	device	has	a	maximum	length	of	3	m,	while
full-	 and	 high-speed	 cables	 (except	 those	 with	 Micro-B	 or	 USB	 Type-C
connectors)	can	be	5	m.
Other	needs.	Additional	considerations	are	the	amount	and	type	of	other	I/O,
the	 size	 of	 program	 and	 data	 memory,	 on-chip	 timers,	 and	 other	 special
features	that	a	particular	application	might	require.

Documentation	and	example	code
Most	 chip	 companies	 supplement	 their	 data	 sheets	 with	 technical	 manuals,
application	notes,	 example	 code,	 and	other	documentation.	The	best	way	 to
get	a	head	start	on	writing	firmware	is	to	begin	with	example	code.
Example	 code	 can	 be	 useful	 even	 if	 it	 doesn’t	 perfectly	match	 your	 desired
application.	 Enumeration	 code	 is	 useful	 for	 any	 device	 and	 also	 provides	 a
model	for	performing	control	transfers	for	other	purposes.	Get	Descriptor	can
serve	as	 a	model	 for	other	 control	 read	 transfers.	 Set	Address	 can	 serve	as	 a
model	for	control	write	transfers	with	no	Data	stage.	Example	code	for	control
write	 transfers	 with	 a	 Data	 stage	 is	 harder	 to	 find.	 The	 only	 standard,	 not-
class-specific	 USB	 request	 with	 a	 host-to-device	 Data	 stage	 is	 the	 rarely
supported	 Set	 Descriptor.	 One	 possible	 source	 for	 example	 code	 is	 the
communications	device	class’s	Set	Line	Coding	request,	where	the	host	sends
serial-port	parameters	in	the	Data	stage.
From	the	 firmware’s	point	of	view,	bulk	and	 interrupt	 transfers	are	 identical
(except	 for	Enhanced	SuperSpeed’s	 support	 for	 streams	 in	bulk	 transfers)	 so
code	for	either	type	of	transfer	can	serve	as	a	model	for	any	firmware	that	uses

bulk	 or	 interrupt	 transfers.	 For	 example,	 HID-class	 code	 for	 exchanging
reports	 via	 interrupt	 transfers	 can	 serve	 as	 a	 model	 for	 bulk	 transfers	 in	 a
different	device	type.
Chip	and	tool	vendors	vary	in	the	amount	and	quality	of	documentation	and
example	 code	 provided.	 You	 might	 also	 find	 code	 examples	 from	 other
sources.

Host	driver
If	your	device	fits	a	class	supported	by	the	operating	system(s)	that	the	device’s
USB	hosts	use,	you	don’t	need	to	write	or	obtain	a	device	driver.	For	example,
applications	can	access	a	HID-class	device	using	standard	API	functions	that
communicate	with	the	HID	drivers	included	with	Windows.
Some	chip	companies	provide	a	generic	driver	 that	you	can	use	 to	exchange
data	with	devices.	Cypress	Semiconductor,	Microchip	Technology,	and	Silicon
Laboratories	 all	 provide	 general-purpose	 drivers.	 Devices	 for	 Windows
systems	 also	 have	 the	 option	 of	 using	 Microsoft’s	 generic	 WinUSB	 driver.
Windows,	Linux,	and	Mac	OS	can	use	the	open-source	libusb	generic	driver.
Chapter	7	and	Chapter	8	have	more	about	classes	and	device	drivers.

Development	boards
Ease	of	debugging	also	makes	a	big	difference	in	how	easy	it	is	to	get	a	project
up	 and	 running.	 Products	 that	 can	 help	 include	 development	 boards	 and
software	offered	by	chip	companies	and	other	sources.	A	protocol	analyzer	can
save	much	debugging	time.	Chapter	18	has	more	about	protocol	analyzers.

Boards	from	chip	companies
Chip	 manufacturers	 offer	 development	 boards	 and	 debugging	 software	 to
make	 it	 easier	 for	 developers	 to	 test	 and	debug	new	designs	 (Figure	6-1).	 A
development	 board	 enables	 you	 to	 load	 a	 program	 from	 a	 PC	 into	 a	 chip’s
program	memory	or	circuits	that	emulate	the	chip’s	hardware.

Figure	6-1.	This	PICDEM	Explorer	board	supports	a	variety	of	microcontrollers
available	on	Plug-in	Modules	(PIMs)	that	attach	to	a	socket	on	the	board.

Typical	debugging	 software	provided	with	development	boards	 is	 a	monitor
program	that	runs	on	a	PC	and	enables	you	to	control	program	execution	and
view	 the	 results.	 Common	 features	 include	 the	 ability	 to	 step	 through	 a
program,	 set	 breakpoints,	 and	 view	 the	 contents	 of	 the	 chip’s	 registers	 and
memory.	You	can	run	the	monitor	program	and	a	test	application	at	the	same
time.	You	can	see	exactly	what	happens	inside	the	chip	when	it	communicates
with	your	application.
USB’s	 timing	requirements	can	 limit	what	you	can	do	with	breakpoints.	For
example,	if	you	halt	execution	during	enumeration,	the	host	will	give	up	trying
to	communicate,	and	you’ll	need	to	restart	the	enumeration	process.	But	even
so,	a	monitor	program	can	provide	a	useful	window	to	the	firmware	in	action.
Microchip’s	 MPLAB	 X	 IDE	 is	 an	 example	 of	 host	 software	 that	 supports
debugging	functions.
JTAG	 ports	 can	 enable	 monitoring	 and	 controlling	 of	 components	 during
development.
The	 Silicon	 Laboratories	 C8051F34x	 controllers	 include	 a	 dedicated	 2-wire
debugging	interface	that	uses	no	additional	memory	or	port	bits	on	the	chip.
With	 these	 chips,	 you	 can	 debug	 without	 needing	 to	 assign	 other	 chip

resources	to	debugging.

Boards	from	other	sources
Inexpensive	printed-circuit	boards	 from	a	variety	of	vendors	can	serve	as	an
alternative	 to	 the	development	kits	offered	by	chip	companies.	You	can	also
use	 these	boards	as	 the	base	 for	one-of-a-kind	or	small-scale	projects,	 saving
the	time	and	expense	of	designing	and	making	a	board	for	the	controller	chip.
If	you	 just	want	 to	access	I/O	pins,	a	board	programmed	with	 firmware	 that
supports	 I/O	 can	give	 a	 quick	 start.	Phidgets	 Inc.	 is	 one	 source	 for	modules
that	have	analog	and	digital	I/O	ports,	driver	support,	and	example	code	in	a
variety	 of	 program	 languages	 (Figure	 6-2).	 The	 company	 offers	 a	 variety	 of
ready-to-use	 I/O	 devices	 including	 sensors,	 relays,	 switches,	motors,	 remote
control,	 RFID	 modules,	 and	 displays,	 or	 you	 can	 interface	 your	 own
components	to	the	I/O	ports.
Phidgets	 use	 the	 HID-class	 host	 driver	 included	 in	 virtually	 all	 OSes.	 For
Windows,	 Phidgets	 provides	 a	DLL	 that	manages	 communications	with	 the
HID	 driver	 and	 exports	 functions	 for	 accessing	 the	modules.	 Similar	 driver
support	 is	 available	 for	 Apple	 OS,	 Linux,	 and	 mobile	 OSes.	 Example
applications	 in	 over	 a	 dozen	 programming	 languages	 show	 how	 to
communicate	with	the	modules,	source	code	included.
One	 of	 many	 modules	 offered,	 the	 1018	 Phidget	 Interface	 Kit	 board	 has	 8
digital	 inputs,	 8	 analog	 inputs,	 and	 8	 digital	 outputs.	 The	 board	 contains	 a
Cypress
CY7C64215	 enCoRe	 III	 full-speed	 USB	 controller,	 a	 Microchip	 MCP23S17
16-Bit	I/O	expander,	and	a	Microchip	MCP3008	10-bit	ADC.
Another	 option	 for	 digital	 I/O	 is	 the	modules	 from	FTDI	 described	 later	 in
this	chapter.
Some	development	boards	can	store	and	run	firmware	that	you	provide,	much
like	manufacturers’	development	boards	but	with	advantages	that	may	include
lower	cost,	a	more	compact	design,	or	other	features.
The	BeagleBone	Black	(Figure	6-3)	 is	an	example	of	a	 low-cost,	community-
supported	 development	 platform	 that	 can	 run	 Linux	 and	 other	 OSes.	 The
board	uses	a	Texas	Instruments	Sitara	ARM	Cortex-A8	processor,	which	has
two	high-speed	OTG	ports.	On	the	BeagleBone	Black	board,	one	OTG	port	is
configured	 as	 a	 dedicated	 host	 port	 with	 a	 Standard-A	 receptacle,	 and	 one

OTG	port	is	configured	as	a	dedicated	device	port	with	a	Mini-B	receptacle.
The	Linux	 gadget	 driver	 can	 configure	 the	device	port	 to	perform	a	 specific
function.	 The	 Multifunction	 Composite	 Gadget	 (g_multi)	 implements	 a
composite	 USB	 device	 with	 mass	 storage,	 virtual	 serial	 port,	 and	 Ethernet
bridge	functions.	Chapter	21	has	more	about	host	ports	on	embedded	systems.

Figure	 6-2.	 The	 Phidget	 Interface	 Kit	 (top)	 attaches	 to	 a	 USB	 host	 that	 can
monitor	and	control	I/O	modules	and	other	components	(bottom).

USB	microcontrollers
If	 you	have	a	 favorite	CPU	 family,	 the	chances	are	good	 that	 a	USB-capable
variant	 is	available.	For	common	applications	such	as	keyboards,	drives,	and
interface	 converters,	 application-specific	 controllers	 include	 hardware	 to
support	 a	 particular	 application.	 Chapter	 7	 has	 more	 about	 controllers	 for
specific	applications.

The	 following	descriptions	 of	 a	 selection	of	USB	 controllers	with	 embedded
CPUs	will	give	an	idea	of	the	range	of	chips	available.	The	chips	described	are
a	 sampling,	 and	 new	 chips	 are	 being	 released	 all	 the	 time,	 so	 for	 any	 new
project,	check	the	latest	offerings.

Figure	 6-3.	The	BeagleBone	Black	 can	 function	 as	 a	USB	device	 and	 as	 a	USB
host.

Microchip	PIC18
Microchip	 Technology’s	 PIC	microcontrollers	 are	 popular	 due	 to	 their	 low
cost,	 wide	 availability,	 large	 selection,	 good	 performance,	 and	 low	 power
consumption.	One	of	Microchip’s	many	offerings	is	the	PIC18F46J50	low-	and
full-speed	controller.

Architecture
The	PIC18F46J50	is	a	member	of	Microchip’s	high-performance,	low-cost,	8-
bit	PIC18	series.	Firmware	resides	in	64	KB	of	flash	memory.	The	chip	also	has
3.8	KB	of	RAM.	A	bootloader	routine	can	upgrade	firmware	via	the	USB	port.
The	 chip	 has	 35	 I/O	 pins	 with	 capabilities	 that	 include	 a	 13-channel	 10-bit
analog-to-digital	converter,	two	Enhanced	USART	modules,	two	synchronous
serial	ports	 that	can	be	configured	to	use	I2C	or	SPI,	an	8-bit	parallel	port,	a
charge	time	measurement	unit	(CTMU)	for	touch	sensing,	and	two	modules
that	can	function	as	capture	or	compare	registers	or	pulse-width-modulation
(PWM)	outputs,	and	two	analog	comparators.
The	USB	module	and	CPU	can	use	separate	clock	sources,	enabling	the	CPU
to	use	a	slower,	power-saving	clock.

USB	controller
The	 USB	 controller	 supports	 all	 four	 transfer	 types	 and	 up	 to	 30	 endpoint
addresses	plus	 the	default	 endpoint.	The	endpoints	 share	3.8	KB	of	memory
designated	as	USB	RAM.	Transfers	can	use	double	buffering.	For	isochronous
transfers,	USB	data	can	transfer	directly	to	and	from	a	streaming	parallel	port.
For	each	enabled	endpoint	address,	the	firmware	must	reserve	RAM	for	a	data
buffer	 and	 a	 Buffer	Descriptor	 (BD).	 The	 Buffer	Descriptor	 consists	 of	 four
registers.	 Firmware	 can	 access	 the	 registers’	 contents	 as	 a	 structure,	 a	 single
32-bit	value,	or	a	byte	array	(Listing	6-1).
The	status	register	contains	status	information	and	the	two	highest	bits	of	the
endpoint’s	byte	count.	The	byte-count	register	plus	the	two	bits	 in	the	status
register	contain	the	number	of	bytes	sent	or	ready	to	send	in	an	IN	transaction
or	 the	 number	 of	 bytes	 expected	 or	 received	 in	 an	 OUT	 transaction.	 The
address-low	 and	 address-high	 registers	 contain	 the	 starting	 address	 for	 the
endpoint’s	data	buffer	in	USB	RAM.
The	microcontroller’s	CPU	and	 the	USB	SIE	 share	access	 to	 the	buffers	 and
buffer	 descriptors.	 A	 UOWN	 bit	 in	 the	 buffer	 descriptor’s	 status	 register
determines	whether	 the	CPU	or	SIE	owns	a	buffer	 and	 its	buffer	descriptor.
The	SIE	has	ownership	when	the	endpoint	has	data	that	is	ready	to	transmit	or
the	 endpoint	 is	 waiting	 to	 receive	 data	 on	 the	 bus.	 When	 the	 SIE	 has
ownership,	 firmware	 shouldn’t	 attempt	 to	 access	 the	 buffer	 or	 buffer
descriptor	 except	 to	 read	 the	 UOWN	 bit.	 When	 readying	 an	 endpoint	 to
perform	a	transfer,	the	last	operation	the	firmware	should	perform	is	to	update
the	status	register	to	set	UOWN,	which	passes	ownership	to	the	SIE.	When	a
transaction	completes,	the	SIE	clears	the	UOWN	bit,	passing	ownership	back
to	the	CPU	for	firmware	control.
Each	 endpoint	 number	 also	 has	 a	 control	 register	 that	 can	 enable	 a	 control
endpoint,	 an	 IN	 endpoint,	 an	 OUT	 endpoint,	 or	 a	 pair	 of	 IN	 and	 OUT
endpoints	with	the	same	endpoint	number.	Other	bits	in	the	register	can	stall
the	endpoint	and	disable	handshaking	(for	isochronous	transactions).
Additional	 registers	 store	 the	 device’s	 bus	 address	 and	 status	 and	 control
information	for	USB	communications	and	interrupts.
This	chip	is	just	one	example	of	dozens	of	Microchip’s	microcontrollers	with
USB	support.	Also	available	are	16-	and	32-bit	controllers	and	controllers	with
different	options	for	I/O	and	memory.

Programming	support
The	Microchip	Libraries	 for	Applications	 include	USB	Framework	 firmware
libraries	and	demo	projects	for	USB	communications.	The	firmware	is	written
for	Microchip’s	MPLAB	XC	compilers.	The	Framework	handles	general	USB
tasks	and	some	class-specific	tasks.	The	files	may	require	only	minor	changes
and	 additions	 for	 a	 specific	 application.	 Provided	 example	 projects	 include
joystick,	 keyboard,	 mouse,	 custom	 HID,	 mass	 storage,	 virtual	 serial	 port,
audio,	 and	 vendor-defined	 device.	 You	 can	 run	 the	 example	 code	 on
Microchip	development	boards	or	other	hardware.

//	A	Buffer	Descriptor	holds	4	bytes.

//	This	union	enables	firmware	to	access	the	bytes	in	different	ways.

typedef	union	__BDT

{

struct //	Four	8-bit	variables.

{

BD_STAT	STAT; //	Status	byte	structure

BYTE	CNT; //	Byte	count,	bits	0-7

BYTE	ADRL; //	Endpoint	address	in	RAM,	low	byte

BYTE	ADRH; //	Endpoint	address	in	RAM,	high	byte

};

struct //	The	endpoint	address	in	RAM

{

unsigned	:8; 	

unsigned	:8; 	

BYTE*	ADR; //	Address	pointer

};

DWORD	Val; //	One	32-bit	value.

BYTE	v[4]; //	4-byte	array.

}	BDT_ENTRY;

Listing	6-1:	Firmware	for	Microchip’s	controllers	can	use	structures	to	represent
the	contents	of	an	endpoint’s	Buffer	Descriptor.	(Part	1	of	2)

//	This	union	represents	the	Buffer	Descriptor	Table’s	8-bit	status

//	register	in	a	variety	of	ways.

typedef	union	_BD_STAT

{

BYTE	Val; //	Byte	variable

struct //	Bit	values	if	the	CPU	owns	the	buffer.

{

unsigned	BC8:1; //	Byte	count,	bit	8

unsigned	BC9:1; //	Byte	count,	bit	9

unsigned	BSTALL:1; //	Buffer	stall	enable

unsigned	DTSEN:1; //	Data	toggle	synchronization	enable

unsigned	INCDIS:1; //	Address	increment	disable

unsigned	KEN:1; //	Buffer	descriptor	keep	enable

unsigned	DTS:1; //	Data	toggle	synchronization	value

unsigned	UOWN:1; //	USB	ownership

};

struct //	Bit	values	if	the	USB	module	owns	the	buffer.

{

unsigned	BC8:1; //	Byte	count,	bit	8

unsigned	BC9:1; //	Byte	count,	bit	9

unsigned	PID0:1; //	PID,	bit	0

unsigned	PID1:1; //	PID,	bit	1

unsigned	PID2:1; //	PID,	bit	2

unsigned	PID3:1; //	PID,	bit	3

unsigned	:1; 	

unsigned	UOWN:1; //	USB	Ownership

};

struct //	The	4-bit	PID

{

unsigned	:2;

unsigned	PID:4;

unsigned	:2;

};

}	BD_STAT;

Listing	6-1:	Firmware	for	Microchip’s	controllers	can	use	structures	to	represent
the	contents	of	an	endpoint’s	Buffer	Descriptor.	(Part	2	of	2)

A	 free	 edition	 of	 the	 compiler	 offers	 unrestricted	 use	 but	with	 optimization
features	 enabled	 for	 60	 days	 only.	Other	C	 compiler	 options	 are	 the	CCS	C
compiler	 from	 CCS,	 Inc.	 and	 the	 HI-TECH	 C	 compiler	 from	 HI-TECH
Software.

Cypress	EZ-USB
Controllers	 in	Cypress	 Semiconductor’s	 EZ-USB	 family	 support	 a	 variety	 of
options	for	storing	firmware,	 including	the	ability	to	 load	firmware	from	the
host	on	every	power-up	or	attachment.

Architecture
The	 EZ-USB	 controllers	 include	 the	 full/high	 speed	 FX2LP	 and	 the
SuperSpeed	FX3.	The	 FX2LP	uses	 an	 8051-compatible	 instruction	 set,	while

the	FX3	has	a	32-bit	ARM9	core.
In	EZ-USB	controllers,	all	of	 the	code	and	data	memory	is	 in	 internal	RAM.
The	 chips	 have	 no	 non-volatile	 memory	 for	 storing	 vendor	 firmware.
However,	 the	controllers	can	load	firmware	from	external	memory	or	a	USB
host.	If	no	external	source	of	firmware	is	provided,	the	controller	enumerates
as	 a	 vendor-defined	 device	 that	 uses	 a	 host	 driver	 provided	 by	 Cypress	 to
download	firmware	to	the	device.
The	FX3’s	USB	port	 can	operate	 as	 a	 device	 port	 that	 supports	 SuperSpeed,
high	speed,	and	full	speed	or	as	an	OTG	port	that	also	supports	high,	full,	and
low	speeds	when	operating	as	a	host.
The	 controller	 has	 a	 GPIF	 II	 general	 programmable	 interface	 that	 can
communicate	 with	 an	 external	 processor,	 FPGA,	 or	 image	 sensors.	 The
interface	can	use	an	8-,	16-,	24-,	or	32-bit	data	bus.	The	chip	also	has	UART,
I2C,	SPI,	and	I2S	(Integrated	Interchip	Sound)	serial	interfaces	and	256	KB	or
512	KB	of	RAM	for	firmware	and	data.
The	 FX2LP	 supports	 full	 and	 high	 speeds,	 has	 16	 KB	 of	 RAM,	 and	 doesn’t
have	the	host/OTG	port	or	I2S	and	SPI	interfaces.

USB	controller
The	EZ-USB	family’s	many	options	for	storing	firmware	make	the	chips	very
flexible	but	also	make	the	USB	architecture	and	protocols	more	complex.
On	the	FX3,	on	power-on	reset	or	device	reset,	three	PMODE	pins	determine
the	source	of	 firmware	to	 load	and	run.	Depending	on	the	states	of	the	pins,
the	controller’s	embedded	bootloader	may	attempt	to	read	firmware	from	the
GPIF	 II,	 I2C,	 SPI,	 or	 USB	 interface	 (Table	 6-1).	 For	 example,	 an	 external
processor	 or	FPGA	may	provide	 firmware	 via	 the	GPIF	 II	 interface,	 a	 serial
EEPROM	 containing	 firmware	 may	 use	 I2C,	 a	 serial	 EEPROM	 or	 flash
memory	may	use	SPI,	or	a	USB	host	may	send	firmware	to	the	USB	port.

Table	6-1:	The	EZ-USB	FX3’s	PMODE	inputs	determine	the	source	for	loading
firmware.
PMODE	Bit Boot	Source

2 1 0

float 0 0 GPIF	II,	Sync	ADMux

float 0 1 GPIF	II,	Async	ADMux

float 1 1 USB

float 0 float GPIF	II,	Async	SRAM

float 1 float I2C,	on	failure,	USB

1 float float I2C

0 float 1 SPI,	on	failure,	USB

To	load	firmware	using	USB,	the	FX3’s	embedded	bootloader	first	enumerates
the	device	as	a	full-	or	high-speed	USB	device	with	a	Cypress	Vendor	ID	and
Product	 ID.	 To	 load	 vendor	 firmware,	 a	 driver	 provided	 by	 Cypress	 uses
vendor-defined	 requests	 to	 initiate	 sending	 new	 firmware	 to	 the	 device.
Additional	requests	cause	the	device	firmware	to	emulate	detach	and	reattach
by	 electrically	 disconnecting	 and	 reconnecting	 to	 the	 bus.	On	 reconnecting,
the	device	enumerates	using	the	newly	loaded	firmware.
The	 firmware	must	be	embedded	 in	a	defined	structure	 that	begins	with	 the
signature	“CY”	in	ASCII	text	and	contains	a	checksum	and	other	information.
The	GPIF	II	interface	can	use	any	of	three	modes.	The	synchronous	ADMux
interface	uses	a	clock	input	to	the	FX3	to	control	synchronous	data	transfers.
The	asynchronous	ADMux	interface	(multiplexed	address	and	data	lines)	uses
read	 and	 write	 strobes	 rather	 than	 a	 clock	 to	 control	 data	 transfers.	 The
asynchronous	SRAM	interface	uses	the	industry-standard	SRAM	bus.
The	FX2LP	supports	fewer	firmware	sources:	the	controller	can	load	firmware
from	external	EEPROM	or	a	USB	host	or	use	internal	ROM.	Instead	of	using
PMODE	 pins,	 the	 controller	 determines	 the	 source	 of	 the	 firmware	 by
examining	the	initial	bytes	in	an	external	EEPROM,	if	present,	and	the	state	of
the	chip’s	EA	(external	access)	input.

Programming	support
Firmware	 development	 for	 the	 FX3	 can	 use	 the	 free,	 open-source	 GNU
Toolchain	and	Eclipse	IDE.	The	FX3	software	development	kit	(SDK)	includes
libraries	of	firmware	APIs	and	sample	code	for	many	USB	device	classes.	The
libraries	 support	 USB	 operation	 as	 a	 device,	 host,	 and	 OTG	 device.	 For
efficient	 task	management,	 the	 libraries	 incorporate	 functions	of	 the	Express
Logic	 ThreadX	 real-time	 OS	 (RTOS),	 which	 user	 programs	 can	 use	 at	 no
additional	cost.	A	JTAG	port	enables	debugging	with	an	external	JTAG	probe.

Figure	 6-4.	 Cypress	 Semiconductor’s	 FX3	 SuperSpeed	 Explorer	 Kit	 is	 an
inexpensive	way	to	get	started	with	SuperSpeed	projects.

The	 SDK’s	 Control	 Center	 application	 enables	 loading	 firmware	 and
programming	EEPROMs	for	both	the	FX3	and	FX2LP.
For	 creating	 host	 applications,	 the	 FX3	 SDK	 provides	 a	 generic	USB	 device
driver,	a	 .NET	managed	class	 library,	and	sample	code.	The	SDK	has	similar
host	support	for	Linux	and	Apple	OS.
An	excellent	guide	 to	programming	 the	FX3	 is	SuperSpeed	Device	Design	By
Example	 by	 John	 Hyde.	 Cypress	 offers	 an	 inexpensive	 FX3	 SuperSpeed
Explorer	kit	(Figure	6-4).
For	the	FX2LP,	Cypress	provides	a	firmware	framework	that	uses	a	C	compiler
and	 IDE	 from	Keil	 Software.	 For	 host	 applications	 to	 access	 the	 device,	 the
support	is	similar	to	what	is	available	for	the	FX3.

ARM	processors
For	high-end	applications,	many	developers	 turn	 to	ARM	processors,	which
have	a	fast,	efficient,	32-	and	64-bit	RISC	architecture.	ARM	Holdings	licenses
intellectual	property	(IP)	cores	 to	chip	companies	 for	use	 in	 their	chips.	The
ARM	family	includes	a	range	of	cores	with	different	capabilities.
The	Texas	 Instruments	 Sitara	ARM	Cortex-A8	 in	 the	BeagleBone	Black	 and
the	Cypress	EX-USB	FX3	 controller	 described	 above	 are	 examples	 of	ARM-
based	USB	device	controllers.
Another	example	 is	Atmel’s	AT91SAM7S321.	The	chip	has	a	 full-speed	USB
device	port,	 32	KB	of	 flash	memory	 for	 firmware,	 and	8	KB	of	RAM.	Other

I/O	 includes	 an	 8-channel,	 10-bit	ADC	 and	 synchronous	 and	 asynchronous
serial	ports.	Programming	can	use	the	free	GNU	GCC	compiler	or	a	compiler
from	 IAR	 Systems.	 NXP	 Semiconductors	 also	 has	 ARM-based	 device
controllers.

Controllers	that	interface	to	CPUs
With	a	controller	that	interfaces	to	an	external	CPU,	just	about	any	CPU	can
communicate	 over	USB.	 Interface	 chips	 communicate	with	 the	 CPU	 over	 a
local	data	bus	that	may	use	a	serial	or	parallel	interface.	For	fast	transfers	with
external	memory,	 a	 chip	may	 support	 direct	memory	 access	 (DMA),	 which
can	read	or	write	blocks	of	data	without	CPU	intervention.	An	interrupt	pin
can	signal	the	CPU	when	the	controller	has	received	USB	data	or	is	ready	for
new	data	to	send.
Table	6-2	compares	a	selection	of	 interface	chips.	The	 following	descriptions
give	 an	 idea	 of	 the	 range	 of	 products	 available.	 The	 chips	 described	 are	 a
sampling,	and	new	chips	are	being	released	all	 the	 time,	 so	 for	new	projects,
check	the	latest	offerings.

Maxim	MAX3420E
Maxim’s	MAX3420E	is	a	full-speed	USB	interface	chip	with	hardware	support
for	SPI	communications	with	an	external	CPU.

Architecture
The	CPU	that	interfaces	to	the	MAX3420E	must	have	an	SPI	master	interface,
which	can	be	hardware	supported	or	 implemented	entirely	 in	 firmware.	The
SPI	bus	has	clock	and	select	outputs	on	the	CPU	and	either	one	data	 line	 in
each	 direction	 or	 one	 bidirectional	 data	 line.	 An	 interrupt	 output	 on	 the
MAX3420E	notifies	the	CPU	when	a	USB	event	has	occurred	that	requires	the
CPU’s	attention.
The	CPU	communicates	with	the	MAX3420E	by	accessing	a	series	of	registers
that	 configure	 the	 chip’s	 operation	 and	 enable	 reading	 and	 writing	 to	 USB
endpoints	and	general-purpose	I/O	bits.	To	access	a	register,	the	CPU	writes	a
command	 byte	 on	 the	 SPI	 bus.	 The	 command	 byte	 contains	 the	 register
number	 and	 direction	 of	 data	 flow.	 Following	 the	 command	 byte,	 the	 CPU
clocks	one	or	more	data	bytes	to	or	from	the	specified	register.

The	chip	has	four	general-purpose	inputs	and	four	general-purpose	outputs.

USB	controller
In	addition	 to	 control	 endpoint	 zero,	 the	 chip	 supports	 two	64-byte	double-
buffered	 interrupt	 or	 bulk	 OUT	 endpoints,	 two	 64-byte	 double-buffered
interrupt	or	bulk	IN	endpoints,	and	one	additional	64-byte	interrupt	or	bulk
IN	 endpoint.	 A	 separate	 8-byte	 buffer	 holds	 Setup	 data	 received	 in	 control
transfers.

Table	6-2:	These	USB	interface	chips	interface	to	an	external	CPU.
Company Chips CPU	Interface Bus	Speed

FTDI FT231X Asynchronous	serial Full

FT240X Parallel Full

FT2232H,	FT4232H Asynchronous	serial	and
parallel

High,	full

Maxim MAX3420E SPI Full

PLX	Technology NET2282 PCI High,	full

USB	3380 PCI	Express SuperSpeed,	high,	full

Programming	support
Maxim	 provides	 example	 C	 code	 for	 communicating	 with	 the	 MAX3420E
over	SPI,	including	enumerating	and	performing	other	USB	transfers.
An	 evaluation	 board	 connects	 to	 a	 Keil	 Software	 board	 that	 has	 a	 Philips
LPC2138	ARM7	processor	with	 two	 SPI	 ports.	 The	Keil	ULINK	 JTAG	unit
enables	loading	code	and	debugging.	Keil	provides	a	free	evaluation	version	of
the	compiler.	The	evaluation	board	also	contains	a	MAX3421E	USB	host	and
peripheral	controller,	which	can	use	the	same	setup	for	testing	and	debugging.

PLX	Technology	USB	3380
For	SuperSpeed	devices,	PLX	Technology	has	the	USB	3380	PCI	Express	Gen
2	 to	 USB	 3.0	 SuperSpeed	 peripheral	 controller.	 As	 the	 name	 suggests,	 the
controller	converts	between	the	PCI	Express	I/O	bus	and	USB.

Architecture
The	PCI	Express	interface	has	differential	pairs	for	data	and	a	reference	clock.
The	USB	3380	uses	 internal	RAM	to	 store	data	 received	on	 the	PCI	Express

interface	for	transmitting	via	USB	and	data	received	on	the	USB	interface	for
transmitting	 via	 PCI	 Express.	 A	 DMA	 controller	 manages	 the	 flow	 of	 data
between	RAM	and	the	PCI	Express	interface.	A	series	of	registers	contain	USB
configuration	data	and	status	and	control	information.	The	chip	also	has	four
general-purpose	I/O	pins.
The	 chip	 can	 interface	 to	 an	 external	 processor	 and	 can	 also	 operate
standalone	 using	 the	 embedded	 8051	microcontroller.	 An	 interface	 to	 serial
EEPROM	enables	storing	configuration	data	and	device	firmware.
For	 USB	 2.0	 designs,	 PLX	 Technology’s	 2282	 PCI	 to	 high-speed	 USB	 2.0
controller	has	a	similar	architecture	and	can	use	the	same	software	as	the	3380.

USB	controller
The	 USB	 3380’s	 USB	 controller	 supports	 SuperSpeed,	 high	 speed,	 and	 full
speed.	In	addition	to	endpoint	zero	and	eight	endpoint	addresses	for	general
device	use,	six	endpoint	addresses	have	dedicated	functions	for	accessing	the
chip’s	registers.

Programming	support
An	 SDK	 includes	 example	 C	 firmware	 for	 several	 USB	 device	 types.	 An
evaluation	board,	configured	as	a	PCI	Express	Gen	2	card,	contains	a	USB	3.0
device	port.

FTDI	interface	chips
Future	Technology	Devices	 International	 (FTDI)	offers	USB	controllers	 that
are	 useful	 for	 devices	 accessed	 as	 USB	 virtual	 serial	 ports	 as	 well	 as	 other
devices	 that	 don’t	 fit	 a	 defined	 USB	 class	 and	 that	 use	 only	 bulk	 or
isochronous	transfers.

Architecture
FTDI’s	 chips	 take	 a	 different	 approach	 to	 USB	 design.	 The	 chips	 handle
enumeration	 and	 other	 USB	 communications	 entirely	 in	 hardware.	 An
external	processor	uses	a	UART,	 I2C,	SPI,	or	parallel	 interface	 to	connect	 to
the	chip.
For	 example,	 the	 FT231X	 USB	 UART	 chip	 interfaces	 to	 an	 asynchronous
serial	(UART)	port	at	the	device’s	CPU.	The	FT231X	handles	all	of	the	USB-
specific	 protocols.	 To	 send	 data	 to	 the	 host	 computer,	 the	 CPU’s	 firmware

writes	data	 to	 the	FT231X’s	asynchronous	serial	port.	On	receiving	 the	data,
the	FT231X	makes	the	data	available	for	reading	by	the	host	on	the	USB	port.
When	 the	host	 computer	 sends	data	 to	 the	FT231X’s	USB	port,	 the	FT231X
makes	the	data	available	at	the	asynchronous	serial	port,	where	the	CPU	can
read	it.
Additional	FTDI	chips	function	in	a	similar	way	but	support	other	interfaces
to	 the	CPU.	On	 the	FT240X	USB	FIFO,	 the	CPU	 interface	 is	a	bidirectional
parallel	 port.	Other	 controllers	 support	 I2C	and	 SPI.	All	 of	 these	 controllers
support	full-speed	USB,	can	detect	a	USB	charging	port,	and	can	switch	from
data-transfer	to	charging	mode.
The	FT2232H	is	a	high-speed	version	with	two	ports	that	can	each	function	as
a	UART	or	parallel	port,	and	the	FT4232H	is	high	speed	with	four	ports.

USB	controller
Both	 the	FT231X	and	FT240X	have	a	512-byte	 transmit	 and	 receive	buffers.
The	chips	use	bulk	transfers	by	default	with	one	endpoint	for	each	direction.	A
driver	for	isochronous	transfers	is	also	available.
For	 easy	 prototyping,	 FTDI	has	modules	 (Figure	6-5)	 that	 each	 consist	 of	 a
circuit	 board	 with	 a	 controller	 chip,	 USB	 connector,	 and	 related	 circuits
mounted	on	a	dual	in-line	package	(DIP)	that	fits	breadboards	or	PC	boards.

Figure	 6-5.	 For	 easy	prototyping	with	FTDI’s	 controllers,	 use	modules	 such	 as
the	UMFT231XA	USB	 to	 full-handshake	UART	 development	module	 and	 the
UMFT240XA	USB	to	8-bit	245	FIFO	development	module.

Silicon	Laboratories	offers	a	similar	series	of	controllers	and	also	has	a	HID-
class	USB	to	UART	bridge	and	a	USB	to	I2S	digital	audio	bridge	controller.

Programming	support
On	 the	host	 computer,	 the	 chips	use	 a	driver	provided	by	FTDI.	The	driver
enables	applications	to	access	a	chip	as	a	USB	virtual	serial	port	or	by	using	a
driver-defined	API.
Many	USB/RS-232	adapters	contain	FTDI	chips.	If	you	have	an	existing	device
that	communicates	with	a	PC	using	RS-232,	the	FT231X	offers	a	quick	way	to
upgrade	to	USB.	In	most	cases,	using	an	FT231X	to	convert	an	RS-232	device
to	USB	requires	no	changes	 to	device	 firmware	or	host	application	software.
The	host	accesses	the	device	in	the	same	way	as	if	the	device	connected	via	an
RS-232	serial	port.
Host	software	can	access	an	FT240X	as	a	USB	virtual	serial	port	even	though
the	 chip	doesn’t	have	 an	asynchronous	 serial	port.	The	host	doesn’t	need	 to
know	what	lies	beyond	the	device’s	USB	port.
FTDI’s	controllers	contain	on-chip	EEPROM	or	MTP	memory	that	can	store
vendor-specific	 values	 for	 a	 Vendor	 ID,	 Product	 ID,	 serial-number	 string,
other	descriptive	strings,	and	values	that	specify	whether	the	device	is	bus-	or
self-powered.	 The	 controller	 uses	 default	 values	 for	 items	 that	 don’t	 have
stored	user	values.	FTDI	provides	a	utility	that	programs	the	information	into
the	on-chip	memory.	By	default,	the	chips	use	FTDI’s	Vendor	ID	and	Product
ID.	On	request,	FTDI	will	grant	the	right	for	your	device	to	use	their	Vendor
ID	 with	 a	 Product	 ID	 that	 FTDI	 assigns	 to	 you,	 or	 you	 can	 use	 your	 own
Vendor	ID	and	Product	ID.
The	 chips	 also	 support	 a	 Bit	 Bang	 mode,	 where	 the	 chip	 operates	 as	 a
standalone	 USB	 device	 without	 requiring	 a	 connection	 to	 a	 device	 CPU.	 A
host	computer	can	monitor	and	control	I/O	bits	on	the	chip	to	control	LEDs,
relays,	or	other	circuits	and	read	switches	and	logic-gate	outputs.

7

Device	Classes
This	chapter	 is	an	introduction	to	the	defined	USB	classes,	 including	how	to
determine	if	a	new	design	can	fit	a	defined	class.

Purpose
Most	 USB	 devices	 have	much	 in	 common	 with	 other	 devices	 that	 perform
similar	functions.	Mice	send	data	about	mouse	movements	and	button	clicks.
Drives	 transfer	 files.	Printers	receive	data	 to	print	and	 inform	the	host	when
they’re	out	of	paper.
When	 devices	 provide	 or	 request	 similar	 services,	 it	 makes	 sense	 to	 define
protocols	for	all	of	the	devices	to	use.	A	class	specification	can	serve	as	a	guide
for	programmers	who	write	device	firmware	or	drivers	for	host	systems.	OSes
can	provide	class	drivers,	eliminating	the	need	for	vendors	to	provide	drivers
for	devices	in	supported	classes.
When	a	device	in	a	supported	class	has	features	or	abilities	not	included	in	a
class	 driver,	 a	 device	 often	 can	 use	 the	 class	 driver	 along	 with	 a	 vendor-
provided	filter	driver	to	support	the	added	features	and	abilities.
If	a	device	fits	a	class	that	the	target	OS	doesn’t	support,	the	device	vendor	can
provide	 a	 class	driver	 and	device	 firmware	 that	 is	 compatible	with	 the	 class.
Then	if	a	future	edition	of	the	operating	system	supports	the	class,	the	device
is	likely	to	be	able	to	use	the	system-provided	driver.

Approved	specifications
The	USB-IF	sponsors	device	working	groups	that	develop	class	specifications
that	 cover	most	 common	device	 functions.	Table	7-1	 shows	 the	 classes	with
specifications	approved	by	 the	USB-IF.	The	hub	class	 is	defined	 in	 the	main
USB	2.0	and	USB	3.1	specifications	rather	than	in	a	separate	document.	Every
host	must	support	the	hub	class	because	the	host	requires	a	root	hub	to	do	any
communications.

Some	classes	are	defined	by	companies	or	organizations	other	than	the	USB-
IF.	For	example,	Bluetooth	USB	specifications	are	available	from	the	Bluetooth
Special	Interest	Group.	Chapter	4	listed	all	of	the	class	codes	that	can	appear	in
device	and	interface	descriptors.
Windows	 provides	 drivers	 for	 many	 classes.	 As	 OS	 and	 class	 specifications
have	evolved,	the	number	of	supported	classes	has	increased,	and	the	support
for	many	classes	has	become	more	robust.	For	some	classes,	such	as	the	device
firmware	 upgrade	 class,	Windows	 hasn’t	 provides	 a	 driver	 even	 though	 the
specification	has	been	available	for	many	years.

Elements	of	a	class	specification
A	 class	 specification	 defines	 the	 number	 and	 type	 of	 required	 and	 optional
endpoints	 for	devices	 in	 the	 class.	The	 specification	may	also	define	 formats
for	 data	 to	 be	 transferred	 including	 application	 data	 and	 status	 and	 control
information.	 Some	 class	 specifications	 also	 define	 uses	 for	 the	 data	 being
transferred.	 For	 example,	 the	HID	 class	 has	 usage	 tables	 that	 define	 how	 to
interpret	data	sent	by	keyboards,	mice,	and	joysticks.	Some	classes	use	USB	to
transfer	data	in	a	format	defined	by	another	specification.	An	example	is	the
SCSI	commands	used	by	mass-storage	devices.
A	 class	 specification	 can	define	 values	 for	 fields	 in	 standard	descriptors	 and
may	also	define	class-specific	descriptors,	interfaces,	and	control	requests.	For
example,	the	device	descriptor	for	a	hub	includes	a	bDeviceClass	value	of	0x09
to	indicate	that	the	device	belongs	to	the	hub	class.	The	hub	must	have	a	class-
specific	hub	descriptor	with	bDescriptorType	=	0x29.	Hubs	must	also	support
class-specific	requests.	When	the	host	sends	a	Get	Port	Status	request	to	a	hub
with	 a	 port	 number	 in	 the	 Index	 field,	 the	 hub	 responds	 with	 status
information	for	the	port.	A	class	may	also	require	a	device	to	support	specific
endpoints	 or	 comply	 with	 tighter	 timing	 for	 standard	 requests.	 Chapter	 4
showed	how	the	device	or	interface	descriptor	declares	a	class.

Table	7-1:	These	device	types	have	approved	USB	class	specifications.
Class Class	Code Descriptor	Where	Class	Is

Declared
Windows	Support?

Audio 0x01 Interface yes

Audio/Video 0x21 Interface no

Billboard 0x11 Device	or	BOS no

Communication
(CDC)

0x02 Device	or	interface yes

Content	security 0x0D Interface no

Device	firmware
upgrade	(DFU)

0xFE,
bInterfaceSubclass	=	0x01

Interface	(subclass	of
Application	Specific	Interface)

no

Hub 0x09 Device yes

Human	interface
(HID)

0x03 Interface yes

IrDA	bridge 0xFE,
bInterfaceSubclass	=	0x02

Interface	(subclass	of
Application	Specific	Interface)

no

Mass	storage 0x08 Interface yes

Personal	healthcare 0x0F Interface	(preferred)	or	device no

Printer 0x07 Interface yes

Smart	card 0x0B Interface yes

Still	image	capture 0x06 Interface yes

Test	and
measurement

0xFE,
bInterfaceSubclass	=	0x03

Interface	(subclass	of
Application	Specific	Interface)

no

Video 0x0E Interface yes

Defined	classes
The	 following	 sections	 introduce	 the	 classes	 defined	 by	 the	 USB-IF.	 The
descriptions	can	serve	as	a	guide	to	deciding	whether	a	new	design	can	use	a
defined	 class	 and	 if	 so,	 what	 device	 controllers	 to	 consider	 and	 what	 host
drivers	 are	 available.	 For	 more	 information	 about	 a	 class,	 consult	 the	 class
specification.

Audio
The	 audio	 class	 encompasses	 devices	 that	 send	 or	 receive	 encoded	 voice,
music,	 or	 other	 sounds.	Audio	 functions	 are	often	part	 of	 a	device	 that	 also
supports	video,	storage,	or	other	functions.	Devices	in	the	audio	class	can	use
isochronous	 transfers	 for	 audio	 streams	 or	 bulk	 transfers	 for	 data	 encoded
using	the	MIDI	(Musical	Instrument	Digital	Interface)	protocol.
Version	 2.0	 of	 the	 audio	 class	 specification	 retains	much	 of	 the	 framework
defined	 in	 version	 1.0	 but	 is	 not	 backwards	 compatible.	 In	 other	words,	 an
audio	 2.0	 device	 can’t	 use	 an	 audio	 1.0	 host	 driver.	 Version	 2.0	 adds	 full

support	 for	 high	 speed,	 requires	 use	 of	 the	 interface	 association	 descriptor,
and	defines	new	capabilities	and	controls.

Documentation
The	audio	specification	consists	of	the	main	class	specification	and	supporting
documents	 for	 audio	 data	 formats,	 terminal	 types,	 and	 MIDI	 devices.	 The
MIDI	 standard	 is	 available	 from	 the	 MIDI	 Manufacturers	 Association
(midi.org).

Overview
Each	audio	function	in	a	device	has	an	Audio	Interface	Collection	that	consists
of	 one	 or	 more	 interfaces.	 The	 interfaces	 include	 one	 AudioControl	 (AC)
interface,	 zero	 or	 more	 AudioStreaming	 (AS)	 interfaces	 and	 zero	 or	 more
MIDIStreaming	 (MS)	 interfaces	 (Figure	 7-1).	 In	 other	 words,	 every	 Audio
Interface	 Collection	 has	 an	 AudioControl	 interface,	 while	 AudioStreaming
and	MIDIStreaming	interfaces	are	optional.
In	 audio	 2.0	 devices,	 an	 interface	 association	 descriptor	 (IAD)	 specifies	 the
interfaces	that	belong	to	a	collection.	In	audio	1.0	devices,	a	class-specific	AC
interface	header	descriptor	contains	this	information.
An	 AudioControl	 interface	 can	 enable	 accessing	 controls	 such	 as	 volume,
mute,	 bass,	 and	 treble.	An	AudioStreaming	 interface	 transfers	 audio	data	 in
isochronous	transfers	and	may	also	carry	control	data	related	to	the	streaming
data.	A	MIDIStreaming	interface	transfers	MIDI	data.
MIDI	 is	 a	 standard	 for	 controlling	 synthesizers,	 sound	 cards,	 and	 other
electronic	 devices	 that	 generate	 music	 and	 other	 sounds.	 A	 MIDI
representation	of	a	sound	includes	values	for	pitch,	length,	volume,	and	other
characteristics.	A	pure	MIDI	hardware	interface	carries	asynchronous	data	at
31.25	kbps.	A	USB	interface	that	carries	MIDI	data	uses	the	MIDI	data	format
but	instead	of	using	an	asynchronous	interface,	 the	MIDI	data	travels	on	the
bus	in	bulk	transfers.

http://midi.org

Figure	7-1.	Each	audio	function	has	an	Audio	Interface	Collection	that	contains
one	or	more	interfaces.

A	device	can	have	multiple	Audio	Interface	Collections	 that	are	active	at	 the
same	time,	with	each	collection	controlling	an	independent	audio	function.

Descriptors
Each	audio	interface	uses	standard	and	class-specific	descriptors	to	enable	the
host	 to	 learn	 about	 the	 interface,	 its	 endpoints,	 and	 what	 kinds	 of	 data	 the
endpoints	 transfer.	 The	 specification	 defines	 a	 variety	 of	 class-specific
descriptors	 that	 provide	 information	 specific	 to	 audio	 functions.	 Audio	 1.0
endpoint	descriptors	have	two	additional	bytes	that	follow	the	7	bytes	defined
for	 endpoint	 descriptors	 in	 the	 USB	 2.0	 specification.	 Audio	 2.0	 endpoint
descriptors	use	the	standard	7-byte	structure.

Class-specific	requests
The	audio	class	provides	optional	class-specific	requests	for	setting	and	getting
the	state	of	audio	controls	and	exchanging	generic	data.

Chips
Some	USB	controllers	have	built-in	support	for	audio	functions.	The	support
may	include	codec	functions,	analog-to-digital	converters	(ADCs),	digital-to-
analog	 converters	 (DACs),	 and	 support	 for	 Sony/Philips	 Digital	 Interface
(S/PDIF)	encoding	for	transmitting	audio	data	in	digital	format.
Texas	 Instruments	 has	 a	 variety	 of	 USB	 audio	 chips.	 The	 PCM2903C	 is	 a
stereo	audio	codec	with	a	full-speed	USB	port	and	16-bit	ADC	and	DAC	and
S/PDIF	support.	The	chip	has	an	AudioControl	interface,	an	AudioStreaming
interface	for	each	direction,	and	a	HID	interface	that	reports	the	status	of	three
parameters.	 The	 USB	 protocol	 controller	 requires	 no	 vendor-provided

firmware.	 The	 PCM2705C	 is	 a	 16-bit	 stereo	 DAC	 with	 a	 full-speed	 USB
interface.	 The	 chip	 can	 accept	 data	 sampled	 at	 48,	 44.1,	 and	 32	 kHz	 and
supports	 digital	 attenuation	 and	 mute.	 The	 TUSB3200A	 USB	 streaming
controller	 contains	 an	 8052-compatible	microcontroller	 that	 supports	 up	 to
seven	IN	endpoints	and	seven	OUT	endpoints.	The	audio	support	includes	a
codec	 port	 interface,	 a	 DMA	 controller	 with	 four	 channels	 for	 streaming
isochronous	data	packets	 to	and	 from	the	codec	port,	 and	a	phase	 lock	 loop
(PLL)	and	adaptive	clock	generator	(ACG)	to	support	synchronization	modes.

Host	support
Windows	 supports	 USB	 Audio	 1.0	 and	 Microsoft’s	 Universal	 Audio
Architecture	(UAA),	which	provides	audio	support	and	defines	requirements
for	devices	that	will	use	the	OS’s	audio	drivers.	All	devices	that	are	compatible
with	the	USB	audio	class	system	driver	(usbaudio.sys)	are	UAA	compliant.
For	 programmers,	 the	 Microsoft	 Media	 Foundation	 provides	 APIs	 for
programming	 audio	 functions.	 For	 programming	 high-performance	 games,
XAudio2	 has	 APIs	 for	 generating	 audio	 with	 low	 latency.	 Both	 Media
Foundation	 and	 XAudio2	 are	 included	 in	 the	 Windows	 SDK	 and	 use
unmanaged	code.
XMOS’s	 xCORE-USB	microcontroller	 family	 supports	 USB	 Audio	 2.0,	 and
XMOS	 provides	 a	 driver	 for	 Windows.	 Thesycon	 Systemsoftware	 &
Consulting	GmbH	 (yes,	 that	 spelling	 is	 correct!)	 has	 a	USB	Audio	 2.0	Class
Driver	for	Windows.

Audio/Video
The	 audio/video	 (AV)	 class	 specifies	methods	 for	 communicating	with	USB
video	displays	and	other	devices	that	have	audio	and	video	functions.	Uses	for
the	 AV	 class	 include	 connecting	 monitors	 to	 PCs	 and	 smart	 phones	 and
connecting	media	players	and	smart	phones	to	TVs.

Documentation
The	 specification’s	 documents	 include	 an	 AV	 function	 definition,	 format
definitions,	 and	 an	 XML	 schema	 that	 defines	 the	 format	 for	 the	 AV
Description	Document.

Overview
USB	has	had	a	defined	audio	class	since	1998	and	a	video	class	since	2003.	The

AV	class	specification,	released	in	2011,	encompasses	both	audio	and	video.
The	 class	 has	 a	 modular	 architecture	 that	 can	 accommodate	 basic,	 low-
resolution	devices	as	well	as	devices	that	are	feature-rich	and	high	resolution.
The	class	supports	robust	synchronizing	of	audio	and	video	and	compressed
and	uncompressed	data.
SuperSpeed,	 and	 especially	 SuperSpeedPlus,	 have	 the	 bandwidth	 to	 support
displays	with	resolutions	comparable	to	what	is	available	with	dedicated	video
interfaces	such	as	DisplayPort	and	HDMI.
An	 AV-class	 display	 appears	 to	 the	 USB	 host	 as	 a	 USB/DisplayPort	 or
USB/HDMI	 adapter	 with	 audio	 routed	 through	 the	 USB	 audio	 class	 using
dedicated	 endpoints.	The	host	driver	 can	 support	 content-security	 functions
using	high-bandwidth	digital	content	protection	(HDCP).
Every	AV	device	has	an	XML	document	called	the	AV	Description	Document
(AVDD).	 The	 AVDD	 conforms	 to	 the	 AVSchema,	 which	 is	 an	 XML
document	 that	 specifies	 the	 syntax	 and	 structure	 of	 the	 AVDD’s	 contents.
XML	is	better	suited	to	the	long,	complex	descriptors	of	AV	devices	compared
to	the	format	used	by	other	USB	descriptors.
The	 AVDD	 contains	 AVControls	 that	 provide	 access	 to	 the	 device’s
descriptors	and	audio,	video,	and	other	functions.	Each	AVControl	has	one	or
more	Properties	 that	 the	host	may	 access.	 For	 example,	 an	AVControl	 for	 a
video	function	might	provide	Properties	for	brightness	and	contrast.
To	get	and	set	Properties	and	receive	notifications,	the	host	issues	AVControl
Sequences.	 Most	 AVControl	 Sequences	 have	 two	 phases:	 the	 host	 sends	 a
Command	 Message,	 and	 the	 device	 executes	 the	 received	 command	 and
returns	 a	 Response	Message.	 Notify	 Control	 Sequences	 have	 a	 single	 phase
where	 the	device	 sends	 a	notification	 to	 the	host.	AVControl	 Sequences	use
bulk	transfers.

Descriptors
Like	other	USB	devices,	an	AV	device	returns	a	set	of	descriptors	in	response
to	 Get	 Descriptor	 requests.	 However,	 in	 the	 AV	 class,	 these	 descriptors
typically	support	a	subset	of	device	capabilities	and	are	intended	for	use	only
during	 boot-up	 or	 other	 times	when	 the	 complete	AV	driver	 isn’t	 available.
The	specification	calls	these	descriptors	Legacy	View	descriptors.
A	device	declares	 an	AV	 function	 in	one	or	more	 interface	descriptors.	The

AVControl	interface	descriptor	is	the	top-level	descriptor	for	the	AV	function.
Interface	descriptors	 for	AV	devices	don’t	conform	to	 the	 standard	 interface
descriptor	 format	 and	 thus	 use	 class-specific	 codes	 in	 the	 bDescriptorType
field.	 In	 the	 AVControl	 interface	 descriptor,	 bDescriptorType	 =	 0x21	 to
specific	 the	 AVCONTROL_IF	 descriptor	 type.	 An	 interface	 association
descriptor	associates	any	additional	interfaces	with	the	function.
The	device’s	complete	descriptor	set	is	in	the	AVDD.	Every	AV	device	has	an
AVDD	Info	Control	with	a	Property	that	holds	the	length	of	the	AVDD	and
an	AVDD	Content	Control	with	a	Property	that	holds	the	complete	AVDD	in
XML	format.
To	 retrieve	 the	 AVDD,	 the	 host	 first	 issues	 a	 Get	 Control	 Sequence	 to	 the
AVDD	Info	Control,	and	the	device	returns	the	length	of	the	AVDD.	The	host
then	 issues	 a	Get	Control	 Sequence	 to	 the	AVDD	Content	Control,	 and	 the
device	returns	the	AVDD	in	XML	format.

Class-specific	requests
The	class	has	no	class-specific	control	requests.

Chips
Fresco	Logic	has	device	controller	silicon	with	AV	class	support.

Host	support
Windows	 doesn’t	 provide	 a	 driver	 for	 the	 AV	 class.	 A	 source	 for	 USB
computer	monitors	is	Lilliput	Electronics	Co.,	Ltd,	which	provides	a	vendor-
specific	driver.

Billboard
For	 a	 device	 that	 has	 no	 USB	 function	 but	 supports	 Alternate	 Modes	 as
defined	 in	 the	USB	Power	Delivery	Rev.	 2.0,	 v1.0	 specification,	 the	 billboard
class	enables	the	host	to	identify	the	device.

Documentation
The	 class	 specification	 is	 Universal	 Serial	 Bus	 Device	 Class	 Definition	 for
Billboard	Devices.	Revision	1.0	was	released	in	2014.

Overview
A	device	that	supports	one	or	more	Alternate	Modes	and	doesn’t	have	another

USB	 function	 must	 support	 the	 billboard	 class	 to	 identify	 the	 device.	 A
billboard	device	can	be	a	USB	device	or	a	Device	Container	that	supports	one
or	more	USB	functions	and	a	billboard	function.
A	standalone	billboard	device	has	only	a	control	endpoint.
Chapter	20	has	more	about	Alternate	Modes.

Descriptors
A	 billboard	 capability	 descriptor	 lists	 supported	 Alternate	 Modes	 and	 may
provide	a	string	for	each	mode.	The	descriptor	is	a	device	capability	descriptor
that	follows	a	BOS	descriptor	(see	Chapter	4).

Class-specific	Requests
The	class	has	no	class-specific	requests.

Chips
Just	 about	 any	 general-purpose	 device	 controller	 that	 supports	 USB	 Power
Delivery	 Rev.	 2.0,	 v1.0	 can	 support	 the	 class.	 The	 device	 must	 have	 a	 USB
Type-C	connector.

Host	Support
The	host	must	 support	USB	Power	Delivery	Rev.	 2.0,	 v1.0	 protocols	 and	 the
device’s	Alternate	Mode(s).

Communications
The	communications	device	class	(CDC)	encompasses	a	wide	range	of	devices
that	 perform	 telecommunications,	 networking,	 and	 other	 communication
functions	including	virtual	serial	ports.
Communications	data	 typically	uses	 an	 application-specific	 protocol	 such	 as
V.250	for	modem	control	or	Ethernet	for	network	data.

Documentation
Documentation	 for	 the	 communications	 class	 consists	 of	 a	 main	 class
specification	and	additional	specifications	for	some	subclasses.
A	derivative	of	 the	Hayes	AT	modem	command	set	 is	 codified	 in	 the	V.250
serial	 asynchronous	automatic	dialing	and	 control	 recommendation	 available
from	 the	 International	 Telecommunication	 Union	 (itu.int).	 The	 Ethernet
standard,	 IEEE	 802.3,	 is	 available	 from	 the	 IEEE	 (ieee.org).	 The	 Remote

http://itu.int
http://ieee.org

Network	Driver	 Interface	Specification	(RNDIS)	defines	a	protocol	 for	using
USB	 and	 other	 buses	 to	 configure	 network	 interfaces	 and	 carry	 Ethernet-
framed	 data.	 Remote	 NDIS	 is	 based	 on	 NDIS,	 which	 defines	 a	 protocol	 to
manage	 communications	 with	 network	 adapters	 and	 higher-level	 drivers.
NDIS	and	Remote	NDIS	are	from	Microsoft.

Overview
A	 communications	 device	 is	 responsible	 for	 device	 management,	 call
management	 if	needed,	and	data	 transmission.	Device	management	 includes
controlling	 and	 configuring	 a	 device	 and	 notifying	 the	 host	 of	 events.	 Call
management	 involves	 establishing	 and	 terminating	 phone	 calls	 or	 other
connections.	Not	all	devices	require	call	management.	Data	transmission	is	the
sending	and	receiving	of	application	data	such	as	phone	conversations	or	files
sent	over	a	modem	or	network.
The	 communications	 device	 class	 supports	 a	 number	 of	 models	 for
communicating.
These	models	are	targeted	mainly	for	phone	communications:

Public	switched	telephone	network	(PSTN)	devices	include	voice	modems,
telephones,	and	serial-emulation	(virtual	serial	port)	devices.	Some	devices
that	 exchange	 Ethernet-framed	 data	 use	 the	 PSTN	model	 with	 a	 vendor-
specific	protocol.
Asynchronous	transfer	mode	(ATM)	devices	include	ADSL	modems.
ISDN	devices	include	terminal	adapters	for	ISDN	lines.
Wireless	mobile	communications	(WMC)	devices	 include	cell	phones	and
other	multi-function	devices.

These	models	are	targeted	for	network	communications:
Ethernet	 emulation	model	 (EEM)	devices	 exchange	Ethernet-framed	data.
EEM	 devices	 use	 a	 single	 pair	 of	 bulk	 endpoints.	 Each	 EEM	 packet	 is
preceded	 by	 a	 2-byte	 header.	 EEM	 isn’t	 intended	 for	 devices	 that	 use
routing	or	Internet	connectivity.
Ethernet	 control	 model	 (ECM)	 devices,	 which	 include	 cable	 modems,
exchange	 Ethernet-framed	 data.	 Class-specific	 requests	 and	 notifications
manage	the	interface.
Network	control	model	(NCM)	devices	build	on	ECM	with	improvements
that	support	higher	data	rates.	NCM	devices	can	transfer	multiple	Ethernet

frames	in	a	single	bulk	transfer.
Mobile	 broadband	 interface	 model	 (MBIM)	 devices	 extend	 NCM	 with
support	 for	 more	 efficient	 transfers.	 Instead	 of	 Ethernet	 frames,	 MBIM
devices	 transfer	 raw	 IP	 packets.	 The	 model	 is	 intended	 for	 mobile
broadband	 networking	 devices.	With	 alternate	 interface	 settings,	 a	 device
can	support	both	NCM	and	MBIM.

Notifications,	which	announce	events	such	as	ring	detect	and	network	connect
or	disconnect,	can	travel	to	the	host	in	an	interrupt	or	bulk	pipe.	Most	devices
use	interrupt	pipes.	Each	notification	consists	of	an	8-byte	header	followed	by
a	variable-length	data	field.	Some	device	types	don’t	require	notifications.

Descriptors
A	CDC	device’s	descriptors	can	specify	the	communications	class	at	the	device
or	 interface	 level.	 If	 specified	at	 the	device	 level,	 all	of	 the	device’s	 interfaces
belong	 to	 the	 communications	 function.	 In	 the	 device	 descriptor,
bDeviceClass	=	0x02	 to	specify	CDC	(Figure	7-2).	 In	a	 composite	device,	 an
interface	association	descriptor	(IAD)	specifies	which	interfaces	belong	to	the
communication	function.
Every	 communications	 device	 must	 have	 an	 interface	 descriptor	 with
bInterfaceClass	 =	 0x02	 to	 indicate	 a	 Communication	 interface	 that	 handles
device	 management	 and	 call	 management.	 The	 bInterfaceSubClass	 field
specifies	 a	 communication	 model.	 Table	 7-2	 shows	 defined	 values	 for	 the
subclasses.	The	bInterfaceProtocol	 field	can	name	a	protocol	 supported	by	a
subclass.	Table	7-3	shows	defined	values	for	protocols.
Following	 the	 Communication	 interface	 descriptor	 is	 a	 class-specific
Functional	 descriptor	 consisting	 of	 a	Header	 Functional	 descriptor	 followed
by	one	or	more	descriptors	 (also	 called	Functional	 descriptors)	 that	 provide
information	about	a	communication	function.	Table	7-4	shows	defined	values
for	these	descriptors.
One	 of	 these	 descriptors,	 the	 Union	 Functional	 descriptor,	 has	 the	 special
function	 of	 defining	 a	 relationship	 among	 interfaces	 that	 form	 a	 functional
unit.	 The	 descriptor	 designates	 one	 interface	 as	 the	 master	 or	 controlling
interface,	which	can	send	and	receive	certain	messages	that	apply	to	the	entire
group.	For	example,	a	Communication	interface	can	be	a	master	interface	for
a	 group	 consisting	 of	 a	Communication	 interface	 and	 a	Data	 interface.	 The
interfaces	that	make	up	a	group	can	include	communications-class	interfaces

as	well	as	other	related	interfaces	such	as	audio	or	HID.
If	 the	 Communication	 interface	 has	 a	 bulk	 or	 interrupt	 endpoint	 for	 event
notifications,	the	endpoint	has	a	standard	endpoint	descriptor.

Figure	 7-2.	 A	 communications	 device	 provides	 interfaces	 for	 data	 and
notifications.

A	 communication-class	 device	 can	 also	 have	 an	 interface	 descriptor	 with
bInterface-Class	=	0x0A	to	indicate	a	Data	interface.	A	Data	interface	can	have
bulk	 or	 isochronous	 endpoints	 for	 carrying	 application	 data.	 Each	 of	 these
endpoints	has	a	standard	endpoint	descriptor.	Some	devices	use	other	class	or
vendor-specific	 interfaces	 for	 application	 data.	 For	 example,	 a	 phone	might

use	an	audio	interface	to	send	and	receive	voice	data.

Table	 7-2:	 In	 the	 Communication	 interface	 descriptor	 for	 a	 communication
device,	 the	 bInterfaceSubClass	 field	 indicates	 the	 communication	 model	 the
device	 supports.	 Information	 source:	Universal	 Serial	 Bus	 Class	Definitions	 for
Communications	Devices	Revision	1.2.
bInterface-
SubClass

Model Application

0x00 RESERVED none

0x01 PSTN	Direct	Line	Control	Model Telephone	modem	with	the	host
providing	any	data	compression	and
error	correction.	The	device	or	host	may
provide	modulation/demodulation	of	the
modem	data

0x02 PSTN	Abstract	Control	Model Telephone	modem	with	the	device
providing	any	data	compression,	error
correction,	and
modulation/demodulation	of	the	modem
data

0x03 PSTN	Telephone	Control	Model Telephone

0x04 ISDN	Multi-Channel	Control	Model ISDN	device	with	multiple,	multiplexed
channels

0x05 ISDN	CAPI	Control	Model ISDN	device	with	support	for
COMMON-ISDN-API	(CAPI)
commands	and	messages

0x06 ECM Cable	modem

0x07 ATM ADSL	modem

0x08 WMC	wireless	handset	control	model Logical	handset

0x09 WMC	device	management	model AT	commands	only

0x0A WMC	mobile	direct	line	model Migrates	some	functions	of	wireless
terminal	adapters	to	the	USB	host

0x0B WMC	OBEX	model Data	exchange	protocol

0x0C EEM Device	that	exchanges	Ethernet-framed
data

0x0D NCM Device	that	benefits	from	fast	transfers	of
Ethernet-framed	data

0x0E MBIM Mobile	broadband	networking	device

0x0F–0x7F Reserved Future	use

0x80–0xFE Vendor	specific Vendor	defined

A	 virtual	 serial-port	 device,	 also	 called	 virtual	 COM-port	 device,	 provides
serial	port	emulation.	Applications	can	use	serial-port	functions	to	access	the
device	in	the	same	way	as	if	the	device	connected	directly	to	an	RS-232	port	on
the	 PC.	 The	 device	 may	 also	 have	 an	 asynchronous	 serial	 interface	 that
communicates	 with	 other	 circuits,	 but	 the	 device	 doesn’t	 have	 to	 have	 an
asynchronous	interface	at	all.	The	USB	host	doesn’t	know	how	the	device	uses
the	virtual	serial	port	data.

Table	 7-3:	 In	 the	 descriptor	 for	 a	 Communication	 interface,	 the
bInterfaceProtocol	 field	 can	 indicate	 a	 protocol	 the	 communications	 model
supports.	 Information	 source:	 Universal	 Serial	 Bus	 Class	 Definitions	 for
Communications	Devices	Revision	1.2.
Code Description

0x00 Class-specific	protocol	not	required

0x01 AT	commands	(specified	in	ITU	V.250)

0x02–0x06 AT	commands	used	by	WMC	devices

0x07 Ethernet	Emulation	Model	(EEM)

0x08–0xFD Future	use

0xFE External	protocol.	The	commands	are	defined	by	a	command	set	functional
descriptor.

0xFF Vendor	specific

A	virtual	 serial	port	device	 can	use	bInterfaceSubClass	=	0x02	 to	 specify	 the
abstract	 control	 model	 and	 bInterfaceProtocol	 =	 0x01	 to	 specify	 AT
commands.	For	compatibility	with	 the	Windows	driver,	 the	 interface	 should
specify	 this	 subclass	 even	 if	 the	 device	 doesn’t	 use	 AT	 commands.	 The
Communication	 interface	 has	 an	 interrupt	 endpoint,	 and	 the	Data	 interface
has	a	bulk	endpoint	for	each	direction.
For	 improved	 performance,	 some	 virtual	 serial-port	 devices	 use	 vendor-
specific	drivers	and	thus	don’t	belong	to	the	communication	device	class.	My
book	Serial	Port	Complete	has	more	about	USB	virtual	serial-port	devices.
A	 CDC	 device	 that	 functions	 as	 a	 Remote	 NDIS	 device	 consists	 of	 a
Communication	 interface	 and	 a	 Data	 interface.	 In	 the	 Communication
interface,	bInterfaceSubClass	=	0x02	to	specify	the	abstract	control	model	and
bInterfaceProtocol	 =	 0xFF	 to	 specify	 a	 vendor-specific	 protocol.	 The

Communication	 interface	 has	 an	 interrupt	 endpoint,	 and	 the	Data	 interface
has	two	bulk	endpoints.	Each	endpoint	has	an	endpoint	descriptor.

Class-specific	requests
Class-specific	 requests	 get	 and	 set	 status	 and	 control	 information.	 The
supported	requests	vary	with	the	subclass	and	the	device.

Chips
Many	communications	devices,	 including	virtual	 serial-port	devices,	 can	use
just	 about	 any	 general-purpose	 device	 controller	 that	 supports	 full	 speed	 or
higher.	 FTDI’s	 USB	 UART	 controllers,	 introduced	 in	 Chapter	 6,	 can
implement	virtual	 serial	ports	but	don’t	belong	 to	 the	 communications	 class
because	the	controllers	use	a	vendor-provided	driver.

Table	 7-4:	 A	 Functional	 descriptor	 consists	 of	 a	 Header	 functional	 descriptor
followed	 by	 one	 or	 more	 function-specific	 descriptors.	 Information	 source:
Universal	Serial	Bus	Class	Definitions	for	Communications	Devices	Revision	1.2.
bInterfaceSubClass Functional	Descriptor	Type

0x00 Header

0x01 Call	Management

0x02 Abstract	Control	Management

0x03 Direct	Line	Control	Management

0x04 Telephone	Ringer

0x05 Telephone	Call	and	Line	State	Reporting	Capabilities

0x06 Union

0x07 Country	Selection

0x08 Telephone	Operational	Modes

0x09 USB	Terminal

0x0A Network	Channel	Terminal

0x0B Protocol	Unit

0x0C Extension	Unit

0x0D Multi-channel	Management

0x0E CAPI	Control	Management

0x0F Ethernet	Networking

0x10 ATM	Networking

0x11 Wireless	Handset	Control

0x12 Mobile	Direct	Line	Model	(MDLM)

0x13 MDLM	Detail

0x14 Device	Management	Model

0x15 OBEX

0x16 Command	Set

0x17 Command	Set	Detail

0x18 Telephone	Control	Model

0x19 OBEX	Service	Identifier

0x1A–0x7F Reserved	(future	use)

0x80–0xFE Vendor	specific

SMSC/Microchip	 Technology	 and	 Asix	 Electronics	 Corporation	 have	 USB
Ethernet	bridge	controllers	that	convert	between	USB	and	Ethernet	at	speeds
up	to	Gigibit	Ethernet.

Host	support
The	 Windows	 modem	 driver	 (usbser.sys)	 is	 compatible	 with	 modems	 and
other	devices	that	use	the	abstract	control	model,	including	virtual	serial	port
devices.	Under	Windows,	a	CDC	virtual	serial	port	must	have	an	INF	file	that
contains	the	device’s	Vendor	ID	and	Product	ID.	Chapter	9	has	an	example.
Windows	provides	drivers	for	remote	NDIS	and	WMC.	Windows	8	added	an
MBIM	driver.
Vendors	 that	 offer	 drivers	 for	 subclasses	 that	Windows	 doesn’t	 support	 or
enhanced	 drivers	 for	 other	 subclasses	 include	 Belcarra	 Technologies
Corporation,	Jungo	Ltd.,	MCCI,	and	Thesycon.

Content	security
The	 content	 security	 class	 specifies	 ways	 to	 control	 access	 to	 files,	 music,
video,	 or	 other	data	 transmitted	on	 the	bus.	The	 class	 supports	 two	 content
security	methods	(CSMs):	digital	transmission	content	protection	(DTCP)	and
high-bandwidth	digital	content	protection	(HDCP).

Documentation
The	 class	 documentation	 consists	 of	 a	 framework	 specification	 and	 an

implementation	 specification	 for	 each	 content	 security	 method.	 The	 DTCP
specification	 and	 license	 information	 are	 available	 from	 the	 Digital
Transmission	 Licensing	 Administrator	 (dtcp.com).	 The	 HDCP	 specification
and	 license	 information	 are	 available	 from	 Digital	 Content	 Protection	 LLC
(digital-cp.com).

Overview
The	class	defines	a	protocol	for	activating	and	deactivating	a	content	security
method	and	for	associating	a	content	security	method	to	a	channel.	A	channel
represents	 a	 relationship	between	an	 interface	or	 endpoint	 and	one	or	more
CSMs.	Only	one	CSM	can	be	active	on	a	channel	at	a	time.
DTCP	and	HDCP	prevent	unauthorized	copying	of	audio	and	video	content
via	USB	and	other	buses.	CSM-2	implements	DTCP,	which	a	content	provider
can	use	 to	specify	whether	copying	 is	allowed,	 identify	authorized	users,	and
specify	 an	 encryption	 method.	 CSM-5	 implements	 HDCP,	 which	 uses	 an
authentication	 protocol	 that	 establishes	 shared	 secrets	 that	 prevent
eavesdropping	by	unauthorized	devices.
Content	 providers	 who	 wants	 to	 use	 DTCP	 or	 HDCP	 must	 sign	 a	 license
agreement	and	pay	an	annual—not	trivial—fee.

Descriptors
In	 an	 interface	 descriptor,	 bInterfaceClass	 =	 0x0D	 declares	 the	 content
security	class.	The	class	has	class-specific	descriptors,	and	each	CSM	defines	a
string	descriptor.

Class-specific	requests
Two	 class-specific	 requests	 apply	 to	 all	 CSM	 interfaces.	 The
Get_Channel_Settings	request	enables	the	host	to	learn	what	CSM	is	assigned
to	 a	 channel.	The	 Set_Channel_Settings	 request	 enables	 the	 host	 to	 assign	 a
CSM	 to	 a	 channel	 or	 deactivate	 a	 previously	 assigned	CSM.	 Each	CSM	 has
additional	control	requests.

Chips
For	 a	 device	 using	 content	 security,	 the	 choice	 of	 a	USB	 controller	 depends
mainly	 on	 the	 capabilities	 needed	 to	 exchange	 the	 content	 being	 protected.
Adding	 a	 content-security	 function	 requires	 only	 the	 occasional	 use	 of	 the
control	endpoint	and	for	CSM-2,	two	interrupt	endpoints.

http://dtcp.com
http://digital-cp.com

Host	support
Windows	doesn’t	include	a	driver	for	the	content	security	class.

Device	firmware	upgrade
The	 device	 firmware	 upgrade	 (DFU)	 class	 defines	 a	 protocol	 for	 sending
firmware	enhancements	and	patches	to	a	device.	After	receiving	the	firmware
upgrade,	the	device	re-enumerates	using	its	new	firmware.

Documentation
The	Device	Firmware	Upgrade	specification	defines	the	class.

Overview
To	 perform	 a	 firmware	 upgrade	 as	 described	 in	 the	 specification,	 a	 device
must	 have	 two	 complete	 sets	 of	 descriptors:	 run	 time	 and	DFU	mode.	 The
run-time	 descriptors	 are	 for	 normal	 operation	 and	 include	 descriptors	 that
inform	 the	 host	 that	 the	 device	 is	 capable	 of	 firmware	 upgrades.	 The	DFU-
mode	 descriptors	 are	 for	 use	 when	 a	 device	 is	 upgrading	 its	 firmware.	 For
example,	a	keyboard	using	its	run-time	descriptors	enumerates	as	a	HID-class
device	 and	 sends	 keypress	 data	 to	 the	host.	During	 a	 firmware	upgrade,	 the
device	 suspends	 normal	 operations	 as	 a	 keyboard	 and	 uses	 the	 DFU-mode
descriptors	to	communicate	with	the	DFU	driver	on	the	host.
The	 upgrade	 process	 has	 four	 phases.	 In	 the	 device-enumeration	 phase,	 the
device	sends	its	run-time	descriptors	to	the	host	and	operates	normally.	In	the
reconfiguration	 phase,	 the	 host	 sends	 a	Dfu_Detach	 request	 and	 then	 resets
and	re-enumerates	the	device,	which	returns	its	DFU-mode	descriptors.	In	the
transfer	 phase,	 the	 host	 sends	 the	 firmware	 upgrade	 to	 the	 device.	 The
manifestation	phase	begins	when	the	host	has	completed	the	transfer.
When	 the	 device	 has	 finished	 loading	 the	 new	 firmware,	 device	 settings
determine	whether	the	host	resets	the	device	or	the	device	initiates	a	reset	by
emulating	detach	and	re-attach.	On	re-enumerating,	 the	device	uses	 its	new,
upgraded	 firmware.	 During	 the	 upgrade	 process,	 the	 device	 transitions
through	defined	states.
An	 upgrade	 file	 stored	 on	 the	 host	 contains	 the	 firmware	 for	 the	 upgrade
followed	by	a	DFU	suffix	value	 that	 the	host	can	use	 to	help	ensure	 that	 the
firmware	 is	valid	and	appropriate	 for	a	particular	device.	The	suffix	contains
an	 error-checking	 value,	 a	 signature	 consisting	 of	 the	 ASCII	 text	DFU,	 and

optional	values	for	the	Vendor	ID,	Product	ID,	and	product	release	number	to
identify	devices	the	firmware	is	appropriate	for.	The	suffix	is	for	the	host’s	use
only;	the	host	doesn’t	send	the	suffix	to	the	device.
To	ensure	that	the	host	will	 load	the	correct	driver	for	the	firmware-upgrade
process,	the	device	should	use	different	Product	IDs	in	its	run-time	and	DFU-
mode	device	descriptors.
DFU	communications	use	only	the	control	endpoint.

Descriptors
The	DFU	 function	 is	 defined	 at	 the	 interface	 subclass	 level.	 In	 a	 device	 that
supports	 DFU,	 both	 the	 run-time	 and	 DFU-mode	 descriptors	 include	 a
standard	 interface	 descriptor	 with	 bInterfaceClass	 =	 0xFE	 to	 indicate	 an
Application	Specific	class	and	bInterfaceSubClass	=	0x01	to	indicate	the	device
firmware	 upgrade	 class.	 In	DFU	mode,	 the	DFU	 interface	must	 be	 the	 only
active	interface	in	the	device.
Both	 descriptor	 sets	 include	 a	 Run-time	 DFU	 Functional	 descriptor	 that
specifies	whether	 the	 device	 can	 communicate	 on	 the	 bus	 immediately	 after
the	 manifestation	 phase,	 how	 long	 to	 wait	 for	 a	 reset	 after	 receiving	 a
DFU_Detach	 request,	 and	 the	 maximum	 number	 of	 bytes	 the	 device	 can
accept	in	a	control	write	transfer	during	a	firmware	upgrade.

Class-specific	requests
The	 class	 defines	 seven	 control	 requests	 that	 control	 the	 DFU	 process	 and
request	status	information.

Chips
The	 choice	 of	 USB	 controller	 depends	 mainly	 on	 the	 requirements	 of	 the
device	 in	 run-time	mode.	The	 device	must	 have	 enough	memory	 and	other
resources	to	store	and	implement	the	upgraded	firmware.	STMicroelectronics
has	 a	 Windows	 driver	 and	 firmware	 examples	 for	 use	 with
STMicroelectronics’	microcontrollers.

Host	support
Windows	doesn’t	provide	a	driver	for	this	class.

Human	interface
The	human	interface	device	(HID)	class	includes	keyboards,	pointing	devices,

and	 game	 controllers.	 For	 all	 of	 these	 devices,	 the	 host	 receives	 data	 that
corresponds	to	human	input	such	as	keypresses	and	mouse	movements.	The
host	must	 respond	quickly	 enough	 so	users	don’t	notice	 a	delay	between	 an
action	and	the	expected	response.
Barcode	 readers	 can	 function	 as	 HID	 keyboards	 with	 the	 barcode	 data
emulating	 keypresses.	 Other	 devices	 with	 HID	 interfaces	 include
uninterruptible	power	supply	(UPS)	units	that	can	inform	the	host	computer
of	 power	 loss	 and	 configuration	 utilities	 for	 display	monitors.	 Some	devices
that	perform	vendor-specific	functions	can	also	use	the	HID	class.
All	 HID	 data	 travels	 in	 reports,	 which	 are	 structures	 with	 defined	 formats.
Usage	 tags	 in	 a	 report	 tell	 the	 host	 or	 device	 how	 to	 use	 received	 data.	 For
example,	a	Usage	Page	value	of	0x09	indicates	a	button,	and	a	Usage	ID	value
tells	which	button,	if	any,	was	pressed.
To	support	keyboards	and	mice,	Windows	and	other	OSes	have	included	HID
drivers	from	the	earliest	editions	that	have	supported	USB.	For	this	reason,	the
HID	class	has	been	popular	for	devices	with	vendor-specific	functions.	A	HID
can	 exchange	 data	 for	 any	 purpose	 but	 can	 use	 only	 control	 and	 interrupt
transfers.

Documentation
In	addition	to	the	main	HID	specification,	several	documents	define	Usage-tag
values	for	different	device	types.	The	HID	Usage	Tables	document	has	values
for	keyboards,	pointing	devices,	various	game	controllers,	displays,	telephone
controls,	and	more.
These	device	types	have	their	own	documents:
Class	Definition	 for	Physical	 Interface	Devices	 (PID)	 defines	 values	 for	 force-
feedback	joysticks	and	other	devices	that	require	physical	feedback	in	response
to	inputs.
The	Monitor	Control	specification	defines	values	for	user	controls	and	power
management	 for	 display	monitors.	 The	HID	 interface	 controls	 the	 display’s
settings	only,	not	the	images	to	display.
Usage	Tables	for	HID	Power	Devices	defines	values	for	UPS	devices	and	other
devices	 where	 the	 host	 monitors	 and	 controls	 batteries	 or	 other	 power
components.
Point	of	Sale	(POS)	Usage	Tables	defines	values	for	barcode	readers,	weighing

devices,	and	magnetic-stripe	readers.
Additional	Usage	tables	are	available	from	the	Gaming	Standards	Association
(gamingstandards.com)	 and	 in	 Intel’s	Open	Arcade	Architecture	Device	Data
Format	Specification	(usb.org).
In	 the	main	HID	specification,	 the	main	change	 from	version	1.0	 to	1.1	was
enabling	the	host	to	send	reports	in	interrupt	OUT	transfers	as	allowed	by	the
USB	1.1	specification.	In	a	HID	1.0	interface,	the	host	must	send	all	reports	in
control	transfers.
Chapters	 11-13	 have	 more	 information	 about	 HID	 device	 and	 host
programming.

Overview
HIDs	communicate	by	exchanging	data	in	reports	using	control	and	interrupt
transfers.	 Input	 and	 Output	 reports	 can	 use	 control	 or	 interrupt	 transfers.
Feature	 reports	 use	 control	 transfers.	A	 report	 descriptor	 defines	 the	 size	 of
each	report	and	Usage	values	for	the	report	data.

Descriptors
In	 a	 HID’s	 interface	 descriptor,	 bInterfaceClass	 =	 0x03.	 The
bInterfaceSubClass	field	indicates	whether	the	HID	supports	a	boot	protocol,
which	 a	 host	 can	 use	 instead	 of	 the	 report	 protocol	 defined	 in	 the	 device’s
report	descriptor.	Mice	and	keyboards	support	boot	protocols	to	enable	using
the	device	before	the	host	has	loaded	the	full	HID	drivers.
Following	 the	 interface	 descriptor	 is	 a	 class-specific	 HID	 descriptor,	 which
contains	 the	 size	 of	 the	 report	 descriptor.	 The	 report	 descriptor	 contains
information	 about	 the	 data	 in	 the	 HID	 reports.	 An	 optional,	 rarely	 used,
physical	descriptor	can	describe	the	part(s)	of	the	human	body	that	activate	a
control.

Class-specific	requests
The	HID	class	specification	defines	six	control	requests	to	enable	sending	and
receiving	reports,	setting	and	reading	the	idle	rate	(how	often	the	device	sends
a	report	if	the	data	is	unchanged),	and	setting	or	reading	the	currently	active
protocol	(boot	or	report).	To	obtain	a	report	descriptor	or	physical	descriptor,
the	host	sends	a	Get	Descriptor	request	to	the	interface	with	the	high	byte	of
wValue	set	to	0x22	to	request	a	report	descriptor	or	0x23	to	request	a	physical

http://gamingstandards.com
http://usb.org

descriptor.

Chips
For	devices	with	a	human	interface,	low	speed	is	fast	enough	to	act	on	received
user	 input	 with	 no	 detectable	 delay.	 Some	HIDs	 use	 low	 speed	 because	 the
device	 needs	 a	 flexible	 or	 inexpensive	 cable.	 A	 HID	 can	 use	 any	 speed,
however.
Alcor	 Micro	 Corporation	 is	 a	 source	 for	 controllers	 with	 support	 for
interfacing	to	keyboard	matrixes.	Cypress	Semiconductor’s	CY7C638×x	series
supports	 both	 USB	 and	 PS/2	 interfaces	 to	 make	 it	 easy	 to	 design	 a	 dual-
interface	keyboard	or	mouse.
Code	 Mercenaries	 offers	 programmed	 chips	 for	 use	 in	 pointing	 devices,
keyboards,	and	joysticks.	The	MouseWarrior	series	has	 interfaces	for	sensors
and	buttons	and	supports	USB,	PS/2,	asynchronous	serial,	and	Apple	Desktop
Bus	 (ADB).	 The	 KeyWarrior	 series	 supports	 USB,	 PS/2,	 and	 ADB	 and	 has
interfaces	 to	 keyboard	matrixes	 and	 optional	 support	 for	 keyboard	macros.
The	JoyWarrior	series	supports	a	variety	of	game-controller	 inputs.	Phidgets
modules,	 described	 in	 Chapter	 6,	 use	 the	 HID	 driver	 for	 sensors,	 motor
control,	and	other	functions.

Host	support
To	 communicate	 with	 vendor-defined	 HIDs,	 applications	 can	 use	 API
functions	and	.NET	classes.	To	send	and	receive	reports,	applications	can	use
.NET’s	 FileStream	 class,	 ReadFile	 and	 WriteFile,	 and	 API	 functions	 in	 the
HIDClass	Support	Routines.
For	system	keyboards	and	pointing	devices,	Windows	has	exclusive	access	to
Input	and	Output	reports.	Attempts	to	retrieve	the	reports	via	API	functions
trigger	 the	error	message	Access	Denied.	Applications	 typically	don’t	need	 to
read	 the	 reports	 that	describe	keypresses	 and	mouse	movements	 and	button
clicks.	 Instead,	 the	 operating	 system	 reads	 the	 reports,	 and	 applications	 use
higher-level	methods	to	access	the	data.	For	example,	a	button	on	a	form	in	a
.NET	 application	 has	 a	 click	 event	 that	 can	 contain	 code	 to	 execute	when	 a
user	clicks	the	button.	If	a	system	has	multiple	keyboards	or	pointing	devices,
the	application	treats	them	all	as	a	single	virtual	keyboard	or	pointing	device.
Other	options	for	accessing	HIDs	include	DirectX’s	DirectInput	and	the	Raw
Input	API.	DirectInput	provides	fast,	more	direct	access	to	keyboard,	mouse,

and	game-controller	data.	Raw	input	offers	a	way	to	read	HID	data,	including
keyboard	and	mouse	data,	from	specific	devices,	including	a	specific	keyboard
when	multiple	keyboards	are	attached.

IrDA	bridge
The	 IrDA	 (Infrared	 Data	 Association)	 interface	 defines	 hardware
requirements	 and	 protocols	 for	 exchanging	 data	 over	 short	 distances	 via
infrared	energy.	A	USB	IrDA	bridge	converts	between	USB	and	IrDA	data	and
enables	 a	 host	 to	 use	 USB	 to	 monitor,	 control,	 and	 exchange	 data	 over	 an
IrDA	interface.

Documentation
The	specification	for	USB	IrDA	bridges	is	IrDA	Bridge	Device	Definition.	The
IrDA	specifications	are	available	from	irda.org.

Overview
The	 data	 in	 an	 IrDA	 link	 uses	 the	 Infrared	 Link	 Access	 Protocol	 (IrLAP),
which	defines	 the	 format	of	 the	 IrDA	 frames	 that	 carry	data,	 addresses,	 and
status	 and	 control	 information.	 The	 IrLAP	 Payload	 consists	 of	 the	 address,
control,	 and	 optional	 information,	 or	 data,	 fields	 in	 an	 IrLAP	 frame.	 In
addition	 to	 the	 IrLAP	Payload,	 each	 frame	 contains	 an	 error-checking	value
and	markers	for	the	beginning	and	end	of	the	frame.
A	USB	IrDA	bridge	uses	bulk	pipes	to	exchange	data	with	the	host.	The	host
and	 bridge	 place	 status	 and	 control	 information	 in	 headers	 with	 formats
defined	 in	 the	 IrDA	 bridge	 specification.	 On	 receiving	 data	 from	 the	 IrDA
link,	the	IrDA	bridge	extracts	the	IrLAP	Payload,	adds	a	header,	and	passes	the
data	and	header	to	the	host.	The	header	can	contain	values	for	the	IrDA	link’s
Media_Busy	 and	 Link_Speed	 parameters.	 On	 receiving	 IrDA	 data	 from	 the
host,	the	IrDA	bridge	removes	the	header	added	by	the	host.	The	header	can
specify	 new	 values	 for	 Link_Speed	 and	 the	 number	 of	 beginning-of-frame
markers.	 The	 bridge	 then	 places	 the	 IrDA	 Payload	 in	 an	 IrDA	 frame	 for
transmitting.

Descriptors
An	 IrDA-bridge	 function	 is	 defined	 at	 the	 interface	 subclass	 level.	 In	 the
interface	descriptor,	bInterfaceClass	=	0xFE	to	indicate	an	application-specific
interface	 and	 bInterfaceSubClass	 0x02	 to	 indicate	 an	 IrDA	 bridge	 device.	 A

http://irda.org

class-specific	 descriptor	 contains	 IrDA-specific	 information	 such	 as	 the
maximum	number	of	bytes	in	an	IrDA	frame	and	supported	baud	rates.

Class-specific	requests
The	class	defines	five	control	requests:

Request bRequest Description

Receiving 0x01 Is	the	device	currently	receiving	an
IrLAP	frame?

Check_Media_Busy 0x03 Is	infrared	traffic	present?

Set_IrDA_Rate_Sniff 0x04 Accept	frames	at	any	speed	or	at	a
single	speed.

Set_IrDA_Unicast_List 0x05 Accept	frames	from	the	named
addresses	only.

Get_Class_Specific_Descriptors 0x06 Return	the	class-specific	descriptor.

Chips
To	support	the	IrDA	bridge	function,	a	device	must	have	a	USB	port	with	bulk
endpoints	 and	 an	 IrDA	 interface.	 USB	 controllers	 can	 interface	 to	 IrDA
transceivers	 and	encoder/decoder	 circuits	via	 asynchronous	 serial	ports.	The
Texas	 Instruments	 TUSB3410	 is	 an	 8052	 microcontroller	 with	 a	 full-speed
USB	port	 and	on-chip	 IrDA	encoder/decoder	 for	 serial	 communications	 via
an	external	IrDA	transceiver.

Host	support
Windows	 supports	 IrDA	 via	 the	 irda.sys	 driver	 and	 the	 irsir.sys	 miniport
driver	 for	 UART-based	 adapters	 but	 doesn’t	 provide	 a	 driver	 for	 the	 USB
IrDA	bridge	function.

Mass	storage
The	mass	storage	class	is	for	devices	that	support	a	file	system	for	storing	data.
The	class	includes	hard	drives	as	well	as	CD,	DVD,	and	flash-memory	drives.
Cameras	 can	use	 the	mass-storage	class	 to	 enable	accessing	picture	 files	 in	a
camera’s	memory.
Under	Windows,	devices	that	use	the	mass-storage	driver	appear	as	drives	in
Windows	Explorer,	and	the	file	system	enables	users	to	copy,	move,	and	delete
files	in	the	devices.

Mass-storage	communications	is	a	complex	topic.	My	book	USB	Mass	Storage
has	 more	 about	 USB	 protocols,	 file	 systems,	 and	 the	 SCSI	 commands	 that
access	storage	media.

Documentation
The	 USB	 mass-storage	 specifications	 include	 an	 overview	 and	 separate
documents	for	individual	protocols	and	features.
The	bulk-only	transport	(BOT)	specification	defines	a	protocol	supported	by
most	mass-storage	devices.	The	release	of	USB	3.0	prompted	the	development
of	 new	 protocols	 to	 take	 advantage	 of	 Enhanced	 SuperSpeed’s	 dual	 simplex
interface.	 The	 USB	 Attached	 SCSI	 (UAS)	 standard	 from	 t10.org	 defines	 a
transport	protocol	that	offers	faster	mass-storage	transfers	at	SuperSpeed	and
improved	 efficiency	 at	 lower	 speeds.	 The	 USB-IF’s	 USB	 Attached	 SCSI
Protocol	(UASP)	specifies	how	to	implement	the	UAS	standard.
The	 Lockable	 Storage	 Devices	 Feature	 Specification	 defines	 a	 protocol	 to
address	security	and	privacy	concerns	for	media	contents.	With	host	support,
a	 lockable	 storage	 device	 can	 require	 a	 user-provided	 passphrase	 before
allowing	a	host	to	access	the	device’s	media.
Each	mass-storage	media	type	uses	an	industry-standard	command-block	set
to	enable	controlling	devices	and	reading	status	information.
Generic	 SCSI	 media	 uses	 the	 mandatory	 commands	 from	 SCSI	 Primary
Command	(SPC)	Set	and	SCSI	Block	Command	(SBC)	Set	from	t10.org.
Drives	 with	 a	 Serial	 ATA	 (SATA)	 interface	 can	 use	 a	 bridge	 controller	 to
communicate	over	USB.

Overview
Mass-storage	 devices	 use	 bulk	 transfers	 to	 exchange	 data.	 Control	 transfers
send	class-specific	requests	and	can	clear	Stall	conditions	on	bulk	endpoints.
For	exchanging	other	information,	virtually	all	devices	use	the	BOT	protocol.
In	 the	 BOT	 protocol,	 a	 successful	 data	 transfer	 has	 two	 or	 three	 stages:
command	 transport,	 data	 transport	 (if	 needed),	 and	 status	 transport.	 In	 the
command-transport	stage,	 the	host	 sends	a	command	 in	a	 structure	called	a
Command	 Block	Wrapper	 (CBW).	 In	 the	 data-transport	 stage,	 the	 host	 or
device	sends	the	requested	data.	In	the	status-transport	stage,	the	device	sends
status	 information	 in	a	structure	called	a	Command	Status	Wrapper	(CSW).
Some	commands	have	no	data-transport	stage.

http://t10.org
http://t10.org

Table	7-5:	The	CBW	contains	a	command	block	and	other	information	about	the
command.
Name Bits Description

dCBWSignature 32 The	value	0x43425355,	which	identifies	the	structure	as	a
CBW.

dCBWTag 32 A	tag	that	associates	this	CBW	with	the	CSW	the	device	will
send	in	response.

dCBWDataTransferLength 32 The	number	of	bytes	the	host	expects	to	transfer	in	the	data-
transport	stage.

bmCBWFlags 8 Specifies	the	direction	of	the	data-transport	stage.	Bit	7	=	0	for
an	OUT	(host-to-device)	transfer.	Bit	7	=	1	for	an	IN	(device-
to-host)	transfer.	All	other	bits	are	zero.	If	there	is	no	data-
transport	stage,	bit	7	is	ignored.

Reserved 4 Zero

bCBWLUN 4 For	devices	with	multiple	LUNs,	specifies	the	LUN	the
command	block	is	directed	to.	Otherwise	the	value	is	zero.

Reserved 3 Zero

bCBWCBLength 5 The	length	(1–16)	of	the	command	block	in	bytes

CBWCB 128 The	command	block	for	the	device	to	execute.

Table	7-5	shows	the	fields	 in	the	CBW.	The	meaning	of	 the	command-block
value	 in	 the	 CBWCB	 field	 varies	 with	 the	 command	 set	 specified	 by	 the
interface	descriptor’s	bInterfaceSubClass	field.
On	receiving	a	CBW,	a	device	must	check	that	 the	structure	 is	valid	and	has
meaningful	content.	A	CBW	is	valid	if	it	is	received	after	a	CSW	or	reset,	has
31	 bytes,	 and	 has	 the	 correct	 value	 in	 dCBWSignature.	 The	 contents	 are
considered	 meaningful	 if	 no	 reserved	 bits	 are	 set,	 bCBWLUN	 contains	 a
supported	 LUN	 value,	 and	 bCBWCBLength	 and	 CBWCB	 are	 valid	 for	 the
interface’s	subclass.
Table	7-6	 shows	 the	 fields	 in	 the	CSW.	On	 receiving	 a	CSW,	 the	host	must
check	that	the	structure	is	valid	and	has	meaningful	content.	A	CSW	is	valid	if
it	has	13	bytes,	has	the	correct	value	in	dCSWSignature,	and	has	a	dCSWTag
value	 that	 matches	 dCBWTag	 of	 a	 corresponding	 CBW.	 The	 contents	 are
considered	meaningful	 if	 bCSWStatus	 equals	 0x02	 or	 if	 bCSWStatus	 equals
either	 0x00	 or	 0x01	 and	 dCSWDataResidue	 is	 less	 than	 or	 equal	 to
dCBWDataTransferLength.

Table	7-6:	The	CSW	contains	status	and	related	information	about	a	command.
Name Bits Description

dCBWSignature 32 The	value	0x53425355,	which	identifies	the	structure	as	a
CSW.

dCBWTag 32 The	value	of	the	dCBWTag	in	a	CBW	received	from	the	host.

dCSWDataResidue 32 For	OUT	transfers,	the	difference	between
dCBWDataTransferLength	and	the	number	of	bytes	the	device
processed.	For	IN	transfers,	the	difference	between
dCBWDataTransferLength	and	the	number	of	bytes	the	device
sent.

bCSWStatus 8 0x00	=	command	passed
0x01	=	command	failed
0x02	=	phase	error

Descriptors
In	 an	 interface	 descriptor,	 bInterfaceClass	 =	 0x08	 specifies	 the	mass-storage
class.
The	 bInterfaceSubClass	 field	 specifies	 the	 supported	 command-block	 set.
Most	new	designs	should	set	the	field	to	0x06	(generic	SCSI	media).	The	host
then	 determines	 the	 specific	 device	 type	 by	 issuing	 a	 SCSI	 INQUIRY
command.	The	device’s	response	specifies	a	peripheral	device	type	(PDT).	The
SCSI	 Primary	Commands	 (SPC)	 specification	 defines	 PDT	 codes.	 The	 code
for	hard	drives	and	flash	drives	is	0x00.	The	bInterfaceProtocol	field	indicates
the	 supported	 transport	 protocol.	 Most	 new	 designs	 should	 set	 the	 field	 to
0x50	(bulk	only).
Every	 BOT	mass-storage	 device	must	 have	 a	 serial	 number	 in	 a	USB	 string
descriptor.	 The	 serial	 number	 must	 be	 at	 least	 12	 digits	 using	 Unicode
characters	in	the	range	0–9	and	A–F.	The	final	12	digits	must	be	unique	to	the
Vendor	ID	and	Product	ID	pair.	A	serial	number	enables	the	operating	system
to	 retain	 properties	 such	 as	 the	 drive	 letter	 and	 access	 policies	 after	 a	 user
moves	 a	 device	 to	 another	 port	 or	 attaches	 multiple	 devices	 with	 the	 same
Vendor	ID	and	Product	ID.
A	 device	 that	 supports	 BOT	 or	 UAS	 must	 have	 a	 bulk	 endpoint	 for	 each
direction.
Lockable	 storage	 devices	 have	 additional	 descriptors	 to	 support	 the	 locking
capability.

Class-specific	requests
The	BOT	protocol	has	two	defined	control	requests:	Bulk	Only	Mass	Storage
Reset	(reset	the	device)	and	Get	Max	Lun	(get	the	number	of	logical	units,	or
partitions,	 that	 the	 device	 supports).	 All	 other	 commands	 and	 status
information	travel	in	bulk	transfers.
Lockable	storage	devices	support	additional	requests	for	locking	functions.

Chips
The	 device	 controller	 must	 have	 a	 bulk	 endpoint	 for	 each	 direction	 and
sufficient	 memory	 for	 the	 needed	 storage.	 Genesys	 Logic;	 LucidPort
Technology,	Inc.;	Prolific	Technology;	Texas	Instruments,	and	VIA	Labs,	Inc
have	USB/SATA	bridge	controllers.

Host	support
Windows	supports	BOT	and	bInterfaceSubClass	codes	0x02,	0x05,	and	0x06.
The	USB	storage	port	driver	(usbstor.sys)	manages	 communications	between
the	 lower-level	USB	drivers	 and	 the	Windows	 storage-class	 drivers.	When	 a
device	is	formatted	using	a	supported	file	system,	the	operating	system	assigns
a	drive	letter	to	the	device	and	the	device	appears	in	Windows	Explorer.
Windows	 8	 and	 higher	 have	 USB	 3.0	 UASP	 drivers	 for	 use	 with	 PCs	 and
devices	that	support	UASP.
One	point	of	confusion	relating	to	the	mass-storage	support	under	Windows
is	 the	 difference	 between	 removable	 devices	 and	 removable	media.	 All	USB
drives	 are	 removable	 devices	 because	 they’re	 easily	 attached	 and	 detached
from	 the	 PC.	 A	 removable	 device	 may	 have	 removable	 or	 non-removable
media.	 CD	 and	DVD	 drives	 have	 removable	media.	 A	 hard	 drive	 has	 non-
removable	 media	 because	 you	 can’t	 easily	 remove	 the	 disk	 from	 the	 drive.
Windows	Autoplay	applies	to	devices	with	removable	media.	Autoplay	enables
the	operating	system	to	run	a	program,	play	a	movie,	or	perform	other	actions
when	a	disk	or	other	removable	media	is	inserted.	To	support	AutoPlay,	some
devices	 with	 non-removable	 media	 declare	 themselves	 to	 be	 devices	 with
removable	media.

Personal	healthcare
The	 personal	 healthcare	 device	 class	 encompasses	 devices	 that	 help	 to
maintain	health	and	wellness,	manage	disease,	and	enable	independent	living

for	 the	 elderly.	 Devices	 in	 the	 class	 include	 heart-rate	 and	 blood-pressure
monitors,	glucose	meters,	pulse	oximeters,	motion	sensors,	and	pill	monitors.

Documentation
The	class	doesn’t	define	protocols	for	data	or	messaging.	Instead,	devices	may
use	data	and	messaging	standards	defined	in	the	ISO/IEEE	11073–20601	Base
Exchange	Protocol.

Overview
A	device	may	send	data	that	is	episodic	(at	irregular	or	infrequent	intervals)	or
continuous.	A	device	may	collect	and	store	data	before	transmitting	the	data
to	 the	host,	and	a	device	may	collect	data	when	detached	 from	the	host.	For
example,	 a	 jogger	might	wear	a	monitor	while	out	 for	 a	 run	and	upload	 the
data	on	returning	home.
Devices	may	support	host-to-device	communications	to	receive	configuration
data	and	other	episodic	data	from	a	host.

Descriptors
The	 preferred	 location	 for	 the	 class	 code	 is	 in	 the	 interface	 descriptor,	 but
declaring	the	class	in	the	device	descriptor	is	allowed.	The	function	must	have
at	 least	 one	 bulk	 endpoint	 in	 each	 direction.	An	 interrupt	 IN	 endpoint	 and
additional	 endpoints	 are	 optional.	 Several	 class-specific	 descriptors	 provide
class-specific	information.

Class-specific	requests
Set	Feature	and	Clear	Feature	requests	can	 turn	on	and	off	 the	class-specific
Meta-Data	 Message	 Preamble	 feature.	 A	 Get	 Status	 request	 can	 request	 a
bitmap	of	endpoints	that	have	data.

Chips
Just	 about	 any	 device	 that	 is	 full	 speed	 or	 higher	 can	 support	 the	 required
endpoints.

Host	support
Windows	doesn’t	provide	a	driver	for	this	class.

Printer

The	printer	class	is	for	devices	that	convert	received	data	into	text,	images,	or
both	on	paper	or	other	media.	The	most	basic	printers	print	lines	of	text	in	a
single	 font.	 Most	 laser	 and	 inkjet	 printers	 understand	 one	 or	 more	 page
description	languages	(PDLs)	and	can	print	text	in	any	font	as	well	as	images.

Documentation
The	USB	 Printing	 Devices	 specification	 defines	 protocols	 for	 printers	 of	 all
types.	 The	 IEEE-1284	 standard	 (ieee.org)	 describes	 the	 interface	 used	 by
parallel-port	 printers	 and	 defines	 the	 format	 for	 the	 Device	 IDs	 that	 USB
printers	use.
Printer	 languages	 include	 ESC/P	 documented	 in	 the	Epson	 ESC/P	 Reference
Manual,	 Printer	 Job	 Language	 (PJL),	 documented	 in	 HP’s	 Printer	 Job
Language	 Technical	 Reference	 Manual,	 Printer	 Command	 Language	 (PCL),
documented	in	HP’s	PCL	5	Printer	Language	Technical	Reference	Manual,	and
PostScript,	documented	in	Adobe’s	PostScript	Language	Reference.

Overview
Printer	 data	 uses	 a	 bulk	OUT	pipe.	 The	 host	 obtains	 status	 information	 via
control	requests	or	an	optional	bulk	IN	pipe.

Descriptors
In	the	interface	descriptor,	bInterfaceClass	=	0x07	to	specify	the	printer	class.
The	interface	descriptor’s	bInterfaceProtocol	field	contains	a	value	that	names
a	type	of	printer	interface:

bInterfaceProtocol Type

0x01 Unidirectional

0x02 Bidirectional

0x03 IEEE-1284.4–compatible	Bidirectional

With	 all	 three	 interface	 protocols,	 the	 host	 uses	 the	 bulk	OUT	 endpoint	 to
send	data	 to	 the	printer.	With	 the	unidirectional	protocol,	 the	host	 retrieves
status	 information	 by	 sending	 a	 class-specific	Get	 Port	 Status	 request.	With
the	bidirectional	protocol,	 the	host	can	retrieve	status	 information	using	Get
Port	Status	or	the	bulk	IN	pipe,	which	can	provide	more	detailed	information.
The	 IEEE-1284.4-compatible	 bidirectional	 protocol	 is	 similar	 to	 the
bidirectional	protocol	but	with	added	support	to	enable	communications	with

http://ieee.org

individual	functions	in	a	multifunction	peripheral.

Class-specific	requests
The	printer	class	has	three	class-specific	requests.
In	response	to	a	GET_DEVICE_ID	request,	the	device	returns	a	Device	ID	in
the	 format	 specified	 by	 the	 IEEE-1284	 standard.	 The	 first	 two	 bytes	 of	 the
Device	 ID	 are	 the	 length	 in	 bytes,	most	 significant	 byte	 first.	 Following	 the
length	is	a	string	containing	a	series	of	keys	and	their	values	in	this	format:
key:	value	{,value};

All	Device	IDs	must	contain	the	keys	MANUFACTURER,	COMMAND	SET,
and	 MODEL,	 or	 their	 abbreviated	 forms	 (MFG,	 CMD,	 and	 MDL).	 The
COMMAND	SET	key	names	any	PDLs	the	printer	supports,	such	as	Hewlett
Packard’s	 Printer	 Control	 Language	 (PCL)	 or	 Adobe	 Postscript.	 Additional
keys,	which	may	be	vendor-defined,	are	optional.
Here	is	an	example	Device	ID:
MFG:My	Printer	Company;

MDL:Model	5T;

CMD:MLC,PCL,PML;

DESCRIPTION:My	Printer	Company	Laser	Printer	5T;

CLASS:PRINTER;

REV:1.3.2;

In	 response	 to	 the	 GET_PORT_STATUS	 request,	 the	 device	 returns	 a	 byte
that	emulates	the	Status-port	byte	on	a	parallel	printer	port.	Three	bits	in	the
byte	contain	status	information:

Bit Name Meaning	When	1 Meaning	When	0

3 Not	error no	error error

4 Select printer	selected printer	not	selected

5 Paper	empty out	of	paper not	out	of	paper

A	printer	that	can’t	obtain	the	status	byte	should	respond	with	0x18	to	signify
no	 error,	 printer	 selected,	 not	 out	 of	 paper.	 Parallel-port	 printers	 use	 two
additional	status	bits,	Busy	and	Ack,	for	flow	control.	These	bits	don’t	apply	to
USB	printers.
On	receiving	a	Soft_Reset	request,	a	device	should	 flush	all	buffers,	 reset	 the
interface’s	bulk	pipes	to	their	default	states,	and	clear	all	Stall	conditions.	In	a
Soft_Reset	request,	the	bmRequestType	value	in	the	Setup	transaction	should
equal	0x21	to	signify	a	class-specific	request	that	is	directed	to	an	interface	and

has	 no	 Data	 stage.	 However,	 version	 1.0	 of	 the	 printer-class	 specification
incorrectly	listed	the	bmRequestType	for	Soft_Reset	as	0x23.	To	be	on	the	safe
side,	devices	should	respond	to	hosts	that	use	a	bmRequestType	of	0x23	with
this	request,	and	hosts	should	try	the	incorrect	value	on	receiving	a	STALL	in
response	to	this	request	using	the	correct	value.

Chips
Just	about	any	device	controller	that	supports	full	speed	or	higher	will	have	the
one	or	two	bulk	endpoints	for	a	printer	function.	For	converting	parallel-port
printers	 to	 USB,	 Prolific	 Technology	 has	 the	 PL-2305	 USB-to-IEEE-1284
Bridge	 Controller.	 The	 chip’s	 IEEE-1284	 parallel	 port	 can	 interface	 to	 an
existing	parallel	port	on	a	printer	or	other	peripheral.

Host	support
Windows	 includes	 drivers	 that	 handle	 tasks	 for	 both	 Postscript	 and	 non-
Postscript	 printers.	 A	 printer	 manufacturer	 can	 customize	 a	 driver	 for	 a
specific	 printer	 by	 providing	 a	 printer	 data	 file,	 which	 is	 a	 text	 file	 with
customization	information.	The	Windows	Driver	Kit	(WDK)	has	information
on	how	to	create	printer	data	files.
For	 application	 programmers,	 .NET	 supports	 the	 Windows	 Presentation
Foundation	(WPF)	subsystem	with	enhanced	printing	support.

Smart	card
Smart	cards	are	the	familiar	plastic	cards	used	for	phone	and	gift	cards,	keyless
entry,	access	to	toll	roads	and	transit,	storing	medical	and	insurance	data,	and
other	uses	that	require	storing	modest	amounts	of	information	with	easy	and
portable	 access.	Alternate	 terms	 for	 smart	 card	 are	 chip	 card	 and	 integrated
circuits	card	(ICC).
Each	 card	 contains	 a	 module	 with	 memory	 and	 often	 a	 CPU.	 Many	 cards
allow	updating	of	 their	contents,	 for	example	 to	change	a	monetary	value	or
an	 entry	 code.	 Some	 cards	 have	 exposed	 electrical	 contacts,	 while	 others
communicate	using	embedded	antennas.
To	 access	 a	 smart	 card,	 you	 establish	 a	 connection	 to	 a	 chip	 card	 interface
device	 (CCID),	 typically	 by	 inserting	 the	 card	 into	 a	 slot	 or	 waving	 a
contactless	 card	 near	 a	 reader	 with	 a	 wireless	 interface.	 Another	 term	 for
CCID	 is	 smart-card	 reader.	 Some	CCIDs	 can	write	 to	 cards	 as	well	 as	 read

them.	USB	 enters	 the	 picture	 because	 some	CCIDs	 have	USB	 interfaces	 for
communicating	with	USB	hosts.
An	ICC	device	(ICCD)	is	a	smart	card	that	has	a	built-in	CCID	function	and
USB	interface.	An	ICCD	uses	a	vendor-specific	USB	connector.	Another	term
for	 ICCD	 is	 USB-ICC.	 If	 you’re	 thinking	 that	 some	 of	 these	 terms	 are
confusingly	alike,	you’re	not	alone.	Table	7-7	summarizes.

Documentation
CCIDs	 and	 ICCDs	 each	 have	 a	 specification	 document:	Device	Class:	 Smart
Card:	CCID	and	Device	Class:	Smart	Card:	ICCD.	The	ISO/IEC	7816	standard
(available	 from	 iso.org)	 defines	 physical	 and	 electrical	 characteristics	 and
commands	for	communicating	with	smart	cards.

Overview
Every	 CCID	must	 have	 a	 bulk	 endpoint	 in	 each	 direction.	 All	 readers	 with
removable	cards	must	also	have	an	interrupt	IN	endpoint.
The	host	and	device	exchange	messages	on	 the	bulk	pipes.	A	CCID	message
consists	 of	 a	 10-byte	 header	 followed	 by	 message-specific	 data.	 The
specification	defines	commands	that	the	host	can	use	to	send	data	and	status
and	 control	 information	 in	messages.	 Every	 command	 requires	 at	 least	 one
response	message	 from	 the	CCID.	A	 response	 contains	 a	message	 code	 and
status	information	and	may	contain	additional	requested	data.	The	device	uses
the	interrupt	endpoint	to	report	errors	and	the	inserting	or	removal	of	a	card.
An	 ICCD	may	 have	 an	 interrupt	 IN	 endpoint,	 a	 pair	 of	 bulk	 endpoints,	 or
both	endpoint	types	or	may	use	the	control	endpoint	only.

Descriptors
In	 an	 interface	 descriptor	 in	 a	 CCID	 or	 ICCD,	 bInterfaceClass	 =	 0x0B	 to
declare	 the	 CCID	 class.	 For	 ICCDs,	 bInterfaceProtocol	 specifies	 a	 protocol
that	 indicates	 what	 endpoints	 the	 device	 uses.	 Following	 the	 interface
descriptor	 is	 a	 class-specific	CCID	Class	 descriptor	with	 bDescriptorType	 =
0x21.	The	 class	 descriptor	 contains	 parameters	 such	 as	 the	 number	 of	 slots,
slot	voltages,	supported	protocols,	supported	clock	frequencies	and	data	rates,
and	maximum	message	length.	CCIDs	and	ICCDs	use	the	same	class-specific
descriptor,	but	ICCDs	ignore	some	fields.

Table	7-7:	Smart	card	terminology	can	be	a	challenge	to	master.

http://iso.org

Term Meaning

Smart	card The	card.
Chip	card
ICC

CCID	Smart	card	reader A	device	that	communicates	with	cards.	May	have	a	USB	interface.

ICCD	USB-ICC A	card	with	a	built-in	CCID	function	and	USB	interface.

Class-specific	requests
CCIDs	 have	 defined	 control	 requests	 for	 aborting	 a	 transfer,	 getting	 clock
frequencies,	 and	 getting	 data	 rates.	 ICCDs	 can	 use	 class-specific	 requests	 to
transfer	data	and	other	information.

Chips
Some	 USB	 controllers	 have	 support	 for	 CCID	 functions	 built	 in.	 Chip
companies	 that	 offer	 USB	 controllers	 with	 support	 for	 smart	 card	 readers
include	Alcor	Micro	Corporation	and	Microchip.

Host	support
Under	 Windows,	 Wudfusbcciddriver.dll	 manages	 USB	 smart	 card	 readers.
Applications	 can	 use	 DeviceIoControl	 API	 functions	 to	 communicate	 with
CCIDs.

Still	image	capture
The	still	 image	capture	class	encompasses	digital	 still	cameras,	 scanners,	and
other	 devices	 that	 receive	 still-image	 data	 (in	 other	 words,	 not	 video).	 The
main	 job	 of	 a	 typical	 still-image	 device’s	 USB	 interface	 is	 to	 transfer	 image
data	from	the	device	to	the	host.	Some	devices	can	receive	image	data	from	the
host	 as	well.	 If	 all	 you	 need	 is	 a	way	 to	 transfer	 image	 files	 from	 a	 camera,
another	option	is	to	use	the	mass-storage	class.

Documentation
The	 still-image	 class	 specification	 uses	 features	 and	 commands	 from	 ISO
15740	picture	transfer	protocol	(PTP)	for	digital	still	photography	devices,	which
defines	 a	 protocol	 for	 exchanging	 images	 with	 and	 between	 digital	 still
photography	devices.	The	specification	is	available	from	iso.org.
The	USB-IF’s	Media	Transfer	Protocol	(MTP)	specification	is	an	extension	of

http://iso.org

PTP	for	use	with	digital	cameras,	portable	media	players,	mobile	phones,	and
other	 devices	 that	 have	 significant	 storage	 capacity	 and	 that	 fulfill	 their
primary	purpose	while	not	connected	to	the	bus.	For	example,	a	digital	camera
stores	images,	and	users	typically	attach	the	camera	to	the	bus	only	to	transfer
images.	MTP	 isn’t	 limited	 to	 still	 images;	 it	 can	 carry	 video	 and	 other	 data
formats.

Overview
A	still-image	device	has	one	bulk	IN	endpoint	and	one	bulk	OUT	endpoint	for
transferring	 both	 image	 data	 and	 non-image	 data	 and	 one	 interrupt	 IN
endpoint	for	event	data.
In	 the	 bulk	 and	 interrupt	 pipes,	 information	 travels	 in	 structures	 called
containers.	 The	 container	 types	 are	Command	Block,	Data	 Block,	 Response
Block,	 and	 Event	 Block.	 The	 bulk	 OUT	 pipe	 carries	 Command	 and	 Data
Blocks.	The	bulk	IN	pipe	carries	Data	and	Response	Blocks.	The	interrupt	IN
pipe	carries	Event	Blocks.
On	 the	 bulk	 pipes,	 the	 host	 communicates	 by	 using	 a	 protocol	 with	 three
phases:	Command,	Data,	and	Response.	A	short	packet	indicates	the	end	of	a
phase.	In	the	Command	phase,	the	host	sends	a	Command	Block	that	names
an	 operation	 defined	 in	 ISO	 15740.	 The	 Command	 Block	 contains	 an
operation	code	that	determines	if	the	operation	requires	a	data	transfer	and	if
so,	the	direction	of	data	transfer.	In	a	data	transfer,	the	data	travels	in	a	Data
Block	in	the	Data	phase.	The	first	four	bytes	of	the	Data	Block	are	the	length	in
bytes	of	the	data	being	transferred.	Some	operations	have	no	Data	phase.	The
final	 phase	 is	 the	Response	 phase,	where	 the	 device	 sends	 a	Response	Block
containing	completion	information.
On	 the	 interrupt	 pipe,	 an	Event	Block	 can	 contain	up	 to	 three	Event	Codes
with	status	information	such	as	a	low-battery	warning	or	a	notification	that	a
memory	 card	 has	 been	 removed.	 The	 Check	Device	 Condition	 Event	 Code
requests	 the	 host	 to	 send	 a	 class-specific	Get_Extended_Event_Data	 request
for	more	information	about	an	event.
A	device	using	 the	bulk-only	protocol	 cancels	 a	 transfer	by	 stalling	 the	bulk
endpoints.	The	host	then	sends	a	class-specific	Get_Device_Status	request	and
uses	the	Clear_Feature	request	to	clear	the	stalled	endpoints.	The	host	cancels
a	transfer	by	sending	a	class-specific	Cancel_Request	request.	A	device	is	ready
to	 resume	 data	 transfers	 when	 it	 returns	 OK	 (ISO	 15740	 Response	 Code

0x2001)	in	response	to	a	Get_Device_Status	request.

Descriptors
In	 an	 interface	 descriptor,	 bInterfaceClass	 =	 0x06	 to	 indicate	 a	 still-image
device,	 bInterfaceSubClass	 =	 0x01	 to	 indicate	 an	 image	 interface,	 and
bInterfaceProtocol	 =	 0x01	 to	 indicate	 a	 still-image	 capture	 function.	 The
interface	must	have	descriptors	for	the	bulk	IN,	bulk	OUT,	and	interrupt	IN
endpoints.

Class-specific	requests
The	class	defines	four	control	requests.	Cancel_Request	requests	to	cancel	the
ISO	 15740	 transaction	 named	 in	 the	 request.	 Get_Extended_Event_Data
(optional)	 requests	 extended	 information	 regarding	 an	 event	 or	 vendor
condition.	 Device_Reset_Request	 requests	 the	 device	 to	 return	 to	 the	 Idle
state.	The	host	can	use	this	request	after	a	bulk	endpoint	has	returned	a	STALL
or	 to	 clear	 a	 vendor-specific	 condition.	 Get_Device_Status	 requests
information	needed	to	clear	halted	endpoints.	The	host	uses	this	request	after
a	device	has	canceled	a	data	transfer.

Chips
Just	about	any	USB	controller	that	supports	full	speed	or	higher	will	have	the
three	endpoints	required	by	the	still-image	class.

Host	support
Windows	 provides	 the	 Windows	 Image	 Acquisition	 (WIA)	 API	 for
communicating	 with	 devices	 in	 the	 still-image	 class.	 Applications
communicate	with	devices	by	using	ReadFile,	WriteFile,	and	DeviceIoControl
API	functions.	The	usbscan.sys	driver	adds	USB	support	to	WIA.
Cameras	that	use	PTP	require	no	vendor-provided	driver	components	though
a	 vendor	 can	 provide	 a	 minidriver	 to	 support	 vendor-specific	 features	 and
capabilities.	For	scanners,	the	vendor	must	provide	a	microdriver,	which	is	a
helper	 DLL	 that	 translates	 between	 the	 driver’s	 communications	 and	 a
language	 the	 scanner	 understands,	 or	 a	 minidriver	 that	 works	 with	 the
provided	drivers	to	enable	communications	with	the	device.

Test	and	measurement
The	 test-and-measurement	 class	 (USBTMC)	 is	 suitable	 for	 instrumentation

devices	 where	 the	 data	 on	 the	 bus	 doesn’t	 need	 guaranteed	 timing.	 These
devices	 typically	 contain	 components	 such	 as	 ADCs,	 DACs,	 sensors,	 and
transducers.
Before	USB,	many	 test-and-measurement	devices	used	 the	 IEEE-488	parallel
interface,	 also	 known	 as	 the	 General	 Purpose	 Interface	 Bus	 (GPIB).	 The
USB488	 subclass	 of	 the	 test-and-measurement	 class	 defines	 protocols	 for
communicating	using	IEEE	488’s	data	format	and	commands.

Documentation
The	 class	 specifications	 include	 the	 main	 USBTMC	 specification	 and	 a
document	for	the	USB488	subclass.	The	IEEE	488	standards	are	available	from
ieee.org.

Overview
A	USBTMC	device	requires	a	bulk	OUT	endpoint	and	a	bulk	IN	endpoint.	An
interrupt	 IN	 endpoint	 is	 required	 for	 devices	 in	 the	 USB488	 subclass	 and
otherwise	is	optional	for	returning	event	and	status	information.
The	 bulk	 pipes	 exchange	messages	 consisting	 of	 a	 header	 followed	 by	 data.
The	bulk	OUT	endpoint	receives	command	messages.	The	bulk	IN	endpoint
sends	 response	 messages.	 The	 header	 for	 a	 command	 message	 contains	 a
message	 ID,	 a	 bTag	 value	 that	 identifies	 the	 transfer,	 and	 message-specific
information.	The	header	 for	 a	 response	message	 contains	 a	message	 ID	 and
bTag	 values	 of	 the	 command	 that	 prompted	 the	 response,	 followed	 by
message-specific	information.

Descriptors
The	 interface	 subclass	 specifies	 the	 USBTMC	 function.	 In	 the	 interface
descriptor,	bInterfaceClass	=	0xFE	to	indicate	an	application-specific	interface
and	 bInterfaceSubClass	 =	 0x03	 to	 indicate	 USBTMC.	 There	 are	 no	 class-
specific	descriptors.

Class-specific	requests
The	 class	 defines	 eight	 control	 requests	 for	 controlling	 and	 requesting	 the
status	 of	 an	 interface	 or	 transfer	 and	 requesting	 information	 about	 the
interface’s	attributes	and	capabilities.

Chips

http://ieee.org

USBTMC	devices	 can	use	 just	 about	 any	device	 controller	 that	 supports	 full
speed	or	higher.

Host	support
Windows	doesn’t	include	a	driver	for	this	class.	National	Instruments	provides
a	 driver	 for	 use	 with	 the	 company’s	 hardware.	 Other	 options	 for	 test-and-
measurement	 devices	 that	 use	 bulk	 transfers	 include	 the	mass-storage	 class,
the	WinUSB	or	libusb	driver,	and	vendor-specific	drivers.	A	HID-class	device
can	 perform	 test	 and	 measurement	 functions	 using	 control	 and	 interrupt
transfers.	For	an	existing	device	with	an	IEEE-488	interface,	a	quick	solution	is
to	use	a	commercial	IEEE-488/USB	converter.
Agilent	 Technologies,	 Inc.	 provides	 a	 USBTMC	 driver	 for	 Linux	 under	 the
GNU	Free	Documentation	License.

Figure	 7-3.	A	 video	 interface	 consists	 of	 a	VideoControl	 interface	 and	 zero	 or
more	VideoStreaming	interfaces.

Video
The	USB	video	class	(UVC)	supports	digital	camcorders,	webcams,	and	other
devices	that	send,	receive,	or	manipulate	transient	or	moving	images.	The	class
also	supports	transferring	still	images	from	video	devices.

Documentation
Multiple	 documents	 make	 up	 the	 video	 specification.	 The	 main	 class
specification	defines	standard	and	class-specific	descriptors	and	class-specific

control	 requests	 for	 video	 devices.	 The	 video	 media	 transport	 terminal
specification	 defines	 descriptors	 and	 protocols	 for	 video	 cameras	 and	 other
devices	 that	 stream	 data	 stored	 in	 sequential	 media.	 Other	 specifications
define	 descriptors	 and	 protocols	 for	 specific	 payload	 formats.	 Additional
documents	include	an	FAQ	and	implementation	examples.

Overview
Figure	7-3	shows	the	elements	that	make	up	a	video	function	in	a	USB	device.
Every	 function	 must	 have	 a	 VideoControl	 interface,	 which	 provides
information	 about	 inputs,	 outputs,	 and	 other	 components	 of	 the	 function.
Most	functions	also	have	one	or	more	VideoStreaming	interfaces	that	enable
transferring	 video	 data.	 A	 Video	 Interface	 Collection	 consists	 of	 a
VideoControl	interface	and	its	associated	VideoStreaming	interfaces.	A	device
can	have	multiple,	 independent	VideoControl	 interfaces	and	Video	Interface
Collections.
The	 VideoControl	 interface	 uses	 the	 control	 endpoint	 and	 may	 use	 an
interrupt	IN	endpoint.	Each	VideoStreaming	interface	has	one	isochronous	or
bulk	 endpoint	 for	 video	 data	 and	 an	 optional	 bulk	 endpoint	 for	 still-image
data.

Descriptors
The	video	 class	defines	 an	 extensive	 set	of	descriptors	 that	 enable	devices	 to
provide	detailed	information	about	the	device’s	abilities.	Each	Video	Interface
Collection	 must	 have	 an	 interface	 association	 descriptor	 that	 specifies	 the
interface	 number	 of	 the	 first	 VideoControl	 interface	 and	 the	 number	 of
VideoStreaming	interfaces	associated	with	the	function.
The	VideoControl	Interface.	The	VideoControl	 interface	(Figure	7-4)	has	 a
standard	interface	descriptor	with	bInterfaceClass	=	0x0E	to	indicate	the	video
class.	The	descriptor’s	 iFunction	 field	must	 reference	a	 string	descriptor	 that
contains	a	 function	name	 in	U.S.	English.	 (Other	 languages	 are	optional.)	A
class-specific	 VideoControl	 interface	 descriptor	 consists	 of	 a	 VideoControl
interface	 header	 descriptor	 followed	 by	 one	 or	 more	 Terminal	 and/or	 Unit
descriptors.
A	Terminal	is	the	starting	or	ending	point	for	information	that	flows	into	or
out	 of	 a	 function.	 A	 Terminal	 may	 represent	 a	 USB	 endpoint	 or	 another
component	such	as	a	CCD	sensor,	display	module,	or	composite-video	input
or	 output.	 The	 defined	 Terminal	 types	 are	 generic	 Input	 and	 Output

Terminals	 plus	 two	 special-purpose	 types.	A	Media	Transport	Terminal	 can
stream	 sequential	 data	 to	 or	 from	a	USB	host.	A	Camera	Terminal	 controls
features	 of	 a	 video-capture	 device	 that	 has	 controllable	 lenses	 or	 sensor
characteristics.
A	Unit	 transforms	data	flowing	through	a	function.	A	Selector	Unit	routes	a
data	 stream	 to	 an	 output.	 A	 Processing	 Unit	 controls	 video	 attributes.	 An
Encoding	 Unit	 controls	 attributes	 of	 a	 video	 encoder.	 An	 Extension	 Unit
performs	a	vendor-defined	function.
If	 the	 interface	 has	 an	 interrupt	 endpoint,	 the	 endpoint	 has	 a	 standard
endpoint	descriptor	followed	by	a	class-specific	endpoint	descriptor.
The	VideoStreaming	Interface.	Each	VideoStreaming	 interface	 (Figure	 7-5)
has	a	standard	interface	descriptor.	Following	this	descriptor,	an	interface	with
an	IN	endpoint	has	a	class-specific	VideoStreaming	Input	Header	descriptor,
and	an	 interface	with	 an	OUT	endpoint	has	 a	 class-specific	VideoStreaming
Output	Header	descriptor.
Following	 the	 Header	 descriptor	 is	 a	 Payload	 Format	 descriptor	 for	 each
supported	 video	 format.	 For	 frame-based	 formats,	 the	 Payload	 Format
descriptor	 is	 followed	by	one	or	more	Video	Frame	descriptors	that	describe
the	 dimensions	 of	 the	 video	 frames	 and	 other	 characteristics	 specific	 to	 a
format.	Some	devices	that	support	still-image	capture	have	a	Still	Image	Frame
descriptor.	A	Payload	 Format	 can	 also	 have	 a	Color	Matching	descriptor	 to
describe	a	 color	profile.	Each	VideoStreaming	 interface	has	one	 isochronous
or	 bulk	 endpoint	 descriptor	 for	 video	 data	 and	 an	 optional	 bulk	 endpoint
descriptor	for	still-image	data.

Figure	 7-4.	 The	 VideoControl	 interface	 provides	 information	 about	 inputs,
outputs,	and	other	components	of	a	video	function.

Class-specific	requests
Class-specific	control	requests	enable	setting	and	reading	the	states	of	controls
in	VideoControl	and	VideoStreaming	interfaces.

Figure	7-5.	A	VideoStreaming	 interface	has	an	endpoint	 for	video	data	and	an
optional	endpoint	for	still-image	data.

Chips
Video	typically	requires	significant	bus	bandwidth	so	controllers	used	in	video
applications	are	likely	to	support	high	speed,	SuperSpeed,	or	SuperSpeedPlus.
Chip	 companies	 that	 offer	USB	 controllers	with	 video-class	 support	 include
Alcor	Micro,	Genesys	Logic,	and	Realtek	Semiconductor	Corp.

Host	support
Windows	XP	SP2	introduced	a	driver	compatible	with	the	video	class	version
1.0	(usbvideo.sys).	Windows	7	supports	version	1.1	of	the	class,	and	Windows
8	supports	version	1.5,	including	H.264	video	codec	support	for	more	efficient
compression.	 Vendors	 of	 video-class	 devices	 that	 use	 the	 video-class	 driver
don’t	 need	 to	 provide	 any	 driver	 software	 but	 can	 provide	 a	 Control	 or
Streaming	extension	to	support	vendor-specific	functions	or	features.
Applications	can	access	video	devices	using	the	DirectShow	API	documented
in	the	Windows	SDK.

The	Linux	UVC	project	provides	kernel	support	for	some	video-class	devices.

Classes	defined	by	other	specifications
Some	USB	class	codes	are	defined	by	an	organization	other	than	the	USB-IF	or
a	document	that	is	not	primarily	a	class	specification.

Bluetooth
USB/Bluetooth	adapters	convert	between	Bluetooth’s	short-range	RF	wireless
interface	and	USB.	The	Bluetooth	specification	from	Bluetooth	Special	Interest
Group	 (SIG),	 Inc.	 (bluetooth.org)	 defines	 protocols	 for	 communicating	with
these	 devices.	 An	 adapter	 can	 be	 a	 separate	 device	 connected	 internally	 or
externally,	an	element	on	a	motherboard,	or	a	subsystem	on	a	chip.
The	specification	defines	 two	controller	 types.	A	Primary	Controller	has	 two
USB	 interfaces,	 one	 with	 bulk	 and	 interrupt	 endpoints	 and	 one	 with
isochronous	endpoints.	Using	two	interfaces	enables	the	USB	host	to	select	an
alternate	isochronous	interface	without	interrupting	pending	bulk	or	interrupt
transfers.	An	Alternate	MAC/PHY	(AMP)	Controller	has	one	 interface	with
bulk	and	interrupt	endpoints.
USB	Bluetooth	devices	use	these	values	in	the	device	or	interface	descriptor:

Descriptor	Field Value Description

Class 0xE0 wireless	controller

SubClass 0x01 RF	controller

Protocol 0x01 Bluetooth	Primary	Controller

0x04 Bluetooth	AMP	Controller

Another	option	for	USB/Bluetooth	adapters	is	to	use	a	USB/serial	port	adapter
that	interfaces	to	a	serial	port/Bluetooth	adapter.	The	host	then	uses	protocols
defined	in	the	Bluetooth	UART	transport	layer.

Wireless	USB
The	USB-IF’s	Wireless	USB	specification	defines	a	Device	Wire	Adapter	that
provides	 a	 USB	 Series-A	 connector	 for	 attaching	 a	 device	 and	 a	 wireless
interface	for	communicating	with	a	Wireless	USB	host.
Device	Wire	Adapters	use	these	values	in	interface	descriptors:

http://bluetooth.org

Descriptor	Field Value Description

bInterfaceClass 0xE0 wireless	controller

bInterfaceSubClass 0x02 Wireless	USB	wire	adapter

bInterfaceProtocol 0x02 Device	Wire	Adapter	control/data	streaming
interface

0x03 Device	Wire	Adapter	transparent	RPipe
interface	(optional)

Chapter	20	has	more	about	wireless	options.

USB3	Vision
Machine-vision	 devices	 perform	 functions	 such	 as	 inspecting,	 tracking,	 and
sorting	 items	 in	 production	 lines;	 guiding	 surgical	 robots;	 and	 detecting
explosives.	 The	 USB3	 Vision	 specification	 defines	 protocols	 for	 machine
vision	devices	that	use	USB	3.0.
The	 Automated	 Imaging	 Association	 (AIA)	 (visiononline.org)	 sponsors	 the
USB3	Vision	standard	committee	and	publishes	the	specification.
USB3	Vision	devices	use	these	values	in	interface	descriptors:

Descriptor	Field Value Description

bInterfaceClass 0xEF Miscellaneous

bInterfaceSubClass 0x05 USB3	Vision

bInterfaceProtocol 0x00 Device	control

0x01 Device	events	(optional)

0x02 Device	streaming

A	 USB3	 Vision	 devices	 use	 bulk	 endpoints	 for	 streaming	 data	 to	 the	 host,
device	control,	and	optional	event	messages.
A	 USB3	 Vision	 camera	 must	 have	 an	 XML	 device	 description	 file	 that
describes	 the	camera’s	 features.	The	file	uses	syntax	defined	 in	 the	GenICam
standard	(genicam.org).
Because	machine	 vision	 applications	 often	 involve	 high	movement	 or	 force,
the	USB	3	Vision	specification	defines	a	series	of	connectors	that	use	locking
screws	to	provide	a	secure	connection.

http://visiononline.org
http://genicam.org

Implementing	non-standard	functions
Some	devices	perform	 functions	 that	don’t	have	an	obvious	match	 to	a	USB
class.	Other	functions	might	fit	a	class	such	as	test	and	measurement	or	device
firmware	upgrade,	but	the	lack	of	a	driver	in	Windows	and	other	OSes	might
prompt	 a	 different	 approach.	 Many	 legacy	 serial-	 and	 parallel-port	 devices
perform	 vendor-specific	 functions.	Host-to-host	 communications	 is	 another
function	 that	 doesn’t	 fit	 a	 defined	 class.	 USB	 is	 flexible	 enough	 to
accommodate	all	of	these	needs.

Choosing	a	driver
Class	drivers	that	are	suitable	for	some	devices	with	vendor-defined	functions
include	 HID,	 CDC,	 and	 mass	 storage.	 HIDs	 are	 limited	 to	 control	 and
interrupt	transfers	but	can	transfer	data	for	any	purpose.	A	CDC	virtual-serial-
port	device	can	exchange	data	in	bulk	transfers	but	require	a	vendor-provided
INF	file.	Mass	storage	is	an	option	for	devices	that	transfer	data	in	files.
For	 standard	 but	 unsupported	 classes	 such	 as	 test	 and	 measurement	 and
device	 firmware	 upgrade,	 you	might	 be	 able	 to	 obtain	 a	 class	 driver	 from	 a
third	party.

Using	a	generic	driver
A	generic	driver	 can	be	a	 solution	 for	devices	 that	don’t	 fit	 a	 standard	class.
Generic	 drivers	 typically	 enable	 applications	 to	 request	 control,	 interrupt,
bulk,	and/or	isochronous	transfers	using	a	driver-specific	API.
Microsoft’s	WinUSB,	detailed	in	Chapters	14-15,	and	 the	open-source	 libusb
driver	 are	 two	 options.	 Other	 sources	 for	 generic	 drivers	 include	 Andrew
Pargeter	&	Associates,	Jungo	Ltd.,	and	Thesycon.	Many	of	these	drivers	have
toolkits	 that	 generate	 the	 required	 INF	 file	 and	 include	 example	 application
code.	 As	 Chapter	 6	 explained,	 some	 chip	 companies	 also	 provide	 generic
drivers	for	use	with	their	chips.

Converting	from	RS-232
The	RS-232	 serial	 port	was	 included	 on	 the	 very	 first	 PCs	 and	 persisted	 for
many	 years	 on	PCs	 and	 peripherals.	 Just	 about	 any	 device	 that	 uses	RS-232
can	use	USB	instead.	There	are	several	approaches	to	making	the	switch.
Some	RS-232	devices	fit	 into	a	defined	USB	class.	Modems	are	CDC	devices.

The	 HID	 class	 provides	 usages	 for	 pointing	 devices,	 uninterruptible	 power
supplies,	and	point-of-sale	devices.
For	 many	 other	 devices,	 controllers	 such	 as	 FTDI’s	 USB	 UART	 series
introduced	in	Chapter	6	provide	a	quick	way	to	upgrade	a	design	to	USB.	The
chip	 can	 convert	 an	 existing	 RS-232	 device	 to	 USB	 with	 minimal	 design
changes	and	in	most	cases	no	changes	to	host	software	or	device	firmware.

Figure	 7-6.	 FTDI’s	 FT231X	 USB	 UART	 can	 convert	 devices	 with	 RS-232
interfaces	 to	USB.	A	driver	provided	by	FTDI	causes	 the	device	 to	appear	 as	 a
COM-port	device	to	host	applications.

Figure	 7-6	 shows	 an	 example.	 A	 typical	 device	 with	 an	 RS-232	 interface
contains	 a	 UART	 that	 converts	 between	 the	 serial	 data	 used	 in	 RS-232
communications	and	 the	parallel	data	 the	CPU	uses.	The	 signals	on	 the	 line

side	of	the	UART	connect	to	drivers	and	receivers	that	translate	between	RS-
232	 voltages	 and	 the	 5	 V	 logic	 used	 by	 the	 UART.	 The	 line	 side	 of	 the
converter	 connects	 to	 a	 cable	 to	 the	 remote	 computer	 with	 an	 RS-232
interface.	To	convert	 from	RS-232	to	USB,	you	replace	 the	RS-232	converter
with	 an	 FT231X	 or	 similar	 converter	 chip.	 On	 the	 host	 computer,	 FTDI’s
driver	enables	applications	to	access	the	device	using	the	same	functions	used
for	RS-232	communications.
Many	 RS-232/USB	 adapter	modules	 contain	 little	more	 than	 an	 FT231X	 or
similar	 chip,	 an	RS-232	 interface	 chip,	 and	 connectors	 for	RS-232	 and	USB.
An	RS-232	device	with	an	external	adapter	gives	users	the	choice	of	using	USB
or	RS-232.
When	 using	 a	 USB/RS-232	 adapter,	 devices	 that	 use	 the	 status	 and	 control
signals	 in	 unconventional	 ways	 and	 with	 critical	 timing	 requirements	 may
require	modifications	to	device	hardware	or	firmware	or	application	software.

Converting	from	the	parallel	port
Another	 port	 that	 PCs	 had	 from	 the	 beginning	was	 the	 parallel	 port,	which
many	 devices	 besides	 printers	 used.	 For	 parallel-port	 printers,	 adapter
modules	are	available	to	enable	connecting	to	a	PC	via	USB.
Devices	with	other	functions	may	require	redesigning	for	USB,	possibly	using
the	WinUSB	driver	or	a	generic	or	custom	driver.	The	device	will	need	new
application	 software	 to	 communicate	 with	 the	 driver.	 A	 peripheral-side
parallel-port	 interface	 has	 8	 bidirectional	 data	 pins,	 5	 status	 outputs,	 and	 4
control	inputs.	Thus	a	USB	controller	with	17	I/O	bits	can	emulate	a	parallel
port.	The	device	will	need	vendor-specific	 firmware	 to	 translate	between	 the
USB	and	parallel-port	data,	plus	a	host	driver	and	new	application	software.

Connecting	two	PCs
Because	 every	PC	has	 a	USB	port,	 some	 applications	might	want	 to	 use	 the
interface	 to	 communicate	 between	 PCs.	 But	 with	 one	 exception,	 every	USB
communication	must	be	between	a	host	and	a	device,	not	between	two	hosts
(or	two	devices).
If	both	PCs	have	Ethernet	ports,	one	solution	is	to	forget	about	USB	and	use
Ethernet.	Use	a	crossover	cable	to	connect	the	PCs	directly	or	connect	the	PCs
via	a	hub	or	router.

If	Ethernet	ports	aren’t	an	option,	a	USB	host-to-host	bridge	cable	can	do	the
job.	The	cable	incorporates	two	USB	device	controllers,	which	may	reside	in	a
single	 chip.	 Each	 controller	 functions	 as	 a	 USB	 device,	 with	 each	 device
attaching	 to	 a	 different	 PC.	 The	 devices	 exchange	 data	 via	 a	 shared	 buffer
(Figure	7-7).	When	a	PC	sends	data	to	its	attached	device,	the	device	writes	the
data	 to	 the	 shared	 buffer.	 The	 other	 device	 in	 the	 bridge	 retrieves	 the	 data
from	the	buffer	and	sends	it	on	to	its	attached	PC.
Prolific	 Technology’s	 PL-25A1	 USB2.0	 Host-to-Host	 Bridge	 Controller	 is	 a
single	 chip	 designed	 for	 this	 type	 of	 host-to-host	 application.	 The	 chip
contains	 an	8032	micro-controller	 and	 two	USB	SIEs	 that	 access	 a	 common
buffer.	Typically,	the	drivers	for	bridge	cables	cause	each	PC	to	see	the	other	as
a	network-connected	computer.

Figure	7-7.	To	enable	two	USB	hosts	to	communicate	with	each	other,	two	USB
serial	 interface	 engines	 can	 share	 a	 buffer.	 Each	 SIE	 copies	 received	USB	 data
into	the	shared	buffer,	and	the	other	device	retrieves	the	data	from	the	buffer	and
sends	the	data	to	the	other	host.

Another	way	to	achieve	a	network	connection	via	USB	is	to	use	USB/Ethernet
adapters.
A	 different	 approach	 for	 host-to-host	 communications	 is	 to	 use	 two	 FTDI
FT231X	 or	 similar	 USB	 UARTs	 and	 cross-connect	 the	 asynchronous
interfaces	 in	 a	 null-modem	 configuration.	 Each	 PC	 then	 has	 a	 virtual	 serial
port	that	communicates	with	a	virtual	serial	port	on	the	other	PC.
The	exception	to	the	host-and-device	rule	is	the	USB	3.1	Standard-A	to	USB
3.1	Standard-A	cable.	With	host	driver	support,	Enhanced	SuperSpeed	devices

can	use	this	cable	to	communicate	with	each	other.	Chapter	20	has	more	about
the	cable.

8

How	the	Host	Communicates
This	 chapter	 explains	 how	 Windows	 manages	 communications	 with	 USB
devices.

Device	drivers
A	device	driver	is	a	software	component	that	enables	applications	to	access	a
hardware	 device.	 The	 hardware	 device	may	 be	 a	 printer,	modem,	 keyboard,
video	 display,	 data-acquisition	 unit,	 or	 just	 about	 anything	 controlled	 by
circuits	the	CPU	can	access.	Under	Windows,	every	USB	device	must	have	an
assigned	device	driver.

The	layered	driver	model
USB	communications	under	Windows	use	a	layered	driver	model	where	each
driver	in	a	stack,	or	series,	performs	a	portion	of	the	communication	task.	At
the	top	of	the	stack	is	a	device	driver	called	a	client	driver,	which	the	operating
system	has	assigned	 to	 the	device.	Another	 term	for	client	driver	 is	 function
driver.	USB	class	drivers	and	vendor-specific	device	drivers	are	client	drivers.
Applications	 access	 a	 USB	 device	 by	 communicating	 with	 the	 client	 driver.
The	client	driver	in	turn	communicates	with	lower-level	bus	and	port	drivers
that	access	 the	hardware.	One	or	more	 filter	drivers	can	supplement	a	client
driver	or	bus	driver.

Figure	8-1.	USB	uses	a	layered	driver	model	under	Windows.

Dividing	 communications	 into	 layers	 is	 efficient	 because	 devices	 that	 have
tasks	 in	 common	 can	 use	 the	 same	 driver	 for	 those	 tasks.	 For	 example,	 it
makes	sense	 to	have	one	set	of	drivers	 that	handle	 tasks	common	to	all	USB
devices.	 An	 operating	 system	 can	 provide	 these	 drivers	 so	 device	 vendors
don’t	have	to	do	so	with	much	duplication	of	effort.

User	and	kernel	modes
Under	Windows,	 program	 code	 runs	 in	 either	 user	 mode	 or	 kernel	 mode.
Each	mode	allows	a	different	level	of	privilege	in	accessing	memory	and	other
system	resources.	Figure	8-1	shows	the	major	components	of	user	and	kernel
modes	in	USB	communications.	Applications	run	in	user	mode.	A	USB	device
must	have	a	kernel-mode	client	driver,	which	can	also	have	a	supplementary
user-mode	driver.
User	 mode	 has	 limited	 access	 to	 memory	 and	 other	 system	 resources.
Applications	 and	 user-mode	 client	 drivers	 can’t	 access	 memory	 that	 the
operating	 system	has	designated	 as	protected.	Limiting	 access	 to	memory	 in
this	way	enables	a	system	to	run	multiple	applications	at	the	same	time.	If	an
application	crashes,	other	applications	shouldn’t	be	affected.

Kernel-mode	code	has	unrestricted	access	 to	 system	resources,	 including	 the
ability	to	execute	memory-management	instructions	and	control	access	to	I/O
ports.	A	kernel-mode	driver	can	allow	any	application	to	use	a	device	or	allow
a	 single	 application	 to	 have	 exclusive	 use.	 Other	 abilities	 that	 Windows
reserves	 for	 kernel-mode	 drivers	 include	 DMA	 transfers	 and	 responding	 to
hardware	interrupts.
The	 specifics	 vary	 with	 the	 driver,	 but	 in	 general,	 applications	 can
communicate	with	kernel-mode	drivers	using	a	combination	of	Windows	API
functions,	 other	 functions	 exposed	by	 a	user-mode	driver,	 or	 the	properties,
methods,	and	events	of	classes	in	the	.NET	Framework.	To	communicate	with
a	USB	device,	 an	application	often	doesn’t	have	 to	know	anything	about	 the
USB	protocol	or	even	whether	a	device	uses	USB	at	all.
Kernel-mode	drivers	communicate	using	structures	called	I/O	request	packets
(IRPs)	supported	by	the	operating	system.	Each	IRP	requests	a	single	input	or
output	 action.	 A	 kernel-mode	 client	 driver	 for	 a	 USB	 device	 uses	 IRPs	 to
communicate	with	the	bus	drivers	that	handle	USB	communications.
Drivers	 create	 device	 objects	 to	 handle	 I/O	 requests.	 A	 DEVICE_OBJECT
structure	represents	a	device	object.	A	physical	device	object	(PDO)	represents
a	device	to	a	bus	driver.	A	functional	device	object	(FDO)	represents	a	device
to	a	client	driver.	A	filter	device	object	(filter	DO)	represents	a	device	to	a	filter
driver.
The	Windows	PnP	manager	requests	the	bus	driver	to	create	a	PDO	for	each
device	on	a	bus.	For	each	PDO,	the	PnP	manager	may	load	and	call	client	and
filter	drivers	that	in	turn	create	FDOs	and	filter	DOs.

Inside	the	layers
The	components	involved	in	accessing	USB	devices	include	applications,	user-
mode	client	drivers,	kernel-mode	client	drivers,	and	bus	drivers.

Applications
Before	 an	 application	 can	 communicate	 with	 a	 device,	 several	 things	 must
happen.	On	power	up	or	device	attachment,	the	operating	system	enumerates
the	device	as	described	in	Chapter	4.	To	identify	which	driver	to	use,	Windows
compares	 the	 retrieved	descriptors	with	 the	 information	 in	 the	 system’s	 INF
files.	Chapter	9	has	more	about	INF	files.	When	enumeration	is	complete	and

the	driver	is	loaded,	applications	can	access	the	device.
Some	 drivers	 cause	 the	 host	 to	 continuously	 request	 data	 from	 a	 device
whether	or	not	an	application	has	requested	data.	For	example,	a	host	requests
keypress	data	at	intervals	from	a	keyboard.	Other	drivers	access	a	device	only
when	requested	by	an	application	or	other	program	code.

The	Windows	API
Applications	 written	 in	 Visual	 C#	 and	 other	 languages	 can	 access	 many
devices	by	calling	Windows	API	functions.	The	supported	functions	vary	with
the	driver,	but	an	application	typically	opens	communications	with	CreateFile,
exchanges	data	using	a	combination	of	ReadFile	or	ReadFileEx,	WriteFile	or
WriteFileEx,	 and	 DeviceIoControl,	 and	 closes	 communications	 with
CloseHandle.	 Microsoft’s	 Windows	 software	 development	 kit	 (SDK)
documents	these	functions.
Although	the	names	suggest	that	the	functions	are	for	use	with	files,	ReadFile
and	 WriteFile	 (and	 their	 variants	 ReadFileEx	 and	 WriteFileEx)	 can
communicate	 with	 drivers	 that	 access	 many	 device	 types	 via	 handle-based
operations.	The	functions	accept	pointers	to	buffers	to	store	data	being	read	or
data	to	be	written.	Depending	on	the	driver,	a	call	 to	ReadFile	might	request
data	 from	 a	 device	 or	 return	 data	 that	 a	 driver	 has	 already	 requested	 and
stored	in	the	driver’s	buffer.
DeviceIoControl	 offers	 another	 way	 to	 transfer	 data.	 Included	 in	 each
DeviceIoControl	request	is	a	control	code	that	identifies	a	specific	command.
For	example,	the	code	IOCTL_STORAGE_GET_MEDIA_TYPES	requests	the
types	of	media	a	mass-storage	device	supports.	Because	a	 function	call	 sends
codes	to	a	specific	driver,	multiple	drivers	can	use	the	same	codes.

Using	.NET’s	classes
For	 easier	 and	 safer	 programming,	 Microsoft’s	 .NET	 Framework	 provides
classes	 that	 eliminate	 the	 need	 to	 call	many	API	 functions	 from	 application
code.	Instead,	applications	communicate	with	a	Common	Language	Runtime
(CLR)	 component	 that	 in	 turn	may	 call	 API	 functions.	 The	 CLR	 simplifies
application	programming	by	handling	memory	management	 and	other	 low-
level	 tasks.	 Instead	of	using	ReadFile	 and	WriteFile	 to	 access	 files	 on	drives,
applications	 can	use	methods	 in	 .NET’s	Directory	and	File	 classes.	The	CLR
works	 with	 other	 components	 in	 the	 .NET	 Framework	 to	 translate	 the
application	code	to	API	calls	that	access	the	files.

The	.NET	classes	don’t	implement	every	API	function,	however.	For	example,
.NET	doesn’t	provide	methods	for	exchanging	Feature	reports	with	HID-class
devices.

User-mode	client	drivers
A	user-mode	 client	 driver	 can	 define	 a	 driver-specific	API	 that	 applications
can	use	 to	 access	devices.	The	driver	 is	 in	 a	dynamic	 link	 library	 (DLL).	An
example	of	a	user-mode	USB	driver	is	winusb.dll,	which	exposes	routines	for
accessing	 devices	 that	 use	 the	WinUSB	 kernel-mode	 driver.	 These	 routines
make	up	the	WinUSB	API.	In	a	similar	way,	hid.dll	is	a	user-mode	driver	that
exposes	HID	API	routines	for	accessing	devices	that	use	the	HID	kernel-mode
class	driver.
A	 user-mode	 driver	 translates	 between	 the	 driver-defined	 functions	 and	 the
Windows	 API.	 For	 example,	 when	 an	 application	 calls	 the	 Hid_GetFeature
API	function,	the	user-mode	HID	driver	calls	a	DeviceIoControl	API	function
that	causes	the	kernel-mode	HID	driver	to	request	a	HID	Feature	report	from
a	device.

Kernel-mode	client	drivers
A	 kernel-mode	 client	 driver	 manages	 communications	 between	 user-mode
code	and	 lower-level	USB	drivers.	Kernel-mode	client	drivers	must	 conform
to	 Microsoft’s	 Windows	 Driver	 Model	 (WDM).	 These	 drivers	 have	 the
extension	 .sys.	 (Other	driver	 types	may	also	use	 this	extension.)	Examples	of
kernel-mode	client	drivers	are	winusb.sys	(WinUSB)	and	hidclass.sys	(HID).
A	kernel-mode	client	driver	can	be	a	class	driver	included	with	Windows	or	a
vendor-provided	driver.	The	driver	manages	communications	that	are	specific
to	a	device	or	a	class	of	devices.	A	class	driver	may	also	communicate	with	a
miniclass	driver	 that	manages	 communications	with	 a	 subset	of	devices	 in	 a
class.
A	client	driver	or	miniclass	driver	can	have	one	or	more	upper	and	lower	filter
drivers	 (Figure	 8-2).	 An	 upper-level	 filter	 driver	 can	 monitor	 and	 modify
communications	between	applications	and	a	client	driver.	A	lower-level	filter
driver	can	monitor	and	modify	communications	between	a	client	driver	and
the	bus	drivers.
For	composite	devices,	Windows	loads	the	USB	common-class	generic	parent
driver	 (usbccgp.sys)	 between	 the	 bus	 drivers	 and	 the	 client	 drivers	 for	 the

device’s	 interfaces.	 The	 generic	 parent	 driver	 handles	 synchronization,	 PnP,
and	 power-management	 functions	 for	 the	 device	 as	 a	 whole	 and	 manages
communications	 between	 the	 lower-level	 USB	 drivers	 and	 client	 drivers	 for
the	composite	device’s	interfaces.
User-mode	programmers	have	a	choice	of	programming	languages,	including
Visual	 Basic,	 C#,	 and	 C/C++.	 For	 kernel-mode	 drivers,	 C	 has	 the	 needed
capabilities,	 including	 portability	 to	 multiple	 Windows	 platforms.	 The
Windows	Driver	Kit	(WDK)	provides	C	header	files	that	define	data	types	and
constants	 for	 drivers	 to	 use.	 While	 C++	 is	 feasible	 for	 some	 kernel-mode
drivers,	 Microsoft	 documents	 problems	 and	 risks	 including	 issues	 with
memory	management,	creating	and	using	libraries,	and	using	static	and	global
variables.

Figure	8-2.	A	client	driver	 can	have	one	or	more	 filter	drivers	 that	monitor	or
modify	communications	with	devices.

USB	 communications	 use	 IRPs	 that	 contain	 structures	 called	 USB	 Request
Blocks	 (URBs).	 The	URBs	 enable	 a	 driver	 to	 configure	 devices	 and	 transfer
data.	 The	WDK	 documents	 the	 defined	URBs.	 A	 kernel-mode	 client	 driver
requests	a	transfer	by	creating	an	URB	and	submitting	it	in	an	IRP	handled	by
a	lower-level	driver.	The	bus	and	host-controller	drivers	manage	the	details	of
scheduling	transactions	on	the	bus.	For	interrupt	and	isochronous	transfers,	if
there	is	no	outstanding	IRP	for	an	endpoint	when	its	scheduled	time	arrives,
the	host	controller	skips	the	transaction.
In	USB	communications,	an	URB	requests	a	USB	transfer	that	can	consist	of
one	 or	 more	 transactions.	 The	 lower-level	 drivers	 schedule	 the	 transfer’s
transactions	without	requiring	further	communications	with	the	client	driver.

If	 you’re	using	 an	 existing	 client	driver	 (rather	 than	writing	 your	own),	 you
need	to	understand	how	to	access	the	driver’s	application-level	 interface,	but
you	don’t	have	 to	 concern	yourself	with	 IRPs	 and	URBs.	 If	 you’re	writing	 a
client	 driver,	 you	 need	 to	 provide	 the	 IRPs	 that	 communicate	 with	 the
system’s	USB	drivers.

Low-level	host	drivers
Windows	and	other	OSes	provide	the	low-level	USB	drivers	that	manage	the
host	 controller	 and	 root	 hub.	 Microsoft	 provides	 little	 documentation	 for
these	drivers.	Application	and	device-driver	writers	don’t	have	 to	know	how
they	work.	If	you	want	to	know	more	about	how	to	implement	low-level	USB
communications,	 one	 source	 of	 information	 is	 the	 source	 code	 and	 other
documentation	 from	 the	 Linux	 USB	 Project.	 Another	 resource	 is	 the	 book
USB:	The	Universal	Serial	Bus	by	Benjamin	David	Lunt.

Figure	8-3.	USB	communications	under	Windows	involve	a	hub,	or	bus,	driver,	a
host	controller	driver,	and	a	driver	for	each	host-controller	type.

USB	3.0	drivers
On	a	USB	3.0	host,	Windows	provides	a	hub,	or	bus,	driver,	a	host-controller
extension	 driver,	 and	 a	 host-controller	 driver	 (Figure	 8-3).	 Presumably,	 the
drivers	for	USB	3.1	will	be	similar.
The	 hub	driver	 (usbhub3.sys)	manages	 the	 hubs	 and	 their	 ports.	 The	 driver
also	enumerates	the	devices	on	the	bus	and	creates	a	PDO	for	each	device.
The	 host-controller	 extension	 driver	 (ucx01000.sys)	 provides	 an	 interface
between	the	hub	driver	and	the	host-controller	driver.
The	 host-controller	 driver	 (usbxhci.sys)	 manages	 the	 Extensible	 Host
Controller	 Interface	 (xHCI)	 host-controller	 hardware.	 The	 xHCI	 host
controller	handles	all	speeds	from	low	speed	through	SuperSpeedPlus.

USB	2.0	drivers
On	a	USB	2.0	host,	Windows	provides	a	hub,	or	bus,	driver,	a	port	driver,	and
with	 some	 exceptions,	 a	 miniport	 driver	 for	 a	 low-	 and	 full-speed	 host
controller	and	a	miniport	driver	for	a	high-speed	host	controller.
The	hub	driver	(usbhub.sys)	identifies	devices	on	the	bus,	creates	PDOs	for	the
devices,	and	acts	as	a	client	driver	for	the	bus	as	a	whole.
The	 port	 driver	 (usbport.sys)	 manages	 tasks	 that	 are	 common	 to	 all	 host
controllers.
Miniport	drivers	(usbehci.sys	for	high	speed	and	usbohci.sys	or	usbuhci.sys	 for
low	 and	 full	 speeds)	 each	manage	 communications	 with	 a	 different	 type	 of
host-controller	hardware.

Host	controller	types
To	 access	 high-speed	 devices,	 USB	 2.0	 hosts	 use	 a	 host	 controller	 that
conforms	 to	 the	 Enhanced	 Host	 Controller	 Interface	 (EHCI)	 standard.	 An
EHCI	 controller	 handles	 high-speed	 communications	 only.	 The	 EHCI
specification	says	 that	a	host	 that	 supports	EHCI	must	also	support	 low	and
full	 speeds	 except	 for	 the	 unusual	 situation	 where	 every	 port	 has	 a
permanently	attached	high-speed	device.
To	support	low	and	full	speeds,	most	USB	2.0	hosts	use	an	integrated	hub	that

performs	the	function	of	a	host	controller	for	low-	and	full-speed	devices.
USB	 1.1	 hosts	 use	 an	Open	Host	 Controller	 Interface	 (OHCI)	 or	Universal
Host	 Controller	 Interface	 (UHCI)	 host	 controller	 to	 support	 low	 and	 full
speeds.	USB	 2.0	 hosts	 have	 the	 option	 to	 use	 a	 companion	OHCI	 or	UHCI
controller	for	low	and	full	speeds	but	most	use	an	embedded	hub	instead.	The
USB-IF’s	website	has	links	to	the	specifications.
In	 general,	 users	 and	 application	 programmers	 don’t	 have	 to	 know	 or	 care
which	 host	 controller	 is	 communicating	 with	 a	 device.	 To	 ensure	 the	 best
performance,	Windows	notifies	the	user	if	a	device	can	achieve	a	higher	speed
on	a	different	port.
For	 information	 about	 which	 host-controller	 types	 a	 Windows	 PC	 has,	 in
Device	 Manager,	 look	 under	 Universal	 Serial	 Bus	 controllers.	 To	 view	 a
driver’s	 name,	 right-click	 a	 host	 controller’s	 entry	 and	 select	 Properties	 >
Driver	>	Driver	Details.	One	of	the	drivers	listed	should	have	xhci,	ehci,	ohci,
or	uhci	in	the	name.	Chapter	9	has	more	about	Device	Manager.

Host	controller	differences
Developers	shouldn’t	assume	a	device	works	fine	based	on	tests	with	one	host-
controller	 type.	Different	host	 controllers	may	manage	bus	 traffic	differently
while	still	conforming	to	the	USB	specifications.
For	 example,	 an	 OHCI	 controller	 can	 schedule	 more	 than	 one	 stage	 of	 a
control	 transfer	 in	a	 single	 frame,	while	 a	UHCI	controller	 always	 schedules
each	 stage	 in	 a	 different	 frame.	 Developers	 who	 use	 UHCI	 hosts	 were
sometimes	 surprised	when	 their	 devices	 failed	when	 connected	 to	 an	OHCI
host.	 The	 failure	 occurs	 because	 the	 device	 isn’t	 expecting	 to	 see	 multiple
stages	of	a	control	transfer	in	a	frame.

Writing	drivers
To	 support	 vendor-specific	 functions,	 a	 device	 can	 use	 a	 vendor-specific
kernel-mode	driver	or	a	vendor-specific	user-mode	driver	that	communicates
with	a	kernel-mode	driver	provided	by	the	operating	system	or	a	vendor.
Microsoft	 provides	 the	 Windows	 Driver	 Foundation	 (WDF)	 framework	 to
help	in	writing	WDM	drivers.	When	developing	a	WDF	driver,	you	start	with
a	 functioning	 driver	 that	 provides	 default	 processing	 for	 PnP,	 power-
management,	and	device	I/O	events.	To	support	device-specific	behavior,	you

add	code	that	overrides	the	default	processing.	The	framework	hides	much	of
the	driver’s	complexity	and	helps	produce	a	stable	product.
This	 section	 will	 show	 you	 the	 options	 for	 creating	 drivers	 for	 devices	 that
need	vendor-provided	drivers.

Kernel	mode
Writing	 a	 kernel-mode	 client	 driver	 requires	 the	WDK,	which	 includes	 a	C
compiler,	 a	 linker,	 build	 utilities,	 and	 documentation	 including	 example
source	code.	The	WDK	is	a	free	download	from	Microsoft.
Kernel-mode	 drivers	 can	 use	 the	 Kernel-Mode	 Driver	 Framework	 (KMDF)
library	 included	 in	 the	WDK.	 The	KMDF	 isolates	 the	 driver	 code	 from	 the
details	of	creating	and	passing	IRPs	and	managing	PnP	and	power	functions.
A	KMDF	driver	creates	a	framework	driver	object	to	represent	the	driver	and
a	 framework	 device	 object	 for	 each	 device.	 Instead	 of	 creating	 and	 passing
IRPs,	 KMDF	 drivers	 perform	 driver	 functions	 via	 properties,	methods,	 and
events	 of	 the	 framework	device	 objects.	 Instead	of	 handling	PnP	 and	power
management	 directly,	 the	 framework	manages	 these	 functions	with	 callback
functions,	providing	event	notifications	as	needed.
The	 framework	 defines	 additional	 object	 types	 to	 represent	 resources	 that
drivers	can	use.	USB	communications	use	objects	that	represent	USB	devices,
interfaces,	 and	 pipes.	 Other	 framework	 objects	 can	 represent	 files,	 timers,
strings,	and	other	resources.

User	mode
User-mode	drivers	can	use	the	User-Mode	Driver	Framework	(UMDF)	library
included	 in	the	WDK.	UMDF	drivers	communicate	using	the	Windows	API
instead	of	kernel-mode	functions.	Developers	of	UMDF	drivers	can	program
in	C++	and	debug	with	user-mode	debuggers.
An	example	of	an	application	that	might	use	a	UMDF	driver	is	a	device	that
uses	 the	 WinUSB	 kernel-mode	 driver	 but	 needs	 to	 support	 multiple	 open
handles	 to	 a	 device	 interface.	 The	 provided	 user-mode	 WinUSB	 driver
component	 limits	 interfaces	 to	 one	 open	 handle	 at	 a	 time,	 while	 a	 vendor-
provided	UMDF	driver	can	allow	multiple	open	handles.

Testing	tools

The	 WDK	 provides	 a	 debugging	 engine	 for	 kernel-mode	 debugging.	 The
debugger	 integrates	 with	 Visual	 Studio,	 the	 Microsoft	 Windows	 Debugger
(WinDbg),	and	other	debugging	environments.

Using	GUIDs
A	Globally	Unique	Identifier	(GUID)	is	a	128-bit	value	that	uniquely	identifies
a	class	or	other	entity.	Windows	uses	GUIDs	in	identifying	two	types	of	device
classes.	A	device	 setup	GUID	 identifies	 a	 device	 setup	 class.	Devices	 in	 same
device	setup	class	install	in	the	same	way.	A	device	interface	GUID	identifies	a
device	 interface	 class,	 which	 provides	 a	 mechanism	 for	 applications	 to
communicate	 with	 a	 driver	 assigned	 to	 devices	 in	 the	 class.	 In	many	 cases,
devices	 that	belong	to	a	particular	device	setup	class	also	belong	to	 the	same
device	 interface	 class.	 Some	 SetupDi_	 API	 functions	 accept	 either	 type	 of
GUID,	 but	 the	 different	 GUID	 types	 provide	 access	 to	 different	 types	 of
information	for	different	purposes.
The	conventional	format	for	a	GUID	uses	five	sets	of	hex	values	separated	by
hyphens.
This	is	the	GUID	for	the	HIDCLASS	device	setup	class:

745a17a0-74d3-11d0-b6fe-00a0c90f57da

Figure	8-4.	Windows	defines	device	setup	GUIDs	for	many	functions	that	USB
devices	can	support.

This	is	the	GUID	for	the	HID	device	interface	class:
4d1e55b2-f16f-11cf-88cb-001111000030

Driver	writers	and	others	who	need	to	provide	a	custom	GUID	can	generate
one	using	the	guidgen	utility	provided	with	Visual	Studio	and	also	available	as
a	 free	download	 from	Microsoft.	The	utility	uses	 an	algorithm	 that	makes	 it
extremely	unlikely	that	someone	else	will	create	an	identical	GUID.	To	create
a	GUID	in	Visual	Studio	Professional	edition	or	above,	select	Tools	>	Create
GUID.

Device	setup	GUIDs
A	device	setup	GUID	identifies	devices	that	Windows	sets	up	and	configures
in	 the	 same	way,	 using	 the	 same	 class	 installer	 and	 co-installers.	 The	WDK
provides	 the	 system	 file	 devguid.h,	 which	 defines	 device	 setup	 GUIDs	 for
many	classes.	Figure	8-4	shows	some	of	the	device	functions	that	have	defined
device	setup	GUIDs.
Most	devices	should	use	a	device	setup	class	that	corresponds	to	the	device’s
function,	 such	 as	 Printers	 or	 Disk	 Drives.	 A	 single	 device	 can	 belong	 to
multiple	setup	classes,	such	as	Human	Interface	Devices	and	Mouse.	A	device
whose	 function	doesn’t	 fit	 a	defined	class	 can	use	 the	USB	Device	 class	or	 a
vendor-defined	 class.	 The	 USB	 Bus	 Devices	 class	 is	 for	 hubs	 and	 host
controllers	 that	 use	 system-supplied	 drivers.	 Each	 device	 setup	 GUID
corresponds	to	a	Class	key	in	the	system	registry.	Each	Class	key	has	a	subkey
for	each	instance	of	a	device	in	the	class.	Chapter	9	has	more	about	Class	keys.
Applications	can	use	device	setup	GUIDs	to	retrieve	information	and	perform
various	installation	functions	on	devices.	In	the	downloadable	WDK	Samples,
the	Device	Console	utility	(devcon.exe)	shows	how	to	use	device	setup	GUIDs
to	detect	and	retrieve	 information	about	devices	and	perform	functions	such
as	enabling,	disabling,	restarting,	updating	drivers	for,	and	removing	devices.
These	functions	are	the	same	as	those	performed	by	the	Device	Manager.	The
sample	includes	C++	source	code.

Device	interface	GUIDs
A	 class	 or	 device	 driver	 can	 register	 one	 or	more	 device	 interface	 classes	 to

alex1
Подсветить

enable	applications	to	learn	about	and	communicate	with	devices	that	use	the
driver.	Each	device	interface	class	has	a	device	interface	GUID.
Using	 a	 device	 interface	 GUID	 and	 SetupDi_	 functions,	 an	 application	 can
find	all	attached	devices	in	a	device	interface	class.	On	detecting	a	device,	the
application	can	obtain	a	device	path	name	to	pass	to	the	CreateFile	function.
CreateFile	 returns	a	handle	 that	 the	application	can	use	 to	access	 the	device.
Applications	 can	 also	 use	 device	 interface	 GUIDs	 to	 request	 to	 be	 notified
when	 a	 device	 is	 attached	 or	 removed.	 Chapter	 10	 has	 more	 about	 using
GUIDs	for	this	purpose.
Device	 interface	GUIDs	 are	 useful	 for	 finding	 devices	 that	 use	 the	WinUSB
driver,	 devices	 with	 vendor-specific	 drivers,	 and	 HID-class	 devices	 that
perform	vendor-specific	functions.
Unlike	device	setup	GUIDs,	device	interface	GUIDs	aren’t	defined	in	one	file.
A	driver	package	may	define	a	device	 interface	GUID	in	a	C	header	file	or	a
Visual	C#	variable	or	 constant.	An	application	 that	uses	 the	WinUSB	driver
can	define	a	device	interface	GUID	to	identify	a	specific	device.	Applications
can	use	the	HidD_GetHidGuid	function	to	retrieve	the	device	interface	GUID
for	the	HID	class.
For	 devices	 that	 perform	 standard	 peripheral	 functions,	 applications	 have
other	ways	to	find	and	gain	access	to	devices.	For	example,	to	access	a	drive,
the	 .NET	 Framework’s	 Directory	 class	 includes	 a	 GetLogicalDrives	 method
that	enables	applications	to	find	all	of	the	logical	drives	on	a	system	(whether
or	 not	 they	 use	 USB).	 A	 vendor-specific	 driver	 can	 also	 define	 an	 API	 to
enable	applications	to	access	devices	without	having	to	provide	a	GUID.

9

Matching	a	Driver	to	a	Device
On	 detecting	 a	 newly	 attached	 USB	 device,	 the	 host	 needs	 to	 decide	 what
driver	 to	 assign	 to	 the	 device.	 This	 chapter	 shows	 how	 Windows	 uses	 the
Device	Manager	 and	 system	 registry	 to	 store	 information	 about	devices	 and
their	drivers	and	how	Windows	selects	a	driver	for	a	device.

Using	Device	Manager
Windows	Device	Manager	displays	information	about	all	installed	devices	and
presents	a	user	interface	for	enabling,	disabling,	and	uninstalling	devices	and
updating	or	changing	a	device’s	assigned	driver.

Viewing	devices
You	can	open	Device	Manager	in	any	of	several	ways:	enter	devmgmt	 in	the
Windows	 Search	 box;	 navigate	 to	 Programs	 >	 Administrator	 Tools	 >
Computer	Management	and	select	Device	Manager;	or	navigate	to	Programs
>	Windows	 System	 >	Control	 Panel	 and	 select	 Device	 Manager.	 To	 save
clicks	 and	 keystrokes,	 create	 a	 shortcut	 that	 points	 to	 devmgmt.msc	 in
%SystemRoot%\System32	where	%System-Root%	is	the	Windows	directory.

Figure	 9-1.	 In	 Device	 Manager,	 you	 can	 view	 devices	 grouped	 by	 type,	 or
function.	Devices	 that	don’t	 fit	a	 supported	 function	such	as	keyboards	or	disk
drives	can	use	the	Universal	Serial	Bus	devices	type.

Device	Manager’s	View	menu	offers	options	 for	viewing	device	 information.
Viewing	 devices	 by	 type	 (Figure	 9-1)	 groups	 devices	 according	 to	 their
functions.	 Viewing	 devices	 by	 connection	 (Figure	 9-2)	 shows	 the	 physical
connections	 from	each	host	controller	and	root	hub,	 through	any	additional
hubs,	to	the	attached	devices.

Figure	9-2.	This	display	of	devices	by	connection	in	Device	Manager	expands	the
listing	for	an	xHCI	host	controller	to	show	attached	devices.

By	default,	Device	Manager	shows	only	attached	USB	devices.	To	view	devices
that	have	been	 removed	but	whose	drivers	 are	 still	 installed,	 click	View	 and
check	Show	Hidden	Devices.

Property	pages
Each	 listing	 in	 Device	 Manager	 has	 property	 pages	 that	 provide	 additional
information	about	a	device	and	an	interface	for	configuring	the	device	and	its
driver.	 To	 view	 the	 property	 pages,	 double-click	 the	 device’s	 entry	 or	 right-
click	the	entry	and	select
Properties.	You	can	 request	 to	 enable	or	disable	 the	device	or	view,	update,

roll	back,	or	uninstall	the	device’s	driver.	The	Details	page	provides	access	to
additional	 information	 including	 hardware	 IDs,	 any	 filter	 drivers	 or
coinstallers	the	device	uses,	and	power	capabilities.	A	driver	can	also	provide
custom	property	pages.

Device	information	in	the	registry
The	system	registry	is	a	database	that	Windows	maintains	for	storing	critical
information	 about	 the	 hardware	 and	 software	 installed	 on	 a	 system.	 The
registry	 stores	 information	 about	 USB	 devices	 that	 have	 been	 installed,
including	devices	not	currently	attached.
After	 enumerating	 a	 new	 device,	 Windows	 stores	 information	 about	 the
device	 in	 the	 registry.	The	 registry	obtains	 some	of	 its	 information	 from	 the
bus	 drivers,	 which	 in	 turn	 obtain	 the	 information	 from	 the	 devices.	 Other
information	comes	 from	 the	 INF	 file	 that	 the	operating	 system	selects	when
assigning	a	driver	to	a	device.
You	can	view	the	registry’s	contents	using	the	Windows	Registry	Editor	utility.
(Search	on	regedit.)	You	can	also	use	the	Registry	Editor	to	edit	the	registry’s
contents,	 but	 making	 registry	 changes	 this	 way	 is	 seldom	 necessary.	 The
Windows	SDK	documents	API	functions	that	enable	applications	to	read	and
write	to	the	registry.	During	device	installation,	the	operating	system	may	add
or	change	device	information	in	the	registry.	A	request	to	uninstall	a	device	via
the	Device	Manager	or	another	application	also	results	in	registry	changes.
The	system	registry	is	so	important	that	Windows	maintains	multiple	backup
copies	 if	 the	 current	 copy	 becomes	 unusable.	 The	Windows	 System	Restore
utility	(search	on	recovery)	can	restore	the	registry	to	an	earlier	state.
Registry	Editor	displays	registry	data	using	a	tree	structure.	Each	node	on	the
tree	 is	 a	 registry	 key.	 Each	 key	 can	 have	 entries	 with	 assigned	 values	 and
subkeys	that	in	turn	may	have	entries	and	subkeys.
Information	about	 the	system’s	hardware	and	 installed	software	 is	under	 the
HKEY_LOCAL_MACHINE\SYSTEM	key.	Information	about	USB	devices	is
in	subkeys	of	this	key	and	includes	the	hardware	key,	the	class	key,	the	driver
key,	and	the	service	key.

The	hardware	key
The	 hardware	 key,	 also	 called	 the	 instance	 key	 or	 device	 key,	 stores

information	 about	 an	 instance	 of	 a	 specific	 device.	 Hardware	 keys	 for	 USB
devices	are	under	the	Enum\USB	key:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Enum\USB

Figure	9-3.	A	hardware	key	contains	 information	about	an	instance	of	a	device
with	a	 specific	Vendor	 ID	and	Product	 ID.	This	 listing	 is	 for	a	vendor-defined
HID-class	device.

Under	the	USB	key	are	subkeys	that	each	contain	a	Vendor	ID	and	Product	ID
for	a	USB	device.	Under	each	device’s	subkey	are	one	or	more	hardware	keys
that	each	contain	information	about	an	instance	of	a	device	with	that	Vendor
ID	and	Product	ID.
Figure	9-3	shows	a	hardware	key	for	a	device	with	a	Vendor	ID	of	0x0925	and
Product	ID	of	0x7001.	Table	9-1	lists	some	of	the	entries	under	the	hardware
key.
A	device	without	a	USB	serial	number	string	descriptor	gets	a	new	hardware
key	every	time	the	device	attaches	to	a	port	the	device	hasn’t	been	attached	to
previously.	 If	 you	 physically	 remove	 the	 device	 from	 the	 bus	 and	 attach	 a
different	 device	 with	 identical	 descriptors	 to	 the	 same	 port,	 the	 operating
system	doesn’t	 know	 the	 difference	 and	 thus	 doesn’t	 create	 a	 new	hardware
key.	 Devices	 with	 USB	 serial	 numbers	 have	 one	 hardware	 key	 per	 physical
device	without	regard	to	what	port	the	device	attaches	to.
Each	 hardware	 key	 has	 a	 Device	 Parameters	 subheading	 with	 additional
information	 about	 the	 device	 instance	 such	 as	 a	 device	 interface	GUID	 and
whether	selective	suspend	is	enabled.

The	class	key
The	class	key	stores	information	about	a	device	setup	class	and	the	devices	that
belong	to	it.	The	class	keys	are	under	this	registry	key:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Class

Table	9-1:	These	are	some	of	the	entries	in	a	USB	device’s	hardware	key.
Key Description Source	of	Information

ClassGUID GUID	of	the
device’s	setup	class

INF	file

DeviceDesc Device	Description INF	file,	Models	section,	device	description	entry

HardwareID ID	string
containing	the
device’s	Vendor	ID
and	Product	ID

Device	descriptor

CompatibleIDs ID	string(s)
containing	the
device’s	class	and
(optional)	subclass
and	protocol

Device	and	interface	descriptors

Mfg Device
manufacturer

INF	file,	Manufacturer	section,	manufacturer	name
entry

Driver Device’s	driver	key System	registry,	under
CurrentControlSet\Control\Class

Location	Information Hub	and	port
number

Hub	and	port	where	attached

Service Name	of	the
device’s	Service	key

System	registry	under
HKLM\System\CurrentControlSet\Services

A	class	key’s	name	 is	 the	device	 setup	GUID	for	 the	class.	A	hardware	key’s
ClassGUID	value	names	the	class	key	for	a	device	instance.
Figure	9-4	shows	 the	class	key	 for	 the	HID	class.	The	key	contains	 the	Class
name	from	the	header	file	that	defines	the	GUID	and	an	IconPath	value	that
specifies	 the	 location	 of	 the	 icon	 to	 use	 in	 the	 Device	 Manager	 and	 other
windows	that	display	setup	information.	Applications	can	retrieve	the	index	of
the	mini-icon	 for	a	class	by	calling	SetupDiGetClassBitmapIndex.	A	vendor-
specific	class	installer	or	co-installer	can	provide	a	vendor-specific	icon.

Figure	9-4.	The	class	key	for	the	HID	class	includes	a	friendly	name	for	the	class
and	an	index	to	an	icon.

Figure	 9-5.	 The	 driver	 keys	 under	 each	 class	 key	 have	 information	 about	 the
drivers	assigned	to	instances	of	devices	in	the	class.

Optional	 entries	 in	 the	 class	 key	 can	 affect	 what	 users	 see	 on	 device
installation.	If	NoInstallClass	is	present	and	not	equal	to	zero,	users	don’t	need
to	manually	install	devices	in	the	class.	If	SilentInstall	is	present	and	not	equal
to	 zero,	 the	 PnP	manager	will	 install	 devices	 in	 the	 class	without	 displaying
dialog	 boxes	 or	 requiring	 user	 interaction.	 If	NoDisplayClass	 is	 present	 and
not	equal	to	zero,	the	Device	Manager	doesn’t	display	an	item	for	the	class.
UpperFilters	and	LowerFilters	entries	can	specify	upper	filter	and	lower	filter
drivers	that	apply	to	all	devices	in	the	class.

The	driver	key

Under	the	class	key,	each	device	setup	GUID	has	one	or	more	driver	keys,	also
called	software	keys,	that	each	correspond	to	an	instance	of	the	driver.	In	the
system	registry,	each	driver	key	has	a	4-digit,	base-10	value	(0000,	0001,	and	so
on).
Figure	9-5	 shows	 the	key	 for	a	HID-class	device.	Table	9-2	 lists	 some	of	 the
entries	for	a	driver	key.	A	driver	key’s	MatchingDeviceId	holds	the	hardware
ID	or	compatible	ID	used	to	match	an	INF	file	 to	a	device.	The	InfPath	and
InfSection	 entries	 contain	 the	 name	 and	 section	 of	 the	 INF	 file	 that	 in	 turn
names	the	driver’s	files.

Table	 9-2:	 The	 driver	 key	 contains	 information	 about	 the	 driver	 assigned	 to	 a
device.
Key Description Source	of	Information

DriverDate Date	of	the	driver
file

INF	file,	Version	section,	DriverVer	directive

DriverDesc Driver	description INF	file

DriverVersion Driver	version INF	file,	Version	section,	DriverVer	directive

InfPath Name	of	the	INF
file	for	the	instance

INF	file	name

InfSection Name	of	the
driver’s	DDInstall
section

INF	file

InfSectionExt “Decorated”
extension	used	in
INF	file
(.NTamd64,	etc.)

INF	file

MatchingDeviceID The	hardware	or
compatible	ID	used
to	assign	the	driver

Device	descriptors	and	INF	file

ProviderName The	provider	of	the
driver

INF	file,	Provider	string

The	services	key
Under	the	services	key	is	information	about	a	driver,	including	the	path	to	the
driver’s	 file	 and	optional	driver-specific	parameters.	 Services	keys	 are	 in	 this
branch:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

Services	 keys	 exist	 for	 each	 host	 controller	 type	 and	 hubs	 as	 well	 as	 classes

such	 as	 storage	 (USBSTOR)	 and	 printers	 (usbprint)	 and	 HID	 functions
(HidBatt,	HidServ,	HidUsb).	Figure	9-6	shows	the	Services	key	for	HidUsb.

Figure	9-6.	The	service	key	names	a	driver’s	file.

Using	INF	files
A	 device-setup	 information	 file,	 or	 INF	 file,	 is	 a	 text	 file	 that	 contains
information	about	one	or	more	devices	 in	 a	device	 setup	 class.	The	 file	 tells
system	 Setup	 components	 what	 driver	 or	 drivers	 to	 use	 and	 contains
information	about	the	device	and	its	drivers	to	store	in	the	registry.	Windows
includes	 INF	 files	 for	 devices	 that	 use	 drivers	 provided	 with	 the	 operating
system.
The	files	are	in	%SystemRoot%\inf.	By	default,	the	INF	folder	is	hidden.	If	you
don’t	 see	 it	 in	Windows	Explorer,	 select	View	and	check	Hidden	items	 and
File	name	extensions.
A	vendor	that	provides	a	driver	for	a	device	must	also	provide	an	INF	file.	A
vendor	may	also	provide	an	INF	file	for	use	with	a	system-provided	driver	or
request	 to	 have	 vendor-specific	 information	 added	 to	 a	 system	 INF	 file.
During	 first	 enumeration	 of	 a	 device	 with	 a	 vendor-provided	 INF	 file,
Windows	copies	the	INF	file	to	%SystemRoot%\inf.
On	first	attachment,	after	retrieving	descriptors	from	a	USB	device,	Windows
looks	 for	 a	 match	 between	 the	 information	 in	 the	 descriptors	 and	 the
information	in	the	system’s	INF	files.

Driver	signing	requirements

In	 looking	 for	 a	 match,	 Windows	 considers	 whether	 the	 catalog	 (.cat)	 file
associated	with	a	driver	or	embedded	in	the	driver	is	digitally	signed.	A	digital
signature	enables	Windows	to	verify	that	the	driver	files	haven’t	been	modified
since	 the	 driver	 was	 signed	 and	 to	 identify	 the	 source,	 or	 publisher,	 of	 the
driver.
INF	 files	 are	 considered	 to	 be	 elements	 of	 device	 drivers.	Any	 change	 in	 an
INF	file,	including	editing	or	adding	a	Product	ID,	device	release	number,	or
string,	requires	a	new	digital	signature	for	the	catalog	file	that	names	the	INF
file.
As	Chapter	18	explains,	obtaining	a	digital	signature	for	a	driver	intended	for
distribution	requires	passing	tests	and	a	paying	a	fee.	Fortunately,	many	USB
devices	can	use	system	drivers	or	other	digitally	signed	drivers	and	INF	files.
Chapter	18	shows	how	you	can	generate	a	test	certificate	to	use	on	a	single	PC
for	development	and	testing	at	no	cost.
If	 you	 need	 to	 provide	 an	 INF	 file,	 you	 can	 begin	 with	 an	 example	 and
customize	 it	 as	 needed.	 The	 WDK	 documentation	 includes	 a	 detailed
reference	on	INF	files	and	many	examples.	Listing	9-1	shows	an	INF	file	for	a
virtual	serial	port	device	that	uses	the	USB	CDC	driver.

;	USB	CDC	Virtual	Serial	Port	Setup	File

[Version]

Signature=“$Windows	NT$”

Class=Ports

ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}

Provider=%MFG%

CatalogFile=%MFGFILENAME%.cat

DriverVer=11/12/2014

[Manufacturer]

%MFG%=Models,NTamd64

[DestinationDirs]

DefaultDestDir=12

;	Vendor	ID	and	Product	ID

[Models]

%DESCRIPTION%=DDInstall,USB\VID_0925&PID_2030

[Models.NTamd64]

%DESCRIPTION%=DDInstall,USB\VID_0925&PID_2030

;	For	all	OSes

[SourceDisksNames]

[SourceDisksFiles]

[FakeModemCopyFileSection]

[Service_Inst]

DisplayName=%SERVICE%

ServiceType=1

StartType=3

ErrorControl=0

ServiceBinary=%12%\usbser.sys

Listing	 9-1:	 This	 INF	 file	 is	 for	 a	 USB	 virtual	 serial-port	 device	 that	 uses	 the
usbser.sys	driver.	(Part	1	of	2).

;	For	32-bit	OSes

[DDInstall.NTx86]

include=mdmcpq.inf

CopyFiles=FakeModemCopyFileSection

AddReg=DDInstall,NTx86.AddReg

[DDInstall.NTx86.AddReg]

HKR,,DevLoader,,*ntkern

HKR,,NTMPDriver,,%DRIVERFILENAME%.sys

HKR,,EnumPropPages32,,”MsPorts.dll,SerialPortPropPageProvider”

[DDInstall.NTx86.Services]

include=mdmcpq.inf

AddService=usbser,	0x00000002,	Service_Inst

;	For	64-bit	OSes

[DDInstall.NTamd64]

include=mdmcpq.inf

CopyFiles=FakeModemCopyFileSection

AddReg=DDInstall.NTamd64.AddReg

[DDInstall.NTamd64.AddReg]

HKR,,DevLoader,,*ntkern

HKR,,NTMPDriver,,%DRIVERFILENAME%.sys

HKR,,EnumPropPages32,,”MsPorts.dll,SerialPortPropPageProvider”

[DDInstall.NTamd64.Services]

include=mdmcpq.inf

AddService=usbser,	0x00000002,	Service_Inst

;	Strings

[Strings] 	

MFGFILENAME=“lvrcdc” 	

DRIVERFILENAME=“usbser” 	

MFG=“Lakeview	Research” ;	Device	Manager	Provider	property

DESCRIPTION=“USB	Virtual	Serial	Port” ;	Device	Mgr	Friendly	Name	property

SERVICE=“USB	to	Serial	Driver” 	

Listing	9-1:	This	 INF	 file	 is	 for	a	USB	virtual	 serial-port	device	 that	uses	 the
usbser.sys	driver.

File	structure

The	contents	of	an	INF	file	follow	these	rules.
The	information	is	arranged	in	sections,	with	each	section	containing	zero
or	more	 entries.	 The	 section	 name	 is	 in	 square	 brackets	 [].	 Some	 of	 the
sections	 (Version,	Manufacturer)	 are	 standard	 sections	 that	 every	 INF	 file
contains.	Other	sections	use	names	defined	in	other	sections.	For	example,
the	Models	section	references	a	DDInstall	section	that	provides	information
for	use	in	device	installation.
A	leading	semicolon	(;)	indicates	a	comment.
Text	 enclosed	 in	 percent	 symbols	 (%MFG%)	 is	 a	 token	 that	 references	 a
string.	For	example,	you	might	have	the	entry:
Provider=%MFG%

with	an	entry	in	the	Strings	section	that	defines	the	string:
MFG=“Lakeview	Research”

Windows	defines	Dirid	values	that	can	refer	to	system	paths.	The	Dirid	for
the	Windows	directory	(typically	\windows)	 is	10.	Other	ways	to	represent
the	Windows	directory	 are	 the	 environment	 variables	%SystemRoot%	 and
%windir%.	The	 system32	directory	 (%SystemRoot%\system32)	 is	Dirid	 11.
The	 system32\drivers	 directory	 (%SystemRoot%\system32\drivers)	 is	Dirid
12.
Some	section	names	use	extensions	to	specify	which	operating	systems	and
CPUs	the	item	applies	to.	For	example,	a	section	with	an	NTx86	extension
applies	 only	 to	 systems	 with	 x86-based	 CPUs	 running	Windows	 XP	 and
later:
[DDInstall.NTx86]

The	NTamd64	extension	means	 the	section	applies	 to	64-bit	CPUs	based	on
the	 x86	 architecture.	 A	 section	 name	with	 this	 type	 of	 extension	 is	 called	 a
decorated	section	name.

Inside	an	INF	file
The	 contents	 of	 an	 INF	 file	 vary	 depending	 on	 the	 device	 or	 devices,	 the
driver(s),	and	the	target	Windows	version(s).	Listing	9-1’s	INF	file	 for	a	USB
virtual	 serial	 port	 is	 an	 example	 of	 what	 kinds	 of	 information	 an	 INF	 file
provides.
The	 Version	 section	 and	 its	 the	 Signature	 entry	 are	 required.	 “$Windows
NT$”	means	all	versions	of	Windows.

The	Class	entry	names	the	device	setup	class	for	the	device.	ClassGuid	is	the
device	setup	GUID	for	the	named	class.
Provider	 contains	 a	 token	 (%MFG%)	 that	 references	 a	 string	 naming	 the
provider	of	the	INF	file.	In	Device	Manager,	the	string	displays	as	the	device’s
Provider.
CatalogFile	 is	 the	 catalog	 file	 for	 the	 INF	 file	 or	 its	 driver	 package	with	 the
%MFGFILENAME%	token	providing	the	filename	minus	the	.cat	extension.
DriverVer	is	the	most	recent	date	of	any	file	in	the	driver	package,	including
an	 INF	 file.	 If	 you	 change	 an	 INF	 file,	 don’t	 forget	 to	update	 the	DriverVer
value.
The	Manufacturer	section	is	required	in	INF	files	for	devices	and	their	drivers.
The	 values	 following	 the	 token	 are	 the	 name	 used	 by	 the	 Models	 sections
(called	Models	in	the	example)	and	zero	or	more	TargetOSVersion	extensions
for	 Models	 sections	 that	 apply	 to	 a	 specific	 OS	 version	 (NTamd64	 in	 the
example).
The	DestinationDirs	 section	 names	 the	 target	 destination	 directory	 for	 INF
files	 that	 specify	 copying,	 deleting,	 or	 renaming	 files.	 The	 example	 INF	 file
requires	this	section	because	the	file	contains	a	CopyFiles	directive.
In	the	Models	sections,	Models	and	Models.NTamd64	each	name	an	INF-file
section	(DDInstall)	that	provides	installation	information	about	the	device	or
devices	that	the	INF	file	supports.	The	%DESCRIPTION%	token	references	a
string	that	describes	the	device.	In	Device	Manager’s	Properties	for	the	device,
the	string	displays	as	the	Friendly	Name	property.
Each	 entry	 in	 the	 Models	 section	 also	 contains	 the	 device’s	 hardware	 ID
(USB\VID_0925&PID_2030	 in	 the	 example).	An	 entry	 can	 contain	multiple
hardware	 IDs	 separated	 by	 commas.	 Windows-provided	 INF	 files	 may
support	multiple	manufacturers	with	Models	sections	for	each	manufacturer,
for	 example,	 MyCompany	 and	 MyCompany.NTamd64	 and	 similar	 for
additional	manufacturers.
SourceDisksNames,	 SourceDisksFiles,	 and	 FakeModemCopyFileSection
require	no	entries	in	the	example	INF	file	because	the	file	doesn’t	specify	files
to	be	copied	from	distribution	media.
The	 Service_Inst	 section	 provides	 information	 about	 the	 usbser.sys	 driver.
Display-Name	 references	 a	 string	 that	 describes	 the	 driver.	 ServiceType	 =	 1
specifies	that	the	driver	is	a	kernel-mode	device	driver.	StartType	=	3	specifies

that	the	driver	starts	on	demand,	including	device	enumeration.	ErrorControl
=	 0	 specifies	 ignoring	 errors	 if	 the	 driver	 doesn’t	 load	 or	 initialize.
ServiceBinary	names	the	path	to	the	driver.
The	DDInstall.NTx86	 sections	 apply	 to	 32-bit	 OSes.	Windows	 provides	 the
mdmcpq.inf	 file	 for	modems	 that	use	 the	usbser.sys	 driver.	 For	devices	 other
than	modems	that	use	usbser.sys,	including	USB	virtual	serial	ports,	Microsoft
recommends	 providing	 an	 include	 directive	 for	 mcpq.inf	 and	 a	 CopyFiles
entry	 that	 names	 the	 FakeModemCopyFileSection	 in	 mdmcpq.inf.	 (In
mdmcpq.inf,	the	FakeModem-CopyFileSection’s	single	entry	is	usbser.sys.)
The	 AddReg	 entry	 instructs	 the	 OS	 to	 add	 the	 information	 in	 the
DDInstall.NTx86.AddReg	section	to	the	system	registry.
In	 the	 DDInstall.NTx86.AddReg	 section,	 a	 series	 of	 HKR	 entries	 adds
information	to	the	driver’s	registry	key.	Each	entry	specifies	a	subkey	followed
by	a	value	for	the	subkey.
In	 the	 DDInstall.NTx86.Services	 section,	 the	 include	 directive	 specifies
including	 mdmcpq.inf.	 The	 AddService	 directive	 specifies	 the	 usbser	 driver
with	 0x00000002	 assigning	 the	 service	 as	 the	 device’s	 PnP	 function	 driver.
Service_Inst	 references	 the	 INF	 file’s	 Service_Inst	 section	 that	 holds
information	about	the	driver.
Following	these	sections	in	the	example	are	three	similar	DDInstall.NTamd64
sections	for	use	on	64-bit	OSes.
The	Strings	section	defines	the	strings	referenced	in	the	INF	file.
With	 edits,	 another	 USB	 virtual	 serial-port	 device	 that	 uses	 the	 usbser.sys
driver	can	use	Listing	9-1’s	INF	file.	In	the	Version	section,	in	the	DriverVer
entry,	replace	the	date	with	the	date	of	your	INF	file.	In	the	Models	sections,
replace	 0925	 and	 2030	 with	 your	 device’s	 Vendor	 ID	 and	 Product	 ID	 in
hexadecimal.	 In	 the	Strings	 section,	 replace	 the	MFGFILENAME	string	with
the	name	of	your	catalog	 file	minus	 the	 .cat	 extension	and	replace	 the	MFG
string	with	your	vendor	name.

Using	device	identification	strings
To	identify	possible	drivers	for	a	device,	Windows	searches	the	system’s	INF
files	 for	 a	 device	 identification	 string	 that	 matches	 a	 string	 created	 from
information	 in	 the	device’s	descriptors.	Types	of	device	 identification	strings

include	device	ID,	hardware	ID,	and	compatible	ID.

Device	ID
A	device	ID	is	a	string	that	identifies	a	device	using	information	obtained	from
the	device’s	bus	driver.	For	USB	devices,	the	information	includes	the	Vendor
ID,	 Product	 ID,	 revision	 number,	 and	 other	 values	 as	 appropriate	 from	 the
device’s	descriptors.	The	PnP	manager	uses	the	device	ID	to	create	the	registry
subkey	that	holds	the	hardware	keys	for	device	instances.	A	device	ID	uses	the
same	format	as	a	hardware	ID.

Hardware	ID
A	hardware	ID	identifies	a	device,	a	device	interface,	or	a	HID	collection	using
the	 Vendor	 ID,	 Product	 ID,	 and	 revision	 number	 or	 other	 class-specific
information.
When	 assigning	 a	 driver,	 a	 hardware	 ID	 in	 an	 INF	 file	 is	 the	 best	match.	A
hardware	ID	for	a	USB	device	has	this	form:
USB\Vid_xxxx&Pid_yyyy&Rev_zzzz

The	 values	 in	 xxxx,	 yyyy,	 and	 zzzz	 are	 four	 characters	 each,	 with	 xxxx	 =
idVendor,	yyyy	=	idProduct,	and	zzzz	=	bcdDevice	from	the	device	descriptor.
The	xxxx	and	yyyy	values	are	hexadecimal,	and	zzzz	is	in	BCD	format.
For	example,	 a	device	with	Vendor	 ID	=	0x0925,	Product	 ID	=	0x1234,	 and
bcdDevice	=	0x0310	has	this	device	ID:
USB\Vid_0925&Pid_1234&Rev_0310

An	INF	file	may	omit	the	bcdDevice	value:
USB\Vid_xxxx&Pid_yyyy

Composite	devices	can	specify	a	driver	for	each	function	so	they	have	a	device
ID	for	each	 interface	 that	represents	a	 function.	A	device	ID	for	an	 interface
has	this	format:
USB\Vid_xxxx&Pid_yyyy&Rev_zzzz&MI_ww

The	 2-character	 value	 in	 ww	 equals	 bInterfaceNumber	 in	 the	 interface
descriptor	for	one	of	the	device’s	interfaces.
A	HID-class	device	whose	report	descriptor	contains	more	than	one	top-level
collection	can	have	a	device	ID	for	each	collection.	(See	Chapter	12	 for	more
about	HID	collections.)	A	device	 ID	 for	a	collection	has	 this	 format	with	bb
indicating	the	collection	number:
USB\Vid_xxxx&Pid_yyyy&Rev_zzzz&MI_ww&Colbb

Devices	in	some	classes	use	other	formats.

For	 CDC	 devices,	 the	 hardware	 ID	 can	 contain	 a	 value	 that	 specifies	 the
subclass.	This	device	ID	specifies	CDC	subclass	0x08:
USB\Vid_0925&Pid_0902&Rev_0210&Cdc_08

For	mass-storage	devices,	 the	USB	mass-storage	driver	(usbstor.sys)	 creates	 a
hardware	ID	for	a	drive,	for	example:
USBSTOR\ST3000DM001-1CH166___CC44

The	 ID	 has	 an	 8-character	 vendor	 identifier	 (ST3000DM),	 a	 16-character
product	identifier	(001-1CH166___),	and	a	4-character	revision	level	(CC44).
For	printers,	the	USB	printer	driver	creates	a	hardware	ID,	for	example:
USBPRINT\BrotherHL-4150CDN_se922A

The	ID	contains	the	manufacturer’s	name	and	model	using	a	maximum	of	20
characters	(BrotherHL-4150CDN_se)	and	a	4-character	checksum	(922A).
For	keyboards,	mice,	game	controllers,	and	other	system	HIDs,	Windows	uses
special-purpose	 hardware	 IDs,	 for	 example,
HID_DEVICE_SYSTEM_KEYBOARD	 and
HID_DEVICE_SYSTEM_MOUSE.	 Vendor-provided	 INF	 files	 should	 not
contain	these	hardware	IDs,	which	begin	with	HID_DEVICE_SYSTEM_.
To	specify	a	HID	Usage	Page	and	Usage,	Windows	uses	device	 IDs	with	 the
format	HID_DEVICE_UP:p(4)_U:u(4)	where
p(4)	is	a	4-character	hex	value	specifying	the	Usage	Page	and
u(4)	is	a	4-character	hex	value	specifying	the	Usage.
For	example,	 this	hardware	ID	applies	 to	devices	with	a	Usage	Page	of	0x0C
(Consumer)	and	Usage	of	0x01	(Consumer	Control):
HID_DEVICE_UP:000C_U:0001

Vendor-provided	INF	files	should	not	contain	Usage	Page	hardware	IDs.

Compatible	ID
A	compatible	ID	identifies	a	device	by	class	and	optional	subclass	and	protocol
codes.
If	 a	 device	 has	 no	 device-specific	 installation	 requirements	 and	 the	 system’s
INF	 files	 include	 an	 appropriate	 compatible	 ID,	 the	 device	 vendor	 doesn’t
have	 to	provide	an	INF	file	with	a	hardware	ID.	A	vendor-provided	INF	file
should	not	contain	a	compatible	ID.
A	compatible	ID	may	have	any	of	these	forms:
USB\Class_aa&SubClass_bb&Prot_cc

USB\Class_aa&SubClass_bb

USB\Class_aa

The	values	aa,	bb,	and	cc	match	values	in	the	device	descriptor	or	an	interface
descriptor	and	are	two	characters	each:	aa	is	bDeviceClass	or	bInterfaceClass,
bb	 is	 bDeviceSubclass	 or	 bInterfaceSubclass,	 and	 cc	 is	 bDeviceProtocol	 or
bInterfaceProtocol.	The	values	are	hexadecimal.
For	 example,	 the	 system	 INF	 file	 for	 printers	 (printer.inf)	 contains	 this
compatible	ID	for	devices	in	the	printer	class:
USB\Class_07

The	 Usbstor.sys	 driver	 provides	 compatible	 IDs	 for	 many	 types	 of	 mass-
storage	devices.	For	example,	devices	in	the	generic	SCSI	media	subclass	using
the	bulk-only	protocol	can	use	this	compatible	ID:
USB\CLASS_08&SUBCLASS_06&PROT_50

Obtaining	identification	strings	from	an	INF	file
In	 an	 INF	 file,	 each	 entry	 in	 a	 Models	 section	 has	 one	 or	 more	 device
identification	strings.	A	vendor-provided	INF	file	should	contain	one	or	more
hardware	 IDs.	 A	 system-provided	 INF	 file	 may	 contain	 hardware	 IDs	 and
compatible	IDs.

Finding	a	match
In	looking	for	the	best	match	between	the	information	retrieved	from	a	device
and	 the	 information	 in	 INF	 files,	Windows	 assigns	 a	 rank	 to	 every	 possible
match	with	a	lower	numeric	value	indicating	a	better	match.	Signed	drivers	get
more	favorable	ranks,	and	64-bit	Windows	editions	require	signed	drivers.
The	best	match	is	a	device	ID	that	matches	a	hardware	ID	in	a	signed	driver’s
INF	 file.	 An	 installer	 that	 can’t	 find	 any	 match	 starts	 the	 Found	 New
Hardware	wizard	and	gives	the	user	a	chance	to	point	to	a	location	to	look	for
the	INF	file.
For	 composite	devices,	 the	 compatible	 ID	USB\COMPOSITE	 loads	 the	USB
common	class	generic	parent	driver.	This	driver	creates	device	and	compatible
IDs	for	each	interface,	and	the	installer	assigns	a	driver	to	each	interface.
To	speed	up	searching,	when	using	a	new	INF	file	to	install	a	device,	Windows
creates	a	precompiled	INF	(PNF)	file.	The	PNF	file	contains	much	of	the	same
information	as	the	INF	file	but	in	a	format	that	enables	quicker	searching.

When	to	provide	an	INF	file

Many	 devices	 that	 use	 the	 system’s	 class	 drivers	 can	 use	 an	 INF	 file	 that
Windows	provides	 for	 the	 class.	These	 are	 provided	 INF	 files	 for	 supported
USB	classes:

Class INF	File Driver

Audio wdma_usb.inf usbaudio.sys

Bluetooth bth.inf bthusb.sys

CDC	modem mdmcpq.inf,	mdm*.inf	(for
specific	models)

usbser.sys

HID input.inf hidclass.sys,	hidusb.sys

Hub usb.inf usbhub.sys

Mass	storage usbstor.inf usbstor.sys

Printer usbprint.inf usbprint.sys

Still	image sti.inf usbscan.sys

Video usbvideo.inf usbvideo.sys

In	addition,	the	winusb.inf	file	enables	installing	devices	that	use	the	WinUSB
driver.
Because	Windows	 prefers—and	may	 require—signed	 drivers,	 if	 you	 provide
an	unsigned	driver	for	a	device	in	a	supported	class,	Windows	won’t	use	your
driver	and	 instead	will	 select	a	compatible	ID	from	the	class’s	 INF	file.	CDC
USB	virtual	COM	ports	must	provide	their	own	INF	files	even	if	they	use	the
system-supplied	drivers.	A	device	with	a	vendor-provided	driver	must	have	an
INF	file.
Some	INF	 files	provided	with	Windows	contain	vendor-specific	 information
in	the	Models	section.	When	a	device	passes	WHQL	tests,	Microsoft	can	add
the	 device’s	 sections	 to	 an	 existing	 system	 INF	 file	 or	 add	 a	 vendor-specific
INF	file	to	the	files	distributed	with	Windows.

Tools	and	diagnostic	aids
Microsoft	provides	tools	to	help	in	creating	and	testing	INF	files.	The	INF	File
Syntax	Checker	 (ChkINF)	 tests	 a	 file’s	 structure	and	 syntax.	Log	 files	 record
events	that	occur	during	device	installation.
ChkINF,	included	in	the	WDK,	is	a	Perl	script	that	requires	a	Perl	interpreter,
available	free	from	activeware.com	and	other	sources.	The	script	runs	from	a
command	prompt	and	creates	an	HTML	page	that	annotates	an	INF	file	with

http://activeware.com

errors	and	warnings.
During	 device	 installation,	 the	 PnP	 manager	 and	 the	 Windows	 Setup	 and
Device	Installer	Services	(SetupAPI)	log	events	and	errors	to	a	text	file.	The	log
can	be	 very	helpful	when	debugging	problems	with	device	 installations.	The
file,	setupapi.dev.log,	is	in	%SystemRoot%\inf.

Tips	for	using	INF	files
Here	are	some	tips	for	using	INF	files	during	and	after	product	development:

Use	a	unique	Vendor	ID	and	Product	ID	pair
Firmware	 that	you	make	available	outside	of	a	controlled	environment	must
use	a	Vendor	ID	assigned	by	the	USB-IF.	My	example	code	uses	the	Vendor
ID	 of	 0x0925,	 which	 is	 assigned	 to	 my	 company,	 Lakeview	 Research.	 The
owner	 of	 the	 Vendor	 ID	 is	 responsible	 for	 ensuring	 that	 each	 product	 and
version	has	a	unique	Vendor	 ID/Product	 ID	pair.	Borrowing	 someone	else’s
Vendor	ID	can	lead	to	conflicts	if	the	owner	of	the	ID	uses	the	same	values	for
a	different	device.

Finding	INF	files
On	 installing	 a	 device	with	 a	 new	 INF	 file,	Windows	 copies	 the	 INF	 file	 to
%System-Root%\inf	 and	may	 rename	 the	 file	 oem*.inf	 and	 create	 a	 .pnf	 file
named	 oem*pnf,	 where	 *	 is	 a	 number.	 Using	 numbered	 oem	 file	 names
eliminates	conflicts	if	multiple	vendors	provide	INF	files	with	the	same	name.
To	 find	 INF	 files	 that	 contain	 a	 specific	 Vendor	 ID	 and	 Product	 ID,	 open
Windows	 Explorer	 and	 navigate	 to	 %SystemRoot%\inf.	 Select	 Search,
Advanced	Options	 and	 verify	 that	File	 Contents	 is	 checked.	 In	 the	 Search
box,	enter	VID_xxxx&PID_yyyy,	where	xxxx	 is	 the	device’s	Vendor	 ID	and
yyyy	is	the	Product	ID.

Removing	device	information
During	 project	 development,	 if	 you	 change	 information	 in	 a	 device’s
descriptors,	 you	may	 find	 that	Windows	 is	 using	device	 information	 from	a
previous	 enumeration.	 To	 cause	Windows	 to	 forget	 what	 it	 knows	 about	 a
device,	with	 the	device	 installed,	 right-click	 its	 entry	 in	Device	Manager	and
select	Uninstall.	You	can	then	detach	and	reattach	the	device,	and	installation
will	start	fresh	in	searching	for	a	driver.

What	the	user	sees
What	 the	 user	 sees	 on	 attaching	 a	 USB	 device	 varies	 with	 the	 Windows
edition,	the	contents	of	the	device’s	INF	file,	the	driver’s	location,	whether	the
driver	 has	 a	 co-installer	 and	 is	 digitally	 signed,	 and	 whether	 the	 device	 has
been	attached	and	enumerated	previously	and	has	a	serial	number.

Device	and	class	installers
Device	and	class	 installers	are	DLLs	that	provide	functions	relating	to	device
installation.	 Windows	 provides	 default	 installers	 for	 devices	 in	 supported
device	 setup	 classes.	 A	 device	 vendor	 can	 provide	 a	 device	 co-installer	 that
works	along	with	a	class	co-installer	 to	support	operations	specific	 to	one	or
more	 devices	 in	 a	 class.	 A	 device	 co-installer	 can	 add	 information	 to	 the
registry,	 request	additional	configuration	 information	 from	the	user,	provide
device-specific	Property	pages	for	the	Device	Manager	to	display,	and	perform
other	tasks	relating	to	device	installation.	The	WDK	includes	the	Driver	Install
Frameworks	(DIFx)	tools	for	creating	Windows	Installer	packages.

Searching	for	a	driver
On	 boot	 up	 or	 device	 attachment,	 after	 retrieving	 a	 device’s	 descriptors,
Windows	 searches	 for	 a	 hardware	 key	 that	 matches	 information	 in	 the
descriptors.	On	success,	the	operating	system	can	assign	a	driver	to	the	device.
The	 hardware	 key’s	Driver	 entry	 points	 to	 the	 driver	 key,	 which	 names	 the
INF	file.	The	hardware	key’s	Service	entry	points	to	the	service	key,	which	has
information	about	the	driver	files.
On	 first	 attachment,	 no	matching	hardware	 key	 exists	 so	Windows	 searches
for	a	match	in	the	INF	files.	On	finding	none,	the	New	Device	Wizard	starts.
For	 signed	 drivers,	 an	 installation	 program	 can	 use	 the	 SetupCopyOEMInf
API	to	copy	the	provided	INF	file	to	the	INF	folder	on	the	user’s	system.	On
finding	a	matching	INF	file,	Windows	copies	the	file	to	%SystemRoot%\inf	(if
the	 file	 isn’t	 already	 present),	 loads	 the	 driver(s)	 specified	 in	 the	 file	 if
necessary,	 and	 adds	 the	 appropriate	 keys	 to	 the	 system	 registry.	 The	 device
then	displays	in	Device	Manager.
After	 installing	a	device,	when	 installing	additional	devices	 that	are	 identical
except	 for	 the	 serial	 number,	 Windows	 behaves	 differently	 depending	 on
whether	 the	 driver	 is	 digitally	 signed.	When	 the	 driver	 is	 signed,	Windows
uses	 administrator	privileges	 to	 install	 the	 driver	 for	 additional	 devices	 after

the	 first	 device,	 even	 if	 the	 current	 user	 doesn’t	 have	 these	 privileges.	 If	 the
driver	is	unsigned,	Windows	uses	the	privileges	of	the	current	user	in	deciding
whether	to	install	the	driver	for	additional	devices.
When	 re-attaching	 a	 previously	 attached	 device,	 whether	 Windows	 finds	 a
driver	key	can	depend	on	whether	the	device’s	descriptors	include	a	USB	serial
number	string.	If	the	device	doesn’t	have	a	serial	number,	Windows	uses	the
previous	 hardware	 key	 only	 if	 the	 device	 is	 re-attached	 to	 a	 port	 where	 the
device	 had	 been	 attached	 previously.	 If	 the	 device	 has	 a	 serial	 number,
Windows	 uses	 the	 previous	 hardware	 key	 no	matter	 which	 port	 the	 device
attaches	to.

10

Detecting	Devices
This	 chapter	 shows	 how	 applications	 can	 obtain	 information	 about	 an
attached	device,	request	a	handle	for	communicating	with	a	device,	and	detect
when	 a	 device	 is	 attached	 or	 removed.	 Many	 of	 these	 tasks	 involve	 using
Windows	 API	 functions	 and	 the	 device	 interface	 GUIDs	 introduced	 in
Chapter	8.	Because	many	.NET	programmers	aren’t	familiar	with	calling	API
functions,	I	begin	with	a	short	tutorial	on	the	topic.

A	brief	guide	to	calling	API	functions
You	 can	 do	 a	 lot	 of	 programming	 without	 ever	 calling	 a	 Windows	 API
function.	Microsoft’s	.NET	Framework	provides	classes	that	support	common
tasks	including	creating	user	interfaces,	accessing	files,	manipulating	text	and
graphics,	accessing	common	peripheral	types,	networking,	security	functions,
and	 exception	 handling.	 Internally,	 a	 class’s	 methods	 are	 likely	 to	 call	 API
functions,	but	the	classes	offer	a	safer,	more	secure,	and	more	modular,	object-
oriented	way	for	programmers	to	accomplish	the	tasks.	Languages	that	can	use
the	.NET	Framework	include	Visual	Basic,	Visual	C#,	and	Visual	C++.
But	.NET’s	classes	don’t	handle	every	task.	Some	applications	must	do	things
that	 require	 calling	API	 functions.	A	 .NET	 application	 can	use	 .NET	 classes
wherever	possible	and	use	API	calls	for	functions	not	supported	by	.NET.	The
code	 examples	 in	 this	 book	 use	 Visual	 C#.	 The	 examples	 in	 this	 chapter
assume	the	following	using	statements:
using	Microsoft.Win32.SafeHandles;

using	System;

using	System.Management;

using	System.Runtime.InteropServices;

Managed	and	unmanaged	code
Managed	code	is	program	code	that	accesses	properties,	methods,	and	events
of	 the	 .NET	 Framework’s	 classes.	 Managed	 code	 compiles	 to	 Microsoft

Intermediate	 Language	 (MSIL)	 code,	 which	 consists	 of	 instructions	 that	 are
not	 specific	 to	 a	 CPU.	 The	 .NET	 common	 language	 runtime	 (CLR)
environment	compiles	MSIL	code	to	native	code	for	the	target	CPU.
Because	 all	 .NET	 languages	 use	 the	 same	 CLR,	 components	 written	 in
different	 .NET	languages	can	easily	interoperate.	For	example,	a	Visual	Basic
application	 can	 call	 a	 function	written	 in	Visual	C#	without	worrying	 about
differences	 in	 calling	 conventions.	The	CLR	also	 simplifies	programming	by
implementing	 garbage	 collection	 to	 remove	 no-longer-needed	 objects	 from
memory.	 In	 contrast,	 Windows	 API	 functions	 are	 unmanaged	 code	 whose
DLLs	 contain	 compiled	 machine	 code	 that	 executes	 directly	 on	 the	 target
CPU.
A	Visual	C++	application	can	compile	to	managed	code,	unmanaged	code,	or
a	combination.	The	language	incorporates	a	technology	that	enables	managed
code	to	call	API	functions	in	the	same	way	that	unmanaged	code	does.
For	 .NET	 languages	 other	 than	 Visual	 C++,	 managed	 code	 can	 call	 API
functions	 by	 using	 methods	 of	 the	 System.Runtime.InteropServices
namespace.	 The	 namespace	 supports	 the	 Platform	 Invocation	 Services,	 also
known	as	PInvoke	or	P/Invoke.	The	process	of	calling	unmanaged	functions
from	managed	code	is	called	Interop.

The	DLLs
The	 DLLs	 included	 with	 Windows	 are	 typically	 stored	 in
%SystemRoot%\system32.	The	operating	 system	searches	 this	 folder	when	an
application	calls	a	function	defined	in	a	DLL.	Header	files	and	documentation
for	 Windows	 API	 functions	 are	 in	 the	 Windows	 Driver	 Kit	 (WDK)	 and
Windows	Software	Development	Kit	(SDK):

Function DLL Header	File

Find	devices setupapi.dll setupapi.h

Access	devices	that	support	handle-based
operations

kernel32.dll kernel32.h

A	header	file	contains	declarations	in	C	for	a	DLL’s	functions	and	defines	any
constants,	 variables,	 structures,	 and	 other	 components	 that	 the	 functions
access.	 The	 declarations	 enable	 applications	 to	 call	 the	 functions	 and	 pass
parameters	to	them.

A	 Visual	 C#	 application	 must	 translate	 the	 declarations	 in	 the	 header	 files
from	 C	 to	 Visual	 C#	 syntax	 and	 data	 types.	 Translating	 from	 C	 is	 more
complicated	 than	 substituting	 one	 keyword	 for	 another	 because	 some
variables	and	structure	types	don’t	have	one-to-one	equivalents	in	.NET.	The
.NET	code	may	also	requires	marshaling	to	enable	passing	data	safely	between
managed	and	umanaged	code.

Marshaling
Visual	C#	applications	must	take	special	care	to	ensure	that	any	data	passed	to
an	unmanaged	function	survives	the	trip	from	managed	to	unmanaged	code,
and	back	if	needed.	The	.NET	Framework	provides	the	Marshal	class	to	help.
Marshaling	means	doing	whatever	is	needed	to	make	the	data	available.
The	class	provides	methods	for	allocating	memory	for	variables	to	be	passed	to
unmanaged	 code,	 copying	data	 between	unmanaged	 and	managed	memory,
and	 converting	 between	managed	 and	 unmanaged	 data	 types.	 For	 example,
the	 PtrToStringAuto	 method	 accepts	 a	 pointer	 to	 a	 string	 in	 unmanaged
memory	 and	 returns	 the	 string	 being	 pointed	 to.	 This	 example	 retrieves	 a
string	from	a	pointer	(IntPtr	pDevicePathName)	returned	by	an	API	function:
String	devicePathName	=	Marshal.PtrToStringAuto(pDevicePathName);

The	MarshalAs	attribute	can	define	an	array’s	size	to	enable	passing	an	array
in	a	structure	in	unmanaged	code.	This	example	declares	an	array	(Reserved),
which	consists	of	seventeen	Int16	values.	The	array	is	an	element	in	a	structure
that	an	API	function	passes:
[MarshalAs(UnmanagedType.ByValArray,	SizeConst	=	17)]	internal	Int16[]	Reserved;

The	 MarshalAs	 attribute	 marshals	 Reserved	 into	 the	 array	 as	 an
UnmanagedType.ByValArray.	 The	 SizeConst	 field	 sets	 the	 number	 of
elements	in	the	array	(17	in	the	example).
By	allocating	memory	that	the	garbage	collector	won’t	touch,	marshaling	can
ensure	that	an	unmanaged	function	can	access	data	that	an	application	passes
and	the	application	can	access	data	returned	by	the	unmanaged	function.	This
example	allocates	memory	for	a	buffer:
Dim	bufferSize	As	Int32	=	168;

IntPtr	detailDataBuffer	=	Marshal.AllocHGlobal(bufferSize);

An	application	can	use	marshaling	to	store	data	in	a	buffer	to	be	passed	to	an
unmanaged	function.	In	this	example,	the	application	writes	a	value	to	the	first
location	in	the	buffer.
Marshal.WriteInt32(detailDataBuffer,	8);

The	application	can	then	pass	the	buffer’s	pointer	to	an	API	function	that	will
fill	the	rest	of	the	buffer	with	data.	When	the	function	returns,	the	application
can	access	the	contents	of	the	buffer.
The	 Marshal.FreeHGlobal	 method	 frees	 allocated	 memory	 when	 the
application	no	longer	needs	to	access	the	memory:
Marshal.FreeHGlobal(unManagedBuffer);

To	 ensure	 that	 code	 to	 free	 memory	 or	 other	 resources	 executes,	 place	 the
code	in	the	Finally	block	of	a	Try…Catch…Finally	statement.	For	brevity,	the
examples	in	this	book	omit	Try…Catch	statements.

Declaring	a	function
Every	 API	 function	 requires	 a	 declaration	 to	 specify	 the	 function’s	 location
and	 parameters.	 This	 is	 a	 declaration	 for	 the	 function
HidD_GetNumInputBuffers,	which	applications	can	use	to	learn	the	number
of	Input	reports	that	the	driver	for	a	HID-class	device	can	store:
[DllImport(“hid.dll”,	SetLastError=true)]

internal	static	extern	Boolean	HidD_GetNumInputBuffers

(SafeFileHandle	HidDeviceObject,

ref	Int32	NumberBuffers);

The	declaration	contains	this	information:
A	 DllImport	 attribute	 that	 names	 the	 file	 that	 contains	 the	 function’s
executable	 code	 (hid.dll).	 The	 optional	 SetLastError	 field	 is	 set	 to	 true	 to
enable	retrieving	error	codes	using	the	GetLastWin32Error	method.
The	function’s	name	(HidD_GetNumInputBuffers).
The	 parameters	 the	 function	 will	 pass	 to	 the	 operating	 system
(HidDeviceObject,	NumberBuffers).
The	data	types	of	the	values	passed	(SafeFileHandle,	Int32).
Whether	 the	 function	 passes	 parameters	 by	 value	 or	 by	 reference.	 The
default	is	by	value.	To	pass	by	reference,	precede	the	parameter	name	with
ref.	The	function	passes	HidDeviceObject	by	value	and	NumberBuffers	by
reference.
The	data	type	of	the	value	returned	for	the	function	(Boolean).	A	few	API
routines	have	no	return	value.

The	 extern	 modifier	 indicates	 that	 the	 function	 being	 declared	 resides	 in	 a
different	file.

Using	a	NativeMethods	class

Microsoft	 recommends	 placing	 declarations	 for	 unmanaged	 code	 in	 a	 class
called	 NativeMethods.	 The	 class	 is	 declared	 as	 internal,	 and	 the	 class’s
methods	should	be	declared	as	static	and	internal.
To	declare	the	class,	use:
internal	static	class	NativeMethods

{

//	Unmanaged	function	example:

[DllImport(“hid.dH”,	SetLastError=true)]

internal	static	extern	Boolean	HidD_GetNumInputBuffers

(SafeFileHandle	HidDeviceObject,

ref	Int32	NumberBuffers);

//	Additional	unmanaged	functions	here…

}

When	calling	an	umanaged	function,	specify	the	NativeMethods	class:
NativeMethods.HidD_GetHidGuid(ref	myGuid);

Calling	a	function
After	declaring	a	function	and	any	parameters	to	be	passed,	an	application	can
call	 the	 function.	 This	 is	 a	 call	 to	 the	 HidD_GetNumInputBuffers	 function
declared	above:
Boolean	success	=	NativeMethods.HidD_GetNumInputBuffers

(hidDeviceObject,

ref	numberOfInputBuffers);

The	hidDeviceObject	parameter	is	a	SafeFileHandle	returned	previously	by	the
CreateFile	 function,	 and	 numberOfInputBuffers	 is	 an	 Int32	 variable.	 If	 the
function	 returns	 with	 success	 =	 true,	 numberOfInputBuffers	 contains	 the
number	of	Input	buffers.

Managing	data
Understanding	 how	 to	 pass	 data	 to	 API	 functions	 and	 how	 to	 use	 data
returned	by	API	functions	requires	understanding	.NET’s	data	types	and	how
the	CLR	passes	 them	to	unmanaged	code.	The	explanations	below	provide	a
background	to	understand	the	example	code	in	this	and	later	chapters.

Data	types
The	 header	 files	 for	 API	 functions	 use	 many	 data	 types	 that	 the	 .NET
Framework	 doesn’t	 support.	 To	 specify	 a	 variable’s	 type	 for	 an	 API	 call,	 in
many	 cases	 you	 can	 use	 a	 .NET	 type	 of	 the	 same	 length.	 For	 example,	 a
DWORD	is	a	32-bit	integer,	so	a	.NET	application	can	declare	a	DWORD	as
an	 Int32.	 GUIDs	 can	 use	 .NET’s	 System.Guid	 type.	 For	 pointers,	 .NET

provides	 the	 IntPtr	 type,	 whose	 size	 adjusts	 as	 needed	 to	 32	 or	 64	 bits
depending	on	the	platform.	IntPtr.Zero	is	a	null	pointer.
A	parameter	 defined	 in	C	 as	 a	HANDLE	 can	use	 an	 IntPtr,	 but	 a	 safer	 and
more	reliable	option	for	many	handles	is	a	SafeHandle	object.	With	an	IntPtr,
in	some	situations,	an	exception	can	leak	a	handle,	and	a	finalizer	can	corrupt
a	handle	still	in	use	in	an	asynchronous	operation.	Recycling	of	IntPtr	handles
can	 also	 expose	 data	 that	 belongs	 to	 another	 resource.	 SafeHandle	 objects
don’t	have	these	vulnerabilities.
The	SafeHandle	class	is	abstract.	To	use	a	SafeHandle	object,	you	can	use	one
of	 the	 provided	 classes	 derived	 from	SafeHandle	 or	 derive	 a	 new	 class	 from
SafeHandle.

Passing	variables
Every	parameter	passed	to	a	function	has	both	an	element	type	and	a	passing
mechanism.	 The	 element	 type	 is	 value	 or	 reference,	 and	 the	 passing
mechanism	is	by	value	or	by	reference.	 The	 element	 type	 helps	 to	 determine
the	effect	of	the	passing	mechanism.
A	value	type	contains	data.	For	example,	a	Byte	variable	assigned	a	value	of	3
consists	of	one	byte	with	the	value	00000011b.	Value	types	include	all	numeric
data	 types;	 the	 Boolean,	 Char,	 and	 Date	 types;	 structures,	 even	 if	 their
members	are	reference	types;	and	enumerations.
A	reference	type	contains	a	reference,	or	pointer,	that	specifies	the	location	of
the	 variable’s	 data	 in	 memory.	 For	 example,	 an	 array	 variable	 contains	 the
location	where	the	array’s	contents	are	stored.	Reference	types	include	Strings;
arrays,	even	if	their	elements	are	value	types;	classes;	and	delegates.
Whether	 to	 pass	 a	 parameter	 by	 value	 or	 by	 reference	 depends	 on	 what
information	the	function	expects,	the	element	type	being	passed,	and	in	some
cases	whether	 the	 type	 is	blittable	 (defined	below).	Sometimes	multiple	ways
can	achieve	the	same	result.
Passing	a	value	type	by	value	passes	a	copy	of	the	variable’s	value.	If	the	called
function	changes	the	value	of	the	variable	or	its	members,	the	calling	function
doesn’t	 see	 the	 change.	 For	 example,	 when	 calling	 the	 WinUsb_ReadPipe
function	to	read	data	from	a	device,	the	application	passes	an	UInt32	variable
that	contains	 the	maximum	number	of	bytes	requested	from	the	device.	The
called	 function	uses	 the	passed	value	but	doesn’t	have	 to	 return	 the	value	 to
the	calling	application	so	the	application	can	pass	the	variable,	which	is	a	value

type,	by	value.
Passing	a	value	type	by	reference	passes	a	pointer	to	the	variable’s	data.	If	the
called	 function	 changes	 the	 variable	 or	 its	members,	 the	 calling	 application
sees	 the	 changes.	 An	 example,	 again	 using	WinUsb_ReadPipe,	 is	 passing	 a
UInt32	variable	by	reference	to	hold	the	number	of	bytes	the	function	returns.
The	 called	 function	 writes	 a	 value	 to	 the	 variable,	 and	 when	 the	 function
returns,	the	calling	application	sees	the	value	written.
Passing	a	 reference	 type	by	value	also	passes	a	pointer	 to	 the	variable’s	data,
but	the	effect	varies	depending	on	whether	the	type	is	blittable.	A	blittable	type
is	a	.NET	data	type	that	managed	and	unmanaged	code	represent	in	the	same
way.	Blittable	 types	 include	Byte,	 SByte,	 Int16,	UInt16,	 Int32,	UInt32,	 Int64,
UInt64,	IntPtr,	UIntPtr,	Single,	Double,	and	IntPtr	as	well	as	SafeHandles	used
as	IN	parameters.
When	 an	 application	 passes	 a	 blittable,	 reference	 type	 by	 value	 to	 an
unmanaged	 function,	 the	 application	 passes	 a	 reference	 to	 the	 original
variable.	To	prevent	the	garbage	collector	from	moving	the	variable	while	the
function	executes,	 the	CLR	pins	 the	variable	 in	memory.	The	calling	routine
sees	 changes	 to	 the	 variable’s	 value	 but	 doesn’t	 see	 changes	 to	 the	 variable’s
instance.	 Passing	 a	 reference	 to	 the	 original	 variable	 in	 this	 way	 reduces
overhead	 and	 improves	 performance	 compared	 to	 passing	 the	 variable	 by
value.
An	 example	 of	 passing	 a	 blittable,	 reference	 type	 by	 value	 is	 passing	 a	 Byte
array	 in	 a	 call	 to	WinUsb_ReadPipe,	which	will	 fill	 the	 array	with	data	 read
from	 the	 device.	 Because	 a	 Byte	 array	 is	 a	 reference	 type	 and	 a	 Byte	 is	 a
blittable	type,	 if	 the	application	passes	 the	array	by	value,	 the	called	function
receives	 a	 pointer	 to	 the	 original	 array.	 The	 function	writes	 the	 data	 to	 the
array,	 and	when	 the	 function	 returns,	 the	 calling	 application	 can	 access	 the
new	data.
For	 non-blittable	 types,	 the	CLR	 converts	 the	 data	 to	 a	 format	 the	 function
accepts	and	passes	a	pointer	to	the	converted	data.
The	 calling	 application	doesn’t	 see	 changes	 the	 called	 function	makes	 to	 the
variable’s	 instance,	only	 changes	 to	 its	 value.	Thus	 if	 the	 called	 function	 sets
the	variable	to	Nothing/null,	the	calling	application	doesn’t	see	the	change.
Passing	a	reference	type	by	reference	passes	a	pointer	that	points	to	a	pointer
to	the	variable’s	data.	The	calling	application	sees	changes	to	the	variable	and

to	 the	 variable’s	 instance.	 The	 examples	 in	 this	 book	 don’t	 use	 this	 passing
mechanism.

Passing	structures
Some	API	functions	pass	and	return	structures	that	can	contain	multiple	items
of	different	 types.	The	header	 files	 for	 the	 functions	contain	declarations	 for
the	structures	in	C	syntax.
A	 .NET	 application	 can	usually	 declare	 an	 equivalent	 structure	 or	 class	 that
contains	 the	 items	 in	 the	 structure.	 To	 ensure	 that	 the	 managed	 and
unmanaged	 code	 agree	 on	 the	 layout	 and	 alignment	 of	 the	 structure’s
members,	a	structure’s	declaration	or	class	definition	can	set	the	StructLayout
attribute	to	LayoutKind.Sequential.
[StructLayout(LayoutKind.Sequential)]

The	 Visual	 C#	 compiler	 always	 specifies	 LayoutKind.Sequential	 for	 value
types,	 which	 include	 structures	 but	 not	 classes,	 so	 specifying
LayoutKind.Sequential	is	optional	for	structures.
The	 optional	 CharSet	 field	 can	 determine	 whether	 strings	 are	 converted	 to
ANSI	 or	 Unicode	 before	 being	 passed	 to	 unmanaged	 code.	 CharSet.Auto
selects	 8-bit	 ANSI	 or	 16-bit	 Unicode	 characters	 depending	 on	 the	 target
platform.	A	DllImport	attribute	can	also	use	the	CharSet	field.
[StructLayout(LayoutKind.Sequential,	CharSet=CharSet.Auto)]

Some	 structures	 are	 difficult	 or	 impractical	 to	 duplicate	 in	 Visual	 C#.	 A
solution	is	to	use	a	generic	buffer	of	the	expected	size.	The	application	can	fill
the	 buffer	 before	 passing	 it	 and	 extract	 returned	 data	 from	 the	 buffer	 as
needed.
The	 optional	 Pack	 field	 sets	 the	 alignment	 of	 data	 fields	 in	 a	 structure.	 The
fields	 in	 the	 structure	 start	on	offsets	 that	 are	multiples	of	 the	Pack	value	 in
bytes.	For	example,	setting	Pack	=	4	aligns	the	fields	on	4-byte	boundaries:
[StructLayout(LayoutKind.Sequential,	Pack=4)]

Setting	Pack	=	0	uses	 the	default	value,	which	 is	8	 for	all	 except	unmanaged
structures,	which	typically	have	a	default	of	4.

Finding	a	device
Windows	provides	a	series	of	SetupDi_	API	functions	that	enable	applications
to	find	all	devices	in	a	device	interface	class	and	to	obtain	a	device	path	name
for	 each	 device.	 The	 CreateFile	 function	 can	 use	 the	 device	 path	 name	 to

obtain	 a	 handle	 for	 accessing	 the	 device.	 As	 Chapter	 8	 explained,	 these
functions	 can	 be	 useful	 in	 finding	 HID-class	 devices	 that	 perform	 vendor-
specific	functions	and	devices	that	use	WinUSB	and	vendor-specific	drivers.
Obtaining	a	device	path	name	requires	these	steps:
1.	Obtain	the	device	interface	GUID.
2.	 Request	 a	 pointer	 to	 a	 device	 information	 set	 with	 information	 about	 all
installed	and	present	devices	in	the	device	interface	class.
3.	Request	 a	 pointer	 to	 a	 structure	 that	 contains	 information	 about	 a	device
interface	in	the	device	information	set.
4.	Request	a	structure	containing	a	device	interface’s	device	path	name.
5.	Extract	the	device	path	name	from	the	structure.
The	 application	 can	 then	 use	 the	 device	 path	 name	 to	 open	 a	 handle	 for
communicating	with	the	device.
Table	10-1	 lists	 the	API	 functions	 that	applications	can	use	 to	perform	these
tasks.
The	 following	 code	 shows	 how	 to	 use	 API	 functions	 to	 find	 a	 device	 and
obtain	 its	 device	 path	 name.	 For	 a	 complete	 Visual	 C#	 application	 that
demonstrates	how	to	use	these	functions,	visit	janaxelson.com.

Obtaining	the	device	interface	GUID
As	Chapter	 8	 explained,	 for	many	 drivers,	 applications	 can	 obtain	 a	 device
interface	 GUID	 from	 a	 C	 header	 file	 or	 other	 declaration	 provided	 with	 a
driver.	The	device’s	 INF	 file	 should	 contain	 the	 same	GUID.	As	Chapter	15
explains,	 WinUSB	 devices	 have	 the	 option	 to	 store	 the	 GUID	 in	 device
firmware.
For	 the	HID	 class,	Windows	 provides	 an	API	 function	 to	 obtain	 the	GUID
defined	in	hidclass.h.

Definitions
[DllImport(“hid.dll”,	SetLastError=true)]

internal	static	extern	void	HidD_GetHidGuid

(ref	Guid	HidGuid);

Use
Guid	myGuid	=	Guid.Empty;

NativeMethods.HidD_GetHidGuid(ref	myGuid);

http://janaxelson.com

For	 other	GUIDs,	 you	 can	 specify	 a	 a	 constant	GUID	 value	 as	 a	 string	 and
convert	the	string	to	a	System.Guid	object:

Definitions
private	const	String	DeviceInterfaceGuid	=	”

{ecceff35-146c-4ff3-acd9-8f992d09acdd}”;

Use
var	myGuid	=	new	Guid(DeviceInterfaceGuid);

Table	 10-1:	Applications	 use	 these	 functions	 to	 find	 devices	 and	 obtain	 device
path	names	to	enable	accessing	devices.
API	Function DLL Purpose

HidD_GetHidGuid hid Retrieve	the	device	interface	GUID	for
the	HID	class.

SetupDiDestroyDeviceInfoList setupapi Free	resources	used	by
SetupDiGetClassDevs.

SetupDiGetClassDevs setupapi Retrieve	a	device	information	set	for	the
devices	in	a	specified	class.

SetupDiGetDeviceInterfaceDetail setupapi Retrieve	a	device	path	name.

SetupDiEnumDeviceInterfaces setupapi Retrieve	information	about	a	device	in	a
device	information	set.

Requesting	a	pointer	to	a	device	information	set
The	 SetupDiGetClassDevs	 function	 can	 return	 a	 pointer	 to	 an	 array	 of
structures	 containing	 information	 about	 all	 devices	 in	 the	 device	 interface
class	specified	by	a	GUID.

Definitions
[DllImport(“setupapi.dll”,	SetLastError=true,

CharSet	=	CharSet.Auto)]

internal	static	extern	IntPtr	SetupDiGetClassDevs

(ref	Guid	classGuid,

IntPtr	enumerator,

IntPtr	hwndParent,

Int32	flags);

Use
internal	const	Int32	DIGCF_PRESENT	=	2;

internal	const	Int32	DIGCF_DEVICEINTERFACE	=	0X10;

var	deviceInfoSet	=	new	IntPtr();

deviceInfoSet	=	NativeMethods.SetupDiGetClassDevs

(ref	myGuid,

IntPtr.Zero,

IntPtr.Zero,

NativeMethods.DIGCF_PRESENT	|

NativeMethods.DIGCF_DEVICEINTERFACE);

How	it	works
For	HID-class	devices,	the	ClassGuid	parameter	is	the	HidGuid	value	returned
by	HidD_GetHidGuid.	For	other	drivers,	the	application	can	pass	a	reference
to	 the	 appropriate	GUID.	The	 example	 passes	 null	 pointers	 for	Enumerator
and	 hwndParent.	 The	 Flags	 parameter	 uses	 system	 constants	 defined	 in
setupapi.h.	 The	 flags	 in	 the	 example	 cause	 the	 function	 to	 look	 for	 device
interfaces	 that	 are	 currently	 attached	 and	 enumerated	members	 of	 the	 class
identified	by	the	ClassGuid	parameter.
The	returned	deviceInfoSet	value	is	a	pointer	to	a	device	information	set	that
contains	 information	 about	 all	 attached	 and	 enumerated	 devices	 in	 the
specified	device	 interface	 class.	The	device	 information	 set	 contains	 a	device
information	 element	 for	 each	 device	 in	 the	 set,	 or	 array.	 Each	 device
information	element	contains	a	handle	to	a	device’s	devnode	(a	structure	that
represents	the	device)	and	a	linked	list	of	device	interfaces	associated	with	the
device.
When	 finished	 using	 the	 device	 information	 set,	 the	 application	 should	 free
the	resources	used	by	calling	SetupDiDestroyDeviceInfoList	as	shown	later	in
this	chapter.

Identifying	a	device	interface
A	call	to	SetupDiEnumDeviceInterfaces	retrieves	a	pointer	to	a	structure	for	a
device	interface	in	the	previously	retrieved	deviceInfoSet	array.	The	call	passes
an	array	index	to	a	device	interface.	To	retrieve	information	about	all	devices
in	an	array,	an	application	can	increment	the	index	until	the	function	returns
zero,	indicating	that	the	array	has	no	more	interfaces.
In	 some	 cases,	 such	 as	 when	 looking	 for	 a	HID-class	 device	 with	 a	 specific
Vendor	 ID	 and	 Product	 ID,	 the	 application	 may	 need	 to	 request	 more
information	before	deciding	whether	a	retrieved	device	interface	is	the	desired
one.

Definitions
internal	struct	SP_DEVICE_INTERFACE_DATA

{

internal	Int32	cbSize;

internal	Guid	InterfaceClassGuid;

internal	Int32	Flags;

internal	IntPtr	Reserved;

}

[DllImport(“setupapi.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	SetupDiEnumDeviceInterfaces

(IntPtr	DeviceInfoSet,

IntPtr	DeviceInfoData,

ref	Guid	InterfaceClassGuid,

Int32	MemberIndex,

ref	SP_DEVICE_INTERFACE_DATA	DeviceInterfaceData);

Use
Int32	memberIndex	=	0;

var	myDeviceInterfaceData	=

new	NativeMethods.SP_DEVICE_INTERFACE_DATA();

myDeviceInterfaceData.cbSize	=

	Marshal.SizeOf(myDeviceInterfaceData);

Boolean	success	=	NativeMethods.SetupDiEnumDeviceInterfaces

(deviceInfoSet,

IntPtr.Zero,

ref	myGuid,

memberIndex,

ref	myDeviceInterfaceData);

How	it	works
In	 the	 SP_DEVICE_INTERFACE_DATA	 structure,	 the	 cbSize	 parameter	 is
the	 size	 of	 the	 structure	 in	 bytes.	 The	 Marshal.SizeOf	 method	 returns	 the
structure’s	 size.	 The	 myGuid	 and	 deviceInfoSet	 parameters	 are	 values
retrieved	previously.
The	DeviceInfoData	parameter	can	be	a	pointer	to	an	SP_DEVINFO_DATA
structure	that	limits	the	search	to	a	particular	device	instance	or	a	null	pointer.
The	memberIndex	parameter	 is	 an	 index	 to	 a	 structure	 in	 the	deviceInfoSet
array.	 The	 myDeviceInterfaceData	 parameter	 is	 a	 pointer	 to	 the
SP_DEVICE_INTERFACE_DATA	 structure	 that	 the	 function	 returns.	 The
function	returns	true	on	success.

Requesting	a	structure	with	the	device	path	name
The	 SetupDiGetDeviceInterfaceDetail	 function	 returns	 a	 structure	 that
contains	 a	 device	 path	 name	 for	 a	 device	 interface	 identified	 in	 an
SP_DEVICE_INTERFACE_DATA	structure.
When	calling	this	function	for	the	first	time,	you	don’t	know	the	size	in	bytes
of	 the	 DeviceInterfaceDetailData	 structure	 to	 pass	 in	 the
DeviceInterfaceDetailDataSize	 parameter.	 Yet	 the	 function	 won’t	 return	 the
structure	unless	the	function	call	passes	the	correct	size.	The	solution	is	to	call
the	 function	 twice.	 The	 first	 time,	 GetLastError	 returns	 the	 error	The	 data

area	 passed	 to	 a	 system	 call	 is	 too	 small,	 but	 the	 Required-Size	 parameter
contains	the	correct	value	for	DeviceInterfaceDetailDataSize.	The	second	call
can	pass	the	returned	size	value,	and	the	function	will	return	the	structure.
The	 code	 below	 doesn’t	 pass	 a	 structure	 for	 the	 DeviceInterfaceDetailData
parameter.	Instead,	the	code	reserves	a	generic	buffer,	passes	a	pointer	to	the
buffer,	 and	 extracts	 the	 device	 path	 name	 from	 the	 buffer.	 The	 code	 thus
doesn’t	 require	 a	 structure	 declaration,	 but	 I’ve	 included	 one	 to	 show	 the
contents	of	the	returned	buffer.

Definitions
internal	struct	SP_DEVICE_INTERFACE_DETAIL_DATA

{

internal	Int32	cbSize;

internal	String	DevicePath;

}

[DllImport(“setupapi.dll”,	SetLastError	=	true,

CharSet	=	CharSet.Auto)]

internal	static	extern	Boolean	SetupDiGetDeviceInterfaceDetail

(IntPtr	DeviceInfoSet,

ref	SP_DEVICE_INTERFACE_DATA	DeviceInterfaceData,

IntPtr	DeviceInterfaceDetailData,

Int32	DeviceInterfaceDetailDataSize,

ref	Int32	RequiredSize,

IntPtr	DeviceInfoData);

Use
Int32	bufferSize	=	0;

IntPtr	detailDataBuffer	=	IntPtr.Zero;

NativeMethods.SetupDiGetDeviceInterfaceDetail

(deviceInfoSet,

ref	myDeviceInterfaceData,

IntPtr.Zero,

0,

ref	bufferSize,

IntPtr.Zero);

detailDataBuffer	=	Marshal.AllocHGlobal(bufferSize);

Marshal.WriteInt32

(detailDataBuffer,

(IntPtr.Size	==	4)	?	(4	+	Marshal.SystemDefaultCharSize)	:	8);

NativeMethods.SetupDiGetDeviceInterfaceDetail

(deviceInfoSet,

ref	MyDeviceInterfaceData,

detailDataBuffer,

bufferSize,

ref	bufferSize,

IntPtr.Zero);

How	it	works
After	 calling	 SetupDiGetDeviceInterfaceDetail,	 bufferSize	 contains	 the	 value

to	pass	in	the	DeviceInterfaceDetailDataSize	parameter	in	the	next	call.	Before
calling	the	function	again,	the	code	needs	to	take	care	of	a	few	things.
The	 second	 function	 call	 returns	 a	 pointer	 (detailDataBuffer)	 to	 an
SP_DEVICE_INTERFACE_DETAIL_DATA	 structure	 in	 unmanaged
memory.	The	Marshal.AllocGlobal	method	uses	the	returned	bufferSize	value
to	allocate	memory	for	the	structure.
The	 Marshal.WriteInt32	 method	 stores	 a	 value	 in	 the	 cbsize	 member	 of
detailDataBuffer.	The	“?”	conditional	operator	selects	the	correct	value	for	32-
and	64-bit	systems.
The	 second	 call	 to	 SetupDiGetDeviceInterfaceDetail	 passes	 the	 pointer	 to
detailDataBuffer	 and	 sets	 the	 deviceInterfaceDetailDataSize	 parameter	 equal
to	the	buffer-Size	value	returned	previously	in	RequiredSize.
When	the	function	returns	after	the	second	call,	detailDataBuffer	points	to	a
structure	containing	a	device	path	name.

Extracting	the	device	path	name
In	 detailDataBuffer,	 the	 first	 four	 bytes	 are	 the	 cbSize	 member.	 The	 string
containing	the	device	path	name	begins	at	the	fifth	byte.
String	devicePathName	=	“	”;

var	pDevicePathName	=	new	IntPtr(detailDataBuffer.ToInt64()	+	4);

devicePathName	=	Marshal.PtrToStringAuto(pDevicePathName);

Marshal.FreeHGlobal(detailDataBuffer);

How	it	works
The	 pDevicePathName	 variable	 points	 to	 the	 string	 in	 the	 buffer,	 and
Marshal.PtrTo-StringAuto	retrieves	the	string	from	the	buffer.	When	program
code	 is	 finished	 using	 the	 buffer,	 Marshal.FreeHGlobal	 frees	 the	 memory
previously	allocated	for	the	buffer.

Closing	communications
When	 finished	 using	 the	 deviceInfoSet	 pointer	 returned	 by
SetupDiGetClassDevs,	 the	 application	 should	 call
SetupDiDestroyDeviceInfoList	to	free	resources.

Definitions
[DllImport(“setupapi.dll”,	SetLastError	=	true)]

internal	static	extern	Int32	SetupDiDestroyDeviceInfoList

(IntPtr	deviceInfoSet);

Use
NativeMethods.SetupDiDestroyDeviceInfoList(deviceInfoSet);

Table	10-2:	Applications	can	use	CreateFile	to	request	a	handle	to	a	device	and
CloseHandle	to	free	the	resources	used	by	a	handle.
API	Function DLL Purpose

CloseHandle kernel32 Free	resources	reserved	by	CreateFile.	To	close	handles	for	the
SafeHandle	and	derived	classes,	use	the	Close	method,	which
calls	CloseHandle	internally.

CreateFile kernel32 Retrieve	a	handle	for	communicating	with	a	device.

Obtaining	a	handle
An	application	can	use	a	 retrieved	device	path	name	 to	obtain	a	handle	 that
enables	 communicating	 with	 the	 device.	 Table	 10-2	 shows	 API	 functions
related	to	requesting	a	handle.

Requesting	a	communications	handle
After	 retrieving	 a	 device	 path	 name,	 an	 application	 is	 ready	 to	 open
communications	with	the	device.	The	CreateFile	function	requests	a	handle	to
an	object,	which	 can	be	 a	 file	 or	 another	 resource	managed	by	 a	driver	 that
supports	 handle-based	 operations.	 For	 example,	 applications	 can	 request	 a
handle	to	use	 in	exchanging	reports	with	HID-class	devices.	For	devices	that
use	 the	WinUSB	 driver,	 CreateFile	 obtains	 a	 handle	 the	 application	 uses	 to
obtain	a	WinUSB	device	handle	for	accessing	a	device.
The	call	to	CreateFile	can	pass	a	SECURITY_ATTRIBUTES	structure	that	can
limit	access	to	the	handle	or	IntPtr.Zero	if	 the	function	doesn’t	need	to	 limit
access.

Definitions
internal	const	Int32	FILE_ATTRIBUTE_NORMAL	=	0X80;

internal	const	Int32	FILE_FLAG_OVERLAPPED	=	0X40000000;

internal	const	Int32	FILE_SHARE_READ	=	1;

internal	const	Int32	FILE_SHARE_WRITE	=	2;

internal	const	UInt32	GENERIC_READ	=	0X80000000;

internal	const	UInt32	GENERIC_WRITE	=	0X40000000;

internal	const	Int32	OPEN_EXISTING	=	3;

[DllImport(“kernel32.dH”,	SetLastError	=	true,

CharSet	=	CharSet.Unicode)]

internal	static	extern	SafeFileHandle	CreateFile

(String	lpFileName,

UInt32	dwDesiredAccess,

Int32	dwShareMode,

IntPtr	lpSecurityAttributes,

Int32	dwCreationDisposition,

Int32	dwFlagsAndAttributes,

IntPtr	hTemplateFile);

Use
SafeFileHandle	deviceHandle	=	NativeMethods.CreateFile

(devicePathName,

(NativeMethods.GENERIC_WRITE	|	NativeMethods.GENERIC_READ),

NativeMethods.FILE_SHARE_READ	|

		NativeMethods.FILE_SHARE_WRITE,

IntPtr.Zero,

NativeMethods.OPEN_EXISTING,

NativeMethods.FILE_ATTRIBUTE_NORMAL	|

		NativeMethods.FILE_FLAG_OVERLAPPED,

IntPtr.Zero);

How	it	works
The	 function	 passes	 a	 pointer	 to	 the	 devicePathName	 string	 returned	 by
SetupDiGet-DeviceInterfaceDetail.
dwDesiredAccess	requests	read/write	access	to	the	device.
dwShareMode	allows	other	processes	to	access	the	device	while	the	handle	is
open.
IpSecurityAttributes	 is	 a	 null	 pointer	 (or	 a	 pointer	 to	 a
SECURITY_ATTRIBUTES	structure).
dwCreationDisposition	must	be	OPEN_EXISTING	 for	devices.	For	use	with
the	 WinUSB	 driver,	 the	 dwFlagsAndAttributes	 parameter	 must	 use
FILE_FLAG_OVERLAPPED.	 The	 FILE_ATTRIBUTE_NORMAL	 attribute
indicates	that	no	other	attributes	such	as	hidden,	read-only,	or	encrypted	are
set.
The	example	passes	IntPtr.Zero	for	the	unused	hTemplate	parameter.
The	function	returns	a	SafeFileHandle	object.

Closing	the	handle
When	finished	communicating	with	a	device,	 the	application	should	free	the
resources	reserved	by	CreateFile.
deviceHandle.Close();

How	it	works
SafeFileHandle	objects	support	the	Close	method,	which	marks	the	handle	for
releasing	 and	 freeing	 resources.	 The	 method	 calls	 the	 CloseHandle	 API
function	internally.

Detecting	device	attachment	and	removal
Applications	often	find	it	useful	to	know	when	a	specific	target	device	has	been
attached	or	removed.	On	detecting	when	a	device	is	attached,	the	application
can	 begin	 communicating	 with	 the	 device.	 On	 detecting	 when	 a	 device	 has
been	 removed,	 the	 application	 can	 stop	 attempting	 to	 communicate	 until
detecting	reattachment.

Using	WMI
Windows	 Management	 Instrumentation	 (WMI)	 provides	 services	 that
support	 system	management	operations	 such	 as	detecting	device	 arrival	 and
removal	 and	 getting	 information	 about	 available	 devices.	 The
System.Management	 namespace	 provides	 classes	 that	 support	 WMI
operations.
The	routines	that	follow	use	a	variable	to	hold	the	state	of	the	target	device:
private	Boolean	_deviceReady;

Adding	a	handler	for	newly	arrived	devices
To	create	a	handler	that	executes	when	a	device	becomes	available:
1.	Create	a	ManagementScope	object	that	sets	the	scope,	or	namespace,	for	the
management	operations.
2.	Create	 a	WMI	 event	 query	 that	 defines	 the	 search	 criteria	 for	 the	desired
devices.
3.	 Create	 a	 ManagementEventWatcher	 to	 watch	 for	 the	 specified	 devices
within	the	specified	scope.
The	 routines	 that	 follow	 create	 and	 implement	 a	 handler	 for	 newly	 arrived
devices.

Use
private	ManagementEventWatcher	deviceArrivedWatcher;

private	void	AddDeviceArrivedHandler()

{

const	Int32	pollingIntervalSeconds	=	3;

var	scope	=	new	ManagementScope(“root\\CIMV2”);

scope.Options.EnablePrivileges	=	true;

var	q	=	new	WqlEventQuery();

q.EventClassName	=	“__InstanceCreationEvent”;

q.WithinInterval	=	new	TimeSpan(0,	0,	pollingIntervalSeconds);

q.Condition	=	@”TargetInstance	ISA	‘Win32_USBControllerdevice’”;

deviceArrivedWatcher	=	new	ManagementEventWatcher(scope,	q);

deviceArrivedWatcher.EventArrived	+=	DeviceAdded;

deviceArrivedWatcher.Start();

}

private	void	DeviceAdded(object	sender,	EventArrivedEventArgs	e)

{

FindDevice();

//	Perform	other	actions	as	needed.

}

How	it	works
deviceArrivedWatcher	 is	 an	 instance	of	 the	ManagementEventWatcher	 class
that	will	listen	for	WMI	events	that	signify	the	arrival	of	a	new	device.
The	 AddDeviceArrivedHandler	 routine	 creates	 and	 starts	 the	 handler	 for
detecting	new	devices.
pollingIntervalSeconds	sets	the	frequency	of	checking	for	new	devices.
scope	is	a	ManagementScope	object	that	sets	the	namespace	for	management
operations.	The	default	namespace	for	WMI	queries	is	“root\\CIMV2”.
The	 Options.EnablePrivileges	 property	 is	 set	 to	 true	 to	 enable	 all	 user
privileges	for	the	management	operations.
The	WqlEventQuery	object	q	represents	a	WMI	event	query	for	the	search.
EventClassName	 names	 the	 WMI	 class	 for	 the	 query.	 The
“_InstanceCreationEvent”	class	reports	an	event	when	a	new	instance	is	added
to	 the	 specified	 namespace.	 Note	 the	 leading	 double	 underscore
in_InstanceCreationEvent.
The	 WithinInterval	 property	 sets	 the	 polling	 interval	 for	 the	 queries.	 A
TimeSpan	structure	sets	the	interval	in	hours,	minutes,	and	seconds.
The	 Condition	 property	 @“TargetInstance	 ISA
‘Win32_USBControllerdevice’”	 configures	 the	 query	 to	 get	 all	 events.	 The
prepended	“@”	ensures	that	the	single	quotes	in	the	string	are	interpreted	as-
is.
deviceArrivedWatcher	 subscribes	 to	 event	 notifications	 using	 the	 specified
ManagementScope	and	WqlEventQuery.	If	you	get	a	cannot	resolve	 error	 for
the	ManagementEventWatcher	 object,	 go	 to	 Project	 >	Add	 Reference	 and
add	System.Management.
DeviceAdded	 is	 the	 application-specific	 routine	 that	 executes	 when	 the
EventArrived	event	occurs.
The	 Start	 method	 starts	 the	 ManagementEventWatcher	 and	 delivers

notifications	using	the	EventArrived	event.
On	 event	 notification,	 the	 DeviceAdded	 routine	 can	 perform	 any	 desired
action,	such	as	looking	for	a	specific	device.

Detecting	the	target	device
The	example	above	calls	the	FindDevice	routine	on	an	event	notification.	The
routine	 can	 use	 a	 ManagementObjectSearcher	 to	 look	 for	 a	 device	 with	 a
specific	Vendor	ID	and	Product	ID.

Use
void	FindDevice()

{

const	String	deviceIdString	=	@”USB\VID_0925”&PID_150C”;

_deviceReady	=	false;

var	searcher	=	new	ManagementObjectSearcher	(“root\\CIMV2”,	“SELECT	PNPDeviceID	FROM

Win32_PnPEntity”);

foreach	(ManagementObject	queryObj	in	searcher.Get())

{

if	(queryObj[“PNPDeviceID”].ToString().Contains	(deviceIdString))

{

_deviceReady	=	true;

}

}

}

How	it	works
deviceIdString	is	a	PNPDeviceID,	which	is	a	string	that	contains	the	Vendor
ID	(0925)	and	Product	 ID	(150C)	of	 the	desired	device.	The	prepended	“@”
ensures	that	the	backslash	in	the	string	is	interpreted	as-is	and	not	as	an	escape
character.
searcher	 is	 a	 ManagementObjectSearcher	 object	 that	 specifies	 a
ManagementScope	 for	 the	 query	 (“root\\CIMV2”)	 and	 a	 query	 to	 execute
(“SELECT	PNPDeviceID	FROM	Win32_PnPEntity”).	The	query	searches	the
PNPDeviceID	 properties	 of	 the	 WMI	 class	 Win32_PnPEntity.	 This	 class
represents	the	properties	of	Plug	and	Play	(PnP)	devices,	which	include	USB
devices.
A	foreach	loop	searches	the	results	for	a	PNPDeviceID	that	contains	the	target
string	and	sets	_deviceReady	true	if	found.
The	 ManagementObjectSearcher	 can	 search	 for	 properties	 other	 than	 the
PNPDeviceID.	Here	are	some	examples.

To	search	the	Description	property	for	“winusb”	use:
var	searcher	=	new	ManagementObjectSearcher	(“root\\CIMV2”,	“SELECT	Description	FROM

Win32_PnPEntity”);

foreach	(ManagementObject	queryObj	in	searcher.Get())

{

if	(queryObj[“Description”].ToString().ToLower().Contains	(“winusb”))

{

_deviceReady	=	true;

{

}

To	search	for	any	device	that	uses	the	WinUSB	ClassGUID,	use:
const	String	classGuid	=	“88bae032-5a81-49f0-bc3d-a4ff138216d6”;

var	searcher	=	new	ManagementObjectSearcher	(“root\\CIMV2”,	“SELECT	ClassGUID	FROM

Win32_PnPEntity”);

foreach	(ManagementObject	queryObj	in	searcher.Get())

{

if	(queryObj[“ClassGUID”].ToString().Contains(classGUID))

{

_deviceReady	=	true;

{

}

To	search	all	properties,	use	an	asterisk	to	specify	the	properties	to	search:
var	searcher	=	new	ManagementObjectSearcher	(“root\\CIMV2”

“SELECT	*	FROM	Win32_PnPEntity”);

An	 enum	 structure	 can	 hold	 device	 properties	 of	 interest	 in	 the
Win32_PnPEntity	class:

private	enum	WmiDeviceProperties

{

Caption,

Description,

Manufacturer,

Name,

CompatibleID,

PNPDeviceID,

DeviceID,

ClassGUID,

Availability

}

A	 foreach	 loop	 can	 step	 through	 the	 enum’s	 members	 and	 display	 the
properties	for	a	found	device:
foreach	(WmiDeviceProperties	wmiDeviceProperty	in

Enum.GetValues(typeof(WmiDeviceProperties)))

{

Console.WriteLine(wmiDeviceProperty.ToString()	+	“:	{0}”,

queryObj[wmiDeviceProperty.ToString()]);

}

Adding	a	handler	for	removed	devices
In	a	similar	way,	Management	functions	can	detect	when	a	target	device	is	no

longer	available.	This	routine	creates	a	handler	for	removed	devices.

Use
private	ManagementEventWatcher	deviceRemovedWatcher;

private	void	AddDeviceRemovedHandler()

{

const	Int32	pollingIntervalSeconds	=	3;

var	scope	=	new	ManagementScope(“root\\CIMV2”);

scope.Options.EnablePrivileges	=	true;

var	q	=	new	WqlEventQuery();

q.EventClassName	=	“__InstanceDeletionEvent”;

q.WithinInterval	=	new	TimeSpan(0,	0,	pollingIntervalSeconds);

q.Condition	=	@”TargetInstance	ISA	‘Win32_USBControllerdevice’”;

deviceRemovedWatcher	=	new	ManagementEventWatcher(scope,	q);

deviceRemovedWatcher.EventArrived	+=	DeviceRemoved;

deviceRemovedWatcher.Start();

private	void	DeviceRemoved(object	sender,	EventArgs	e)

{

FindDevice();

//	Perform	other	actions	as	needed.

}

How	it	works
The	routine	is	similar	to	the	AddDeviceArrivedHandler	routines	but	uses	the
“__In-stanceDeletionEvent”	and	calls	a	DeviceRemoved	routine.
deviceRemovedWatcher	is	an	instance	of	the	ManagementEventWatcher	class
that	will	listen	for	WMI	events	that	signify	the	removal	of	a	device.
The	DeviceRemoved	 routine	 calls	 the	 FindDevice	 routine	 to	 find	 out	 if	 the
target	device	is	available.

11

Human	Interface	Devices:
Capabilities
The	human	interface	device	(HID)	class	has	wide	support	on	host	systems	to
enable	 using	 keyboards,	 mice,	 and	 similar	 devices.	 For	 this	 reason,	 and
because	 the	HID	class	also	 supports	 exchanging	data	 for	application-specific
purposes,	many	special-purpose	devices	use	the	HID	class.
Chapter	 7	 introduced	 the	HID	 class.	 This	 chapter	 shows	 how	 to	 determine
whether	 a	 design	 can	 use	 the	 class,	 introduces	 HID-specific	 requests,	 and
discusses	HID	firmware	options.	Chapter	12	describes	 the	reports	 that	HIDs
use	to	exchange	information,	and	Chapter	13	shows	how	to	access	HIDs	from
applications.

What	is	a	HID?
The	 name	 human	 interface	 device	 suggests	 that	 HIDs	 interact	 directly	 with
people,	and	many	HIDs	do	just	that.	A	mouse	detects	when	someone	moves	it
or	presses	a	key.	A	host	may	send	data	that	translates	to	an	effect	that	a	user
senses	on	a	joystick.	Besides	keyboards,	mice,	and	joysticks,	devices	with	HID
interfaces	include	remote	controls,	telephone	keypads,	game	controls	such	as
data	gloves	and	steering	wheels,	barcode	readers,	and	UPS	units.	Devices	with
virtual	 control	 panels	 on	 the	 host	 can	 use	 a	HID	 interface	 to	 send	 control-
panel	data	to	the	device.	A	virtual	control	panel	can	be	cheaper	to	implement
than	physical	controls	on	a	device.
A	HID	doesn’t	have	 to	have	 a	human	 interface.	The	device	 just	needs	 to	be
able	to	function	within	the	limits	of	the	HID	class	specification.	These	are	the
major	abilities	and	limits	of	HID-class	devices:

All	 data	 exchanged	 resides	 in	 fixed-length	 structures	 called	 reports.	 The
host	sends	and	receives	data	by	sending	and	requesting	reports	in	control	or
interrupt	transfers.	The	report	format	is	flexible	and	can	handle	just	about

any	type	of	data,	and	a	single	device	can	support	multiple	reports,	but	each
defined	report	has	a	fixed	length.
A	HID	must	have	an	interrupt	IN	endpoint	for	sending	Input	reports.
A	HID	can	have	at	most	one	interrupt	IN	endpoint	and	one	interrupt	OUT
endpoint.
The	interrupt	IN	endpoint	enables	the	HID	to	send	information	to	the	host
at	unpredictable	times.	For	example,	there’s	no	way	for	the	host	computer
to	know	when	a	user	will	press	a	key	on	the	keyboard,	so	the	host’s	driver
uses	 interrupt	 transactions	 to	 poll	 the	 device	 periodically	 to	 obtain	 new
data.
The	 rate	 of	 data	 exchange	 is	 limited.	 As	 Chapter	 3	 explained,	 a	 host	 can
guarantee	a	low-speed	interrupt	endpoint	a	maximum	data	transfer	rate	of
800	B/s.	For	full-speed	endpoints,	the	maximum	is	64	kB/s.	High-speed	and
Enhanced	 SuperSpeed	 endpoints	 support	 faster	 rates,	 but	 to	 comply	with
the	 USB	 2.0	 and	 USB	 3.0	 specifications,	 the	 endpoints	 in	 the	 default
interface	should	request	no	more	than	64	kB/s.	Under	Windows	and	other
OSes,	 supporting	 an	 alternate	 HID	 interface	 requires	 a	 vendor-provided
driver,	 which	 eliminates	 the	 advantage	 of	 using	 the	 OS-provided	 driver.
Control	transfers	have	no	guaranteed	bandwidth	except	for	the	bandwidth
reserved	for	all	control	transfers	on	the	bus.

A	HID	may	be	just	one	of	multiple	interfaces	in	a	device.	For	example,	a	USB
speaker	 might	 use	 isochronous	 transfers	 for	 audio	 and	 a	 HID	 interface	 for
controlling	volume,	balance,	treble,	and	bass.

Hardware	requirements
To	 comply	 with	 the	 HID	 specification,	 the	 interface’s	 endpoints	 and
descriptors	must	meet	several	requirements.

Endpoints
All	HID	 transfers	 use	 either	 the	 control	 endpoint	 or	 an	 interrupt	 endpoint.
Every	HID	must	have	an	interrupt	IN	endpoint	for	sending	data	to	the	host.
An	 interrupt	OUT	endpoint	 is	optional.	Table	11-1	 shows	 the	 transfer	 types
and	their	typical	use	in	HIDs.

Reports
The	requirement	for	an	interrupt	IN	endpoint	suggests	 that	every	HID	must

have	at	least	one	Input	report	defined	in	the	HID’s	report	descriptor.	Output
and	Feature	reports	are	optional.

Control	transfers
The	 HID	 specification	 defines	 six	 class-specific	 requests.	 Two	 requests,	 Set
Report	 and	 Get	 Report,	 provide	 a	 way	 for	 the	 host	 and	 device	 to	 transfer
reports	to	and	from	the	device	using	control	transfers.	Set	Idle	and	Get	Idle	set
and	read	the	Idle	rate,	which	determines	whether	or	not	a	device	resends	data
that	hasn’t	changed	since	the	last	report.	Set	Protocol	and	Get	Protocol	set	and
read	a	protocol	value,	which	can	enable	a	device	to	function	with	a	simplified
protocol	when	the	full	HID	drivers	aren’t	 loaded	on	the	host,	such	as	during
boot	up.

Interrupt	transfers
Interrupt	 endpoints	provide	a	way	 to	 exchange	data	when	 the	 receiver	must
get	 the	data	 periodically	 and	with	minimum	delay.	Control	 transfers	 can	be
delayed	if	the	bus	is	very	busy,	while	the	bandwidth	for	interrupt	transfers	is
guaranteed	to	be	available	after	successful	enumeration.
The	 ability	 to	 do	 Interrupt	 OUT	 transfers	 was	 added	 in	 USB	 1.1,	 and	 the
option	 to	 use	 an	 interrupt	 OUT	 pipe	 was	 added	 to	 version	 1.1	 of	 the	HID
specification.

Firmware	requirements
The	 device’s	 descriptors	 must	 include	 an	 interface	 descriptor	 for	 the	 HID
class,	a	class-specific	HID	descriptor,	and	an	interrupt	IN	endpoint	descriptor.
An	 interrupt	OUT	 endpoint	 descriptor	 is	 optional.	 The	 firmware	must	 also
contain	 a	 class-specific	 report	 descriptor	with	 information	 about	 the	 format
and	use	of	the	report	data.
A	HID	can	 support	one	or	more	 reports.	The	 report	descriptor	 specifies	 the
size	 and	 contents	 of	 the	 data	 in	 a	 device’s	 report(s)	 and	 may	 also	 include
information	about	how	the	receiver	of	the	data	should	use	the	data.	Values	in
the	descriptor	define	each	report	as	an	Input,	Output,	or	Feature	report.	The
host	receives	data	in	Input	reports	and	sends	data	in	Output	reports.	A	Feature
report	can	travel	in	either	direction.
Every	device	should	support	at	least	one	Input	report	that	the	host	can	retrieve
using	 interrupt	 transfers	 or	 control-transfer	 requests.	 Output	 reports	 are

optional	 and	 can	 use	 control	 or	 interrupt	 transfers.	 Feature	 reports	 are
optional	and	always	use	control	transfers.

Table	 11-1:	 The	 transfer	 type	 used	 in	 a	 HID	 transfer	 depends	 on	 the	 chip’s
abilities	and	the	requirements	of	the	data	being	sent.
Transfer	Type Source	of	Data Typical	Data Required	Pipe?

Control Device	(IN
transfer)

Data	that	doesn’t	have	critical	timing
requirements.

yes

Host	(OUT
transfer)

Data	that	doesn’t	have	critical	timing
requirements,	or	any	data	if	there	is	no
OUT	interrupt	pipe.

Interrupt Device	(IN
transfer)

Periodic	or	low-latency	data. yes

Host	(OUT
transfer)

Periodic	or	low-latency	data. no

Descriptors
As	 with	 any	 USB	 device,	 a	 HID’s	 descriptors	 tell	 the	 host	 what	 it	 needs	 to
know	 to	 communicate	 with	 the	 device.	 Listing	 11-1	 shows	 example	 device,
configuration,	 interface,	 class,	 and	 endpoint	 descriptors	 for	 a	 HID	 with	 a
vendor-specific	function.
The	host	learns	about	the	HID	interface	during	enumeration	by	sending	a	Get
Descriptor	 request	 for	 the	 configuration	 containing	 the	 HID	 interface.	 An
interface	 descriptor	 specifies	 the	 HID	 interface.	 A	 HID	 class	 descriptor
specifies	 the	combined	number	of	 report	 and	physical	descriptors	 supported
by	 the	 interface.	 During	 enumeration,	 the	 HID	 driver	 requests	 the	 report
descriptor	and	any	physical	descriptors.

The	HID	interface
In	the	interface	descriptor,	bInterfaceclass	=	0x03	to	identify	the	interface	as	a
HID.	 Other	 fields	 that	 contain	 HID-specific	 information	 in	 the	 interface
descriptor	are	the	bInterfaceSubclass	and	bInterfaceProtocol	fields,	which	can
specify	a	boot	interface.
If	bInterfaceSubclass	=	0x01,	the	device	supports	a	boot	interface.	A	HID	with
a	 boot	 interface	 can	 communicate	 with	 the	 host	 even	 when	 the	 host	 hasn’t
loaded	 its	HID	drivers.	This	 situation	might	occur	when	viewing	 the	 system

setup	 screens	 that	 you	 can	 access	 on	 bootup	 or	 when	 using	Windows	 Safe
mode	for	system	troubleshooting.
A	 keyboard	 or	 mouse	 with	 a	 boot	 interface	 can	 use	 a	 simplified	 protocol
typically	supported	by	the	host’s	UEFI	or	BIOS.	The	UEFI	or	BIOS	loads	from
non-volatile	memory	on	bootup	 and	 is	 available	 in	 any	OS	mode.	The	HID
specification	 defines	 boot-interface	 protocols	 for	 keyboards	 and	 mice.	 If	 a
device	has	a	boot	 interface,	bInterfaceProtocol	 indicates	 if	 the	HID	supports
the	keyboard	(0x01)	or	mouse	(0x02)	function.

UCHAR	device_descriptor[0x12]	=

{

0x12, //	bLength Descriptor	size	(18	bytes)

0x01, //	bDescriptorType Descriptor	type	(device)

0x00,	0xx02, //	bcdUSB USB	spec.	release	2.00

0x00, //	bDeviceClass Class	declared	in	interface	desc.

0x00, //	bDeviceSubClass Subclass	code

0x00, //	bDeviceProtocol Protocol	code

0x08, //	bMaxPacketSize0 Endpoint	zero	maximum	packet	size

0x25,	0x09, //	idVendor Vendor	ID	(0x0925)

0x34,	0x12, //	idProduct Product	ID	(0x1234)

0x00,	0x01, //	bcdDevice Device	release	number	(0x0100)

0x01, //	iManufacturer Manufacturer	string	index

0x02, //	iProduct Product	string	index

0x00, //	iSerialNumber Device	serial	number	string	index

0x01 //	bNumConfigurations Number	of	configurations	(1)

}

UCHAR	configuration_descriptor[0x29]	=

{

//	Configuration	descriptor

0x09, //	bLength Descriptor	size	(9	bytes)

0x02, //	bDescriptorType Descriptor	type	(configuration)

0x29,	0x00, //	wTotalLength Length	of	this	+	subordinate

	 // descriptors	(41)

0x01, //	bNumInterfaces Number	of	interfaces

0x01, //	bConfigurationValueIndex	of	this	configuration

0x00, //	iConfiguration Configuration	string	index

0xA0, //	bmAttributes bus	powered,	remote	wakeup	support

0x32, //	bMaxPower Maximum	power	consumption	(100	mA)

//	Interface	Descriptor

0x09, //	bLength Descriptor	size	(9	bytes)

0x04, //	bDescriptorType Descriptor	type	(interface)

0x00, //	bInterfaceNumber Interface	Number

0x00, //	bAlternateSetting Alternate	Setting	Number

0x02, //	bNumEndpoints Number	of	endpoints

0x03, //	bInterfaceClass Interface	class	(HID)

0x00, //	bInterfaceSubclass Interface	subclass

0x00, //	bInterfaceProtocol Interface	protocol

0x00, //	iInterface Interface	string	index

//	HID	descriptor

0x09, //	bLength Descriptor	size	(9	bytes)

0x21, //	bDescriptorType Descriptor	type	(HID)

0x10,	0x01, //	bcDllID HID	release	number	(1.1)

0x00, //	bCountryCode Country	code

0x01, //	bNumDescriptors Number	class	descriptors

0x22, //	bDescriptorType Class	descriptor	type	(report)

0x2F,	0x00, //	wDescriptorLength Report	descriptor	size	(47	bytes)

//	Interrupt	IN	endpoint	descriptor

0x07, //	bLength Descriptor	size	(7	bytes)

0x05, //	bDescriptorType Descriptor	type	(endpoint)

0x81, //	bEndpointAddress Endpoint	1	IN

0x03, //	bmAttributes Transfer	type	(interrupt)

0x40,	0x00, //	wMaxPacketSize Maximum	packet	size

0x0A, //	bInterval Polling	interval	(ms)

//	Interrupt	OUT	endpoint	descriptor

0x07, //	bLength Descriptor	size	(7	bytes)

0x05, //	bDescriptorType Descriptor	type	(endpoint)

0x01, //	bEndpointAddress Endpoint	1	OUT

0x03, //	bmAttributes Transfer	type	(interrupt)

0x40,	0x00, //	wMaxPacketSize Maximum	packet	size

0x0A //	bInterval Polling	interval	(ms)

} 	 	

Listing	11-1:	Example	descriptors	for	a	vendor-specific	HID.

The	HID	Usage	Tables	document	defines	the	report	format	for	keyboards	and
mice	 that	 use	 the	 boot	 protocol.	 The	 system	 understands	 the	 boot	 protocol
and	assumes	that	a	boot	device	will	support	the	protocol,	so	there	is	no	need	to
read	a	report	descriptor	from	the	device.	Before	sending	or	requesting	reports,
the	 system	sends	 the	HID-specific	Set	Protocol	 request	 to	 request	 to	use	 the
boot	protocol.	When	the	full	HID	drivers	have	been	loaded,	the	driver	can	use
the	Set	Protocol	request	to	cause	the	device	to	switch	from	the	boot	protocol	to
the	 report	 protocol,	 which	 uses	 the	 report	 formats	 defined	 in	 the	 report
descriptor.	 If	 the	HID	doesn’t	 support	 a	boot	protocol,	 bInterfaceSubclass	=
0x00.

HID	class	descriptor

The	 HID	 class	 descriptor	 (Table	 11-2)	 identifies	 additional	 descriptors	 for
HID	 communications.	 The	 class	 descriptor	 has	 seven	 or	 more	 fields
depending	on	the	number	of	additional	descriptors.

Report	descriptors
A	 report	 descriptor	 defines	 the	 format	 and	 use	 of	 the	 data	 in	 the	 HID’s
reports.	 If	 the	 device	 is	 a	 mouse,	 the	 data	 reports	 mouse	 movements	 and
button	clicks.	If	the	device	is	a	relay	controller,	the	data	specifies	which	relays
to	 open	 and	 close.	 The	 descriptor	 format	 is	 flexible	 enough	 for	 use	 with
devices	with	varied	functions.
A	 report	 descriptor	 is	 a	 class-specific	 descriptor.	 The	 host	 retrieves	 the
descriptor	by	sending	a	Get	Descriptor	request	to	the	interface	with	the	high
byte	of	the	wValue	field	set	to	0x22.
Listing	 11-2	 is	 a	 report	 descriptor	 that	 defines	 an	 Input	 report,	 an	 Output
report,	 and	 a	 Feature	 report.	 The	 device	 sends	 two	 bytes	 of	 vendor-defined
data	in	the	Input	report.	The	host	sends	two	bytes	of	vendor-defined	data	 in
the	Output	report.	The	Feature	report	is	two	bytes	of	vendor-defined	data	that
the	host	can	send	to	the	device	or	request	from	the	device.
Report	descriptors	similar	to	this	example	can	serve	many	HIDs	with	vendor-
specific	 functions.	 For	 a	 loop-back	 test,	 device	 firmware	 can	 copy	 received
data	from	an	Input	report	into	an	Output	report	to	send	back	to	the	host.	For
a	 “lights	 and	 switches”	 application,	 firmware	 can	 use	 received	 Input	 report
data	 to	 control	 LEDs	 and	 use	 Output	 reports	 to	 send	 logic	 states	 read	 at
switches.
Each	 item	 in	 the	 report	 descriptor	 consists	 of	 a	 byte	 that	 identifies	 the	 item
and	 one	 or	 more	 bytes	 containing	 the	 item’s	 data.	 The	 HID	 specification
defines	item	types	that	a	report	can	contain.	Chapter	12	has	more	about	report
formats.	Here	is	the	function	of	each	item	in	the	example	report	descriptor:
The	Usage	Page	item	(0x06)	specifies	the	general	function	of	the	device,	such
as	generic	desktop	control,	game	control,	or	alphanumeric	display.	The	HID
Usage	 Tables	 document	 provides	 values	 for	 different	Usage	 Pages.	 Vendor-
defined	Usage	Pages	use	the	range	0xFF00–0xFFFF.	In	the	example	descriptor,
the	Usage	Page	is	the	vendor-defined	value	0xFFA0.
The	 Usage	 item	 (0x09)	 specifies	 the	 function	 of	 an	 individual	 report	 in	 a
Usage	 Page.	 For	 example,	 Usages	 available	 for	 generic	 desktop	 controls

include	mouse,	 joystick,	 and	keyboard.	Because	 the	 example’s	Usage	Page	 is
vendor-defined,	all	of	the	Usages	in	the	Usage	Page	are	vendor-defined	also.	In
the	example,	the	Usage	is	0x01.

Table	11-2:	The	HID	class	descriptor	specifies	the	length	of	the	report	descriptor.
Information	source:	Device	Class	Definition	 for	Human	Interface	Devices	 (HID)
Version	1.11.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes.

1 bDescriptorType 1 This	descriptor’s	type:	0x21	to	indicate	the	HID	class.

2 bcDllID 2 HID	specification	release	number	(BCD).

4 bCountryCode 1 Numeric	expression	identifying	the	country	for	localized
hardware	(BCD)	or	0x00.

5 bNumDescriptors 1 Number	of	subordinate	report	and	physical	descriptors.

6 bDescriptorType 1 The	type	of	a	class-specific	descriptor	that	follows.	A	report
descriptor	(required)	is	type	0x22.

7 wDescriptorLength 2 Total	length	of	the	descriptor	identified	above.

9 bDescriptorType 1 Optional.	The	type	of	a	class-specific	descriptor	that	follows.	A
physical	descriptor	is	type	0x23.

10 wDescriptorLength 2 Total	length	of	the	descriptor	identified	above.	Present	only	if
bDescriptorType	is	present	immediately	above.	May	be
followed	by	additional	wDescriptorType	and
wDescriptorLength	fields	to	identify	additional	physical
descriptors.

The	 Collection	 (Application)	 item	 (0xA1)	 begins	 a	 group	 of	 items	 that
together	perform	a	 single	 function,	 such	as	keyboard	or	mouse.	Each	 report
descriptor	must	have	an	application	collection.
The	Collection	contains	three	reports.	Each	report	has	these	items:

A	vendor-defined	Usage	applies	to	the	data	in	the	report.
A	Logical	Minimum	 and	Logical	Maximum	 specify	 the	 range	 of	 values
that	the	report	can	contain.	In	the	example,	the	values	can	range	from	zero
to	255.
The	Report	Size	 item	 indicates	how	many	bits	are	 in	each	reported	data
item.	In	the	example,	each	data	item	is	eight	bits.
The	 Report	 Count	 item	 indicates	 how	 many	 data	 items	 the	 report

contains.	In	the	example,	each	report	contains	two	data	items.
In	 the	 final	 item,	 the	 first	 byte	 specifies	 whether	 the	 report	 is	 an	 Input
report	(0x81),	Output	report	(0x91),	or	Feature	report	(0xB1).	The	second
byte	 contains	 additional	 information	 about	 the	 report	 data,	 such	 as
whether	the	values	are	relative	or	absolute.

An	End	Collection	item	(0xC0)	closes	the	Application	Collection.

UCHAR	report_descriptor[0x2F]	=

{

0x06,	0xA0,	0xFF, //	Usage	Page	(vendor-defined)

0x09,	0x01, //	Usage	(vendor-defined)

0xA1,	0x01, //	Collection	(Application)

0x09,	0x03, //	Usage	(vendor-defined)

0x15,	0x00, //	Logical	Minimum	(0)

0x26,	0xFF,	0x00, //	Logical	Maximum	(255)

0x75,	0x08, //	Report	Size	(8	bits)

0x95,	0x02, //	Report	Count	(2)

0x81,	0x02, //	Input	report	(Data,	Variable,	Absolute)

0x09,	0x04, //	Usage	(vendor-defined)

0x15,	0x00, //	Logical	Minimum	(0)

0x26,	0xFF,	0x00, //	Logical	Maximum	(255)

0x75,	0x08, //	Report	Size	(8	bits)

0x95,	0x02, //	Report	Count	(2)

0x91,	0x02, //	Output	report	(Data,	Variable,	Absolute)

0x09,	0x05, //	Usage	(vendor-defined)

0x15,	0x00, //	Logical	Minimum	(0)

0x26,	0xFF,	0x00, //	Logical	Maximum	(255)

0x75,	0x08, //	Report	Size	(8	bits)

0x95,	0x02, //	Report	Count	(2)

0xB1,	0x02, //	Feature	report	(Data,	Variable,	Absolute)

0xC0 //	End	Collection

}

Listing	11-2:	This	 report	descriptor	defines	 an	 Input	 report,	 an	Output	 report,
and	a	Feature	report.	Each	report	transfers	two	vendor-defined	bytes.

HID-specific	requests
The	 HID	 specification	 defines	 six	 requests	 (Table	 11-3)	 that	 transfer	 HID-
specific	data	in	control	transfers.

Table	 11-3:	 The	 HID	 class	 defines	 six	 control	 requests.	 Information	 source:
Device	Class	Definition	for	Human	Interface	Devices	(HID)	Version	1.11
Request
Number

Request Data
Source
(Data
stage)

wValue
(high	byte,
low	byte)

wIndex Data
Length
(bytes)
(wLength)

Data	Stage
Contents

Required?

0x01 Get	Report device report	type,
Report	ID

interface report
length

report yes

0x02 Get	Idle device 00h,	Report
ID

interface 0x0001 idle
duration

no

0x03 Get
Protocol

device 0x0000 interface 0x0001 protocol yes	for
HIDs	that
support	a
boot
protocol

0x09 Set	Report host report	type,
Report	ID

interface report
length

report no

0x0A Set	Idle no	Data
stage

idle
duration,
Report	ID

interface – – no	except
for
keyboards
using	the
boot
protocol

0x0B Set
Protocol

no	Data
stage

00h,
protocol

interface – – yes	for
HIDs	that
support	a
boot
protocol

Get	Report
Purpose:	 The	host	 requests	 an	 Input	 or	 Feature	 report	 from	 a	HID	using	 a
control	transfer.
Request	Number	(bRequest):	0x01
Source	of	Data:	device
Data	Length	(wLength):	length	of	the	report
Contents	 of	 wValue	 field:	 The	 high	 byte	 contains	 the	 report	 type	 (0x01	 =
Input,	0x03	=	Feature),	and	the	low	byte	contains	the	Report	ID.	The	default
Report	ID	is	0x00.
Contents	of	wIndex	field:	the	number	of	the	interface	the	request	is	directed

to.
Contents	of	data	packet	in	the	Data	stage:	the	report
Comments:	 The	 HID	 specification	 says	 that	 all	 HIDs	 must	 support	 this
request.	 A	 host	 may	 enumerate	 and	 communicate	 with	 a	 HID	 that	 doesn’t
support	 the	 request,	 but	 future	 editions	 of	 the	 OS	 might	 enforce	 the
requirement.	See	also	Set	Report.

Get	Idle
Purpose:	The	host	reads	the	current	Idle	rate	from	a	HID.
Request	Number	(bRequest):	0x02
Source	of	Data:	device
Data	Length	(wLength):	0x0001
Contents	of	wValue	field:	The	high	byte	 is	0x00.	The	 low	byte	 indicates	 the
Report	ID	the	request	applies	to.	If	the	low	byte	is	0x00,	the	request	applies	to
all	of	the	HID’s	Input	reports.
Contents	 of	 wIndex	 field:	 the	 number	 of	 the	 interface	 that	 supports	 this
request.
Contents	of	data	packet	in	the	Data	stage:	the	Idle	rate	expressed	in	units	of	4
ms.
Comments:	HIDs	aren’t	required	to	support	this	request.	See	Set	Idle	for	more
details.

Get	Protocol
Purpose:	 The	 host	 learns	 whether	 the	 boot	 or	 report	 protocol	 is	 currently
active	in	the	HID.
Request	Number	(bRequest):	0x03
Source	of	Data:	device
Data	Length	(wLength):	0x0001
Contents	of	wValue	field:	0x0000
Contents	 of	 wIndex	 field:	 the	 number	 of	 the	 interface	 that	 supports	 this
request.
Contents	 of	 data	 packet	 in	 the	 Data	 stage:	 the	 protocol	 (0x00	 =	 boot
protocol,	0x01	=	report	protocol).

Comments:	Boot	devices	must	support	this	request.	See	also	Set	Protocol.

Set	Report
Purpose:	The	host	sends	an	Output	or	Feature	report	to	a	HID	using	a	control
transfer.
Request	Number	(bRequest):	0x09
Source	of	Data:	host
Data	Length	(wLength):	length	of	the	report
Contents	 of	 wValue	 field:	 The	 high	 byte	 contains	 the	 report	 type	 (0x02	 =
Output,	0x03	=	Feature),	and	the	low	byte	contains	the	Report	ID.	The	default
Report	ID	is	0x00.
Contents	of	wIndex	field:	the	number	of	the	interface	the	request	is	directed
to.
Contents	of	data	packet	in	the	Data	stage:	the	report.
Comments:	If	a	HID	interface	doesn’t	have	an	Interrupt	OUT	endpoint	or	if
the	host	complies	only	with	version	1.0	of	the	HID	specification,	this	request	is
the	 only	 way	 the	 host	 can	 send	 data	 to	 the	 HID.	 HIDs	 aren’t	 required	 to
support	this	request.	See	also	Get	Report.

Set	Idle
Purpose:	 conserves	 bandwidth	 by	 limiting	 the	 reporting	 frequency	 of	 an
interrupt	IN	endpoint	when	the	data	hasn’t	changed	since	the	last	report.
Request	Number	(bRequest):	0x0A
Data	Length	(wLength):	0x0000
Contents	of	wValue	field:	The	high	byte	sets	the	duration,	or	the	maximum
amount	of	time	between	reports.	A	value	of	0x00	means	that	the	HID	will	send
a	 report	 only	 when	 the	 report	 data	 has	 changed	 or	 the	 duration	 time	 has
elapsed.	The	low	byte	indicates	the	Report	ID	that	the	request	applies	to.	If	the
low	byte	is	0x00,	the	request	applies	to	all	of	the	HID’s	Input	reports.
Contents	 of	 wIndex	 field:	 the	 number	 of	 the	 interface	 that	 supports	 this
request.
Comments:	The	duration	is	in	units	of	4	ms,	which	gives	a	range	of	4–1,020
ms.	No	matter	what	 the	duration	value,	 if	 the	 report	data	has	changed	since
the	last	Input	report	sent,	on	receiving	an	interrupt	IN	token	packet,	the	HID

sends	the	data.	If	the	data	hasn’t	changed	and	the	duration	time	hasn’t	elapsed
since	the	last	report,	the	HID	returns	NAK.	If	the	data	hasn’t	changed	and	the
duration	time	has	elapsed	since	the	last	report,	the	HID	sends	report	data.
A	duration	value	of	0x00	indicates	an	infinite	duration:	the	HID	sends	a	report
only	 if	 the	 report	 data	 has	 changed	 and	 otherwise	 returns	 NAK.	 On
enumerating	a	HID,	the	Windows	HID	driver	attempts	to	set	the	idle	rate	to
0x00.
HIDs	 aren’t	 required	 to	 support	 this	 request	 except	 for	 keyboards	using	 the
boot	 protocol.	Not	 all	 device	 controllers	 have	hardware	 support	 for	 the	 Idle
rate.	 Device	 firmware	 can	 support	 the	 feature	 with	 help	 from	 a	 hardware
timer.	A	HID	can	ignore	the	request	by	returning	STALL.	See	also	Get	Idle.

Set	Protocol
Purpose:	The	host	 specifies	whether	 the	HID	 should	use	 the	boot	 or	 report
protocol.
Request	Number	(bRequest):	0x0B
Data	Length	(wLength):	0x0000
Contents	 of	 wValue	 field:	 the	 protocol	 (0x0000	 =	 boot	 protocol,	 0x0001	 =
report	protocol).
Contents	 of	 wIndex	 field:	 the	 number	 of	 the	 interface	 that	 supports	 this
request.
Comments:	Boot	devices	must	support	this	request.	See	also	Get	Protocol.

Transferring	data
When	enumeration	is	complete,	the	host	has	identified	the	device	interface	as
a	HID,	established	pipes	with	the	interface’s	endpoints,	and	learned	the	report
formats	for	sending	and	receiving	data.
The	 host	 can	 then	 request	 reports	 using	 interrupt	 IN	 transfers	 and	 control
transfers	with	Get	Report	requests.	The	device	also	has	the	option	to	support
receiving	reports	using	interrupt	OUT	transfers	and	control	transfers	with	Set
Report	requests.

Writing	firmware
Many	device	vendors	provide	HID	examples.

Microchip	 provides	 HID	 example	 code	 for	 PIC	 microcontrollers	 for
Microchip’s	 compilers.	 The	 Microchip	 Libraries	 for	 Applications	 include
generic	 HID,	 mouse,	 and	 other	 HID	 examples.	 See	 janaxelson.com	 for	 a
generic	HID	example	that	supports	exchanging	reports	via	both	interrupt	and
control	 transfers.	Texas	 Instruments	 also	provides	HID	example	 code	 for	 its
MSP430	series.

Tools
Another	 option	 for	 users	 of	 Microchip	 device	 controllers	 is	 HIDmaker	 32
from	Trace	Systems,	Inc.	A	software	wizard	asks	questions	about	your	device
and	generates	firmware	to	implement	the	Input,	Output,	and	Feature	reports
you	 specify.	 The	 tool	 supports	 8-,	 16-,	 and	 32-bit	 controllers	 with	 a	 less
expensive	version	available	 for	8-bit	controllers	only.	The	tool	also	generates
PC	application	code	in	several	programming	languages.
The	HIDmaker	Test	Suite	includes	two	other	tools.	The	AnyHID	application
displays	 report	 descriptors	 and	 enables	 exchanging	 data	 with	 attached	 and
enumerated	 HIDs	 except	 system	 mice	 and	 keyboards.	 USBwatch	 is	 a	 low-
budget	USB	analyzer	for	HIDs.	To	use	the	analyzer,	you	add	the	provided	code
to	your	device	firmware	and	connect	the	device’s	asynchronous	serial	port	to	a
PC’s	serial	port	via	RS-232	or	a	USB/serial-port	adapter.	The	firmware	writes
debugging	 data	 to	 the	 serial	 port	 for	 display	 by	 the	 USBwatch	 application.
USBwatch	can	display	enumeration	and	application	data.	You	can	also	define
your	own	messages	for	firmware	to	send	at	locations	you	select	in	your	code.

http://www.janaxelson.com

12

Human	Interface	Devices:	Reports
Chapter	11	 introduced	 the	reports	 that	HIDs	use	 to	exchange	data.	A	report
can	be	a	basic	buffer	of	bytes	or	a	complex	assortment	of	items	with	assigned
functions	 and	units.	This	 chapter	 shows	how	 to	 create	 reports	 to	 fit	 specific
applications.

Report	structure
The	report	descriptor	provides	information	about	the	data	the	HID	sends	and
receives.	The	descriptor	 identifies	 the	 device’s	 function	 and	 can	 specify	 uses
and	units	 for	 the	 report	 data.	Controls	 and	data	 items	describe	 values	 to	 be
transferred	 in	 one	 or	 more	 reports.	 A	 control	 is	 a	 button,	 switch,	 or	 other
physical	entity	that	operates	or	regulates	an	aspect	of	a	device.	Everything	else
is	a	data	item.
For	 vendor-specific	 devices	 intended	 for	 use	 with	 a	 vendor-provided
application,	the	application	often	knows	in	advance	the	type,	size,	and	order	of
the	 data	 in	 a	 report	 so	 there’s	 no	 need	 to	 obtain	 this	 information	 from	 the
device.	 For	 example,	 when	 the	 vendor	 of	 a	 data-acquisition	 unit	 creates	 an
application	for	use	with	the	unit,	the	vendor	already	knows	the	data	format	the
device	uses	in	its	reports.	At	most,	the	application	might	check	the	Product	ID
and	 release	 number	 from	 the	 device	 descriptor	 to	 learn	 whether	 the
application	 can	 request	 a	 particular	 setting	 or	 action.	 For	 applications	 like
these,	 the	 host	 and	 device	 can	 exchange	 data	 in	 vendor-defined	 buffers
without	relying	on	the	report	descriptor	to	define	what	the	buffers	contain.
A	 tool	 that	can	help	 in	creating	and	debugging	report	descriptors	 is	 the	 free
RDD!	 HID	 Report	 Descriptor	 Decoder	 (sourceforge.net).	 From	 a	 command
line,	you	can	input	data	as	hexadecimal	strings	or	specify	a	 file	 that	contains
hexadecimal	 strings	 or	 binary	 data,	 and	 the	 tool	 decodes	 the	 data	 and
highlights	any	errors.	The	tool	can	also	generate	a	C	header	file	from	provided
data.	The	tool	requires	a	Rexx	interpreter,	available	free	from	multiple	sources.

http://sourceforge.net

The	 USB-IF	 provides	 a	 free	 HID	 Descriptor	 Tool	 for	 creating	 HID	 report
descriptors,	 but	 the	 tool	 hasn’t	 been	 updated	 for	many	 years	 and	 thus	 is	 of
limited	use.

Control	and	data	item	values
Several	documents	define	values	 that	 reports	may	contain.	The	 first	place	 to
look	 is	 the	 USB-IF’s	 HID	 Usage	 Tables,	 which	 defines	 values	 for	 generic
desktop	 controls,	 simulation	 controls,	 game	 controls,	 LEDs,	 buttons,
telephone	devices,	and	more.	Other	documents	that	define	values	are	the	main
HID	specification	and	the	HID	specifications	for	monitor,	power,	and	point-
of-sale	devices.

Item	format
The	 HID	 specification	 defines	 two	 report	 item	 types:	 short	 items	 and	 long
items.	As	of	HID	1.11,	there	are	no	defined	Long	items.
A	 Short	 item’s	 1-byte	 prefix	 specifies	 the	 item	 type,	 item	 tag,	 and	 item	 size.
These	are	the	elements	that	make	up	the	prefix	byte:

Bits Contents Description

1..0 Item	size Number	of	bytes	in	the	item

3..2 Item	type Item	scope:	Main,	Global,	or	Local

7..4 Item	tag Item	function

The	 item	size	specifies	how	many	data	bytes	 the	 item	contains.	Note	 that	an
item	size	of	11b	corresponds	to	4	data	bytes	(not	3):

Item	Size	(binary) Number	of	Data	Bytes

00 0

01 1

10 2

11 4

The	 item	 type	 specifies	 the	 scope	 of	 the	 item:	Main	 (00b),	 Global	 (01b),	 or
Local	 (10b).	This	 chapter	has	more	 information	about	 these	 item	 types.	The
item	tag	specifies	the	item’s	function.

The	Main	item	type
A	Main	item	defines	or	groups	data	items	within	a	report	descriptor.	There	are
five	Main	item	types.	Input,	Output,	and	Feature	items	each	define	fields	in	a
type	of	report.	Collection	and	End	Collection	items	group	related	items	within
a	report.	The	default	value	for	all	Main	items	is	zero.

Input,	Output,	and	Feature	items
Table	12-1	shows	supported	values	for	Input,	Output,	and	Feature	items.	Each
item	has	a	1-byte	prefix	followed	by	one	or	two	bytes	that	describe	the	report
data.
An	 Input	 item	 applies	 to	 data	 a	 device	 sends	 to	 the	 host.	 An	 Input	 report
contains	one	or	more	Input	items.	The	host	uses	interrupt	IN	transfers	or	Get
Report	requests	to	request	Input	reports.
An	Output	item	applies	to	data	the	host	sends	to	the	device.	An	Output	report
contains	 one	 or	 more	 Output	 items.	 Hosts	 can	 send	 Output	 reports	 using
interrupt	OUT	transfers	and	Set	Report	requests.
A	Feature	report	contains	one	or	more	Feature	items.	A	Feature	report’s	data
can	 travel	 in	either	direction.	Feature	 reports	 typically	 contain	configuration
settings	that	affect	the	overall	behavior	of	the	device	or	one	of	its	components.
For	example,	the	host	may	have	a	virtual	(on-screen)	control	panel	to	enable
users	to	select	and	control	a	device’s	settings.	The	host	uses	control	transfers
with	Set	Report	and	Get	Report	requests	to	send	and	receive	Feature	reports.
Following	 each	 Input,	 Output,	 or	 Feature	 item	 prefix	 are	 up	 to	 9	 bits	 that
describe	 the	 item’s	data.	 (An	additional	23	bits	are	 reserved.)	An	 Input	 item
prefix	followed	by	8	bits	of	item	data	has	the	value	0x81.	The	high	four	bits	are
set	 to	 0x8	 to	 indicate	 an	 Input	 item,	 and	 the	 low	 four	 bits	 are	 set	 to	 0x1	 to
indicate	that	the	item	data	uses	1	byte.	An	Input	item	prefix	followed	by	9	bits
of	data	has	the	value	0x82,	with	the	low	four	bits	set	to	0x2	to	indicate	that	the
item	data	uses	2	bytes.

Table	 12-1:	 The	 bits	 that	 follow	 Input,	 Output,	 and	 Feature	 Item	 prefixes
describe	 the	 data	 in	 a	 report.	 Information	 source:	 Device	 Class	 Definition	 for
Human	Interface	Devices	(HID)	Version	1.11.
Prefix Item	Data

Bit	Number Meaning	if	bit	=	0 Meaning	if	bit	=	1

Input	(100000nn,	where
nn=the	number	of	bytes
in	the	data	following	the
prefix)
For	example,	use	0x81
for	1	byte	of	item	data.
Use	0x82	for	2	bytes	of
item	data.

0 Data Constant

1 Array Variable

2 Absolute Relative

3 No	wrap Wrap

4 Linear Non-linear

5 Preferred	state No	preferred	state

6 No	null	position Null	state

7 Reserved

8 Bit	field	Buffered	bytes

9-31 Reserved

Output	(100100nn,
where	nn=the	number	of
bytes	in	the	data
following	the	prefix)
For	example,	use	0x91
for	1	byte	of	item	data.
Use	0x92	for	2	bytes	of
item	data.

0 Data Constant

1 Array Variable

2 Absolute Relative

3 No	wrap Wrap

4 Linear Non-linear

5 Preferred	state No	preferred	state

6 No	null	position Null	state

7 Non-volatile Volatile

8 Bit	field Buffered	bytes

9-31 Reserved

Feature	(101100nn,
where	nn=the	number	of
bytes	in	the	data
following	the	prefix)	For
example,	use	0xB1	for	1
byte	of	item	data.	Use
0xB2	for	2	bytes	of	item
data.

0 Data Constant

1 Array Variable

2 Absolute Relative

3 No	wrap Wrap

4 Linear Non-linear

5 Preferred	state No	preferred	state

6 No	null	position Null	state

7 Non-volatile Volatile

8 Bit	field Buffered	bytes

9-31 Reserved

The	bit	 functions	 are	 the	 same	 for	 Input,	Output,	 and	Feature	 items,	 except
that	Input	items	don’t	support	the	volatile/non-volatile	bit.	These	are	the	uses

for	each	bit:
Data	 |	 Constant.	 Data	 means	 that	 the	 contents	 of	 the	 item	 are	 modifiable
(read/write).	Constant	means	the	contents	are	not	modifiable	(read-only).
Array	|	Variable.	This	bit	specifies	whether	the	data	reports	the	state	of	every
control	 (Variable)	 or	 just	 reports	 the	 states	 of	 controls	 that	 are	 asserted,	 or
active	(Array).	Reporting	only	the	asserted	controls	results	in	a	more	compact
report	for	devices	such	as	keyboards	that	have	many	controls	(keys)	but	where
only	one	or	a	few	controls	are	asserted	at	the	same	time.
For	 example,	 if	 a	 keypad	 has	 eight	 keys,	 setting	 this	 bit	 to	 Variable	 would
mean	that	the	keypad’s	report	would	contain	a	bit	for	each	key.	In	the	report
descriptor,	the	report	size	would	be	one	bit,	the	report	count	would	be	eight,
and	the	total	amount	of	data	sent	would	be	eight	bits.	Setting	the	bit	to	Array
would	 mean	 that	 each	 key	 has	 an	 assigned	 index,	 and	 the	 keypad’s	 report
would	contain	only	the	indexes	of	keys	that	are	pressed.	With	eight	keys,	the
report	size	would	be	three	bits,	which	can	report	a	key	number	in	the	range	0–
7.	 The	 report	 count	 would	 equal	 the	 maximum	 number	 of	 simultaneous
keypresses	that	could	be	reported.	If	the	user	can	press	only	one	key	at	a	time,
the	report	count	would	be	1	and	the	total	amount	of	data	sent	would	be	just	3
bits.	If	the	user	can	press	all	of	the	keys	at	once,	the	report	count	would	be	8
and	the	total	amount	of	data	sent	would	be	24	bits.
An	out-of-range	value	 reported	 for	 an	Array	 item	 indicates	 that	no	 controls
are	asserted.
Absolute	 |	 Relative.	 Absolute	 means	 the	 value	 is	 based	 on	 a	 fixed	 origin.
Relative	 means	 the	 data	 indicates	 the	 change	 from	 the	 previous	 reading.	 A
joystick	normally	reports	absolute	data	(the	joystick’s	current	position),	while
a	mouse	 reports	 relative	 data	 (how	 far	 the	mouse	 has	moved	 since	 the	 last
report).
No	Wrap	|	Wrap.	Wrap	indicates	that	the	value	rolls	over	to	the	minimum	if
the	value	continues	to	increment	after	reaching	its	maximum	and	rolls	over	to
the	maximum	if	the	value	continues	to	decrement	after	reaching	its	minimum.
An	item	specified	as	No	Wrap	that	exceeds	 the	specified	 limits	may	report	a
value	outside	the	limits.	This	bit	doesn’t	apply	to	Array	data.
Linear	|	Non-linear.	Linear	indicates	that	the	measured	data	and	the	reported
value	have	a	 linear	relationship.	In	other	words,	a	graph	of	the	reported	data
and	 the	property	being	measured	 forms	a	 straight	 line.	 In	non-linear	data,	 a

graph	of	 the	 reported	data	 and	 the	 property	 being	measured	 forms	 a	 curve.
This	bit	doesn’t	apply	to	Array	data.
Preferred	State	|	No	Preferred	State.	Preferred	state	indicates	that	the	control
will	 return	 to	 a	 particular	 state	 when	 the	 user	 isn’t	 interacting	 with	 it.	 A
momentary	 pushbutton	 has	 a	 preferred	 state	 (not	 pushed,	 or	 out)	 when	 no
one	is	pressing	the	button.	A	toggle	switch	has	no	preferred	state	and	remains
in	the	last	state	selected	by	a	user.	This	bit	doesn’t	apply	to	Array	data.
No	Null	Position	|	Null	State.	Null	state	indicates	that	the	control	supports	a
state	where	the	control	isn’t	sending	meaningful	data.	A	control	indicates	that
it’s	in	the	null	state	by	sending	a	value	outside	the	range	defined	by	its	Logical
Minimum	 and	 Logical	Maximum.	No	Null	 Position	 indicates	 that	 any	 data
sent	by	the	control	is	meaningful	data.	A	hat	switch	on	a	joystick	is	in	a	null
position	when	it	isn’t	being	pressed.	This	bit	doesn’t	apply	to	Array	data.
Non-volatile	 |	Volatile.	The	Volatile	bit	 applies	only	 to	Output	 and	Feature
report	 data.	 Volatile	 means	 the	 device	 may	 change	 the	 value	 on	 its	 own,
without	host	interaction,	and	also	when	the	host	sends	a	report	requesting	to
change	 the	value.	For	example,	users	might	 request	 to	change	 the	value	of	 a
control	by	pressing	a	button	on	the	device	or	by	clicking	a	button	on	a	virtual
control	 panel	 to	 cause	 the	 host	 to	 send	 a	 report	 to	 the	 device.	Non-volatile
means	 that	 the	device	 changes	 the	 value	 only	when	 the	host	 requests	 a	new
value	in	a	report.
When	the	host	is	sending	a	report	and	doesn’t	want	to	change	a	volatile	item,
the	 value	 to	 assign	 to	 the	 item	 depends	 on	 whether	 the	 data	 is	 defined	 as
relative	or	absolute.	If	a	volatile	item	is	defined	as	relative,	a	report	that	assigns
a	 value	 of	 zero	 should	 result	 in	 no	 change.	 If	 a	 volatile	 item	 is	 defined	 as
absolute,	 a	 report	 that	 assigns	 an	 out-of-range	 value	 should	 result	 in	 no
change.	This	bit	doesn’t	apply	to	Array	data.
Bit	Field	|	Buffered	Bytes.	Bit	Field	means	that	each	bit	or	a	group	of	bits	in	a
byte	can	represent	a	separate	piece	of	data.	Buffered	Bytes	means	that	the	data
consists	 of	 one	 or	more	 byte-wide	 values.	 The	 report	 size	 for	 Buffered	 Byte
items	must	be	eight.	This	bit	doesn’t	apply	to	Array	data.	Note	that	this	bit	is
bit	8	in	the	item’s	data	so	setting	this	bit	requires	two	bytes	of	item	data.

Collections
All	 report	 types	 use	 Collection	 and	 End	 Collection	 items	 to	 group	 related
items.	 Following	 each	 Collection	 item	 (0xA1)	 in	 the	 report	 descriptor	 is	 a

value	indicating	the	collection	type	(Table	12-2).	The	End	Collection	item	is	a
single	byte	(0xC0).
All	 report	 items	 must	 be	 in	 an	 application	 collection.	 Use	 of	 the	 other
collection	types	is	optional.	All	Main	items	between	a	Collection	item	and	its
End	Collection	 item	 are	 part	 of	 the	 collection.	 Each	 collection	must	 have	 a
Usage	tag	(described	below).	Collections	can	be	nested.

Table	12-2:	Data	values	for	the	Collection	and	End	Collection	Main	Item	Tags.
Information	source:	Device	Class	Definition	 for	Human	Interface	Devices	 (HID)
Version	1.11.
Value Type Description

0x00 Physical Data	at	a	single	geometric	point.

0x01 Application Items	that	have	a	common	purpose	or	carry	out	a
function.

0x02 Logical Items	that	describe	a	data	structure.

0x03 Report Wraps	the	fields	in	a	report.

0x04 Named	array Array	of	selector	usages.

0x05 Usage	switch Modifies	the	purpose	or	function	of	Usages	in	a
collection.

0x06 Usage	modifier Modifies	the	purpose	or	function	of	a	Usage.

0x07–0x7F Reserved –

0x80–0xFF Vendor	defined –

A	top-level	collection	is	a	collection	that	isn’t	nested	within	another	collection.
A	HID	interface	can	have	multiple	top-level	application	collections	with	each
representing	 a	 different	 HID	 function.	 For	 example,	 a	 keyboard	 with	 an
embedded	pointing	device	can	have	a	single	HID	interface	with	two	top-level
collections,	 one	 for	 the	pointing	device’s	 reports	 and	one	 for	 the	 keyboard’s
reports.	Unlike	HIDs	in	separate	interfaces	in	a	composite	device,	these	HID
functions	share	interrupt	endpoints.

The	Global	item	type
Global	 items	 identify	 reports	 and	 describe	 the	 data	 in	 them,	 including
characteristics	 such	as	 the	data’s	 function,	maximum	and	minimum	allowed
values,	and	the	size	and	number	of	report	items.	A	Global	item	tag	applies	to

every	item	that	follows	until	the	next	Global	item	tag.	Thus	a	report	descriptor
doesn’t	 have	 to	 repeat	 values	 that	 don’t	 change	 from	 one	 item	 to	 the	 next.
Table	12-3	shows	the	defined	Global	items.

Identifying	the	report
Report	ID.	A	HID	can	 support	multiple	 reports	of	 the	 same	 type	with	 each
report	having	its	own	Report	ID	and	contents.	This	way,	each	report	doesn’t
have	to	include	every	piece	of	data.	Multiple	reports	are	especially	useful	if	the
receiver	of	the	data	doesn’t	need	frequent	updates	for	all	of	the	data.
In	the	report	descriptor,	a	Report	ID	item	applies	to	all	items	that	follow	until
the	next	Report	ID.	If	there	is	no	Report	ID	item,	the	report	uses	the	default
ID	of	0x00.	A	descriptor	should	not	declare	a	Report	ID	of	0x00.	Report	IDs
are	specific	to	each	report	type,	so	a	HID	can	have	one	report	of	each	type	with
the	default	Report	ID.

Table	 12-3:	There	 are	 twelve	 defined	Global	 items.	 Information	 source:	Device
Class	Definition	for	Human	Interface	Devices	(HID)	Version	1.11.
Item	Type Value	(nn	=	the	number	of

bytes	that	follow)	(binary)
Description

Usage	Page 000001nn Specifies	the	data’s	usage	or	function.

Logical	Minimum 000101nn Smallest	value	that	an	item	will	report.

Logical	Maximum 001001nn Largest	value	that	an	item	will	report.

Physical	Minimum 001101nn The	logical	minimum	expressed	in
physical	units.

Physical	Maximum 010001nn The	logical	maximum	expressed	in
physical	units.

Unit	exponent 010101nn Base	10	exponent	of	units.

Unit 011001nn Unit	values.

Report	Size 011101nn Size	of	an	item’s	fields	in	bits.

Report	ID 100001nn Prefix	that	identifies	a	report.

Report	Count 100101nn The	number	of	data	fields	for	an	item.

Push 101001nn Places	a	copy	of	the	global	item	state
table	on	the	stack.

Pop 101101nn Replaces	the	item	state	table	with	the	last
structure	pushed	onto	the	stack.

Reserved 110001nn–111101nn For	future	use.

However,	if	one	report	type	uses	multiple	Report	IDs,	every	report	in	the	HID
must	have	a	declared	Report	ID.	For	example,	if	a	descriptor	declares	Report
IDs	0x01	and	0x02	for	Feature	reports,	any	Input	or	Output	reports	must	also
have	a	Report	ID	greater	than	0x00.
In	a	transfer	that	uses	a	Set	Report	or	Get	Report	request,	the	host	specifies	a
Report	ID	in	the	Setup	transaction	in	the	low	byte	of	the	wValue	field.	In	an
interrupt	 transfer,	 if	 the	 interface	 supports	 more	 than	 one	 Report	 ID,	 the
Report	ID	precedes	the	report	data	on	the	bus.	If	 the	interface	supports	only
the	 default	 Report	 ID	 of	 0x00,	 in	 interrupt	 transfers,	 the	 Report	 ID	 doesn’t
travel	on	the	bus	with	the	report	data.
For	 Windows	 applications,	 the	 report	 buffer	 provided	 to	 an	 API	 function
must	be	large	enough	to	hold	the	report	plus	one	byte	for	the	Report	ID	even	if
using	 only	 Report	 ID	 0x00.	When	 a	HID	 supports	multiple	 Report	 IDs	 for
Input	reports	of	different	sizes,	the	Windows	HID	driver	requires	applications
to	pass	a	buffer	large	enough	to	hold	the	longest	report.
When	 a	HID	 supports	multiple	 reports	 of	 the	 same	 type	 and	 different	 sizes
and	 the	HID	 is	 sending	 a	 report	whose	 data	 is	 a	multiple	 of	 the	 endpoint’s
maximum	packet	size,	for	all	but	the	HID’s	longest	report,	the	HID	indicates
the	end	of	the	report	by	sending	a	ZLP.
For	 interrupt	 transfers	 that	 retrieve	 Input	 reports	 from	HIDs	with	multiple
Input	Report	IDs,	the	host’s	driver	has	no	way	to	request	a	specific	report	from
the	device.	The	device	firmware	decides	which	report	to	place	in	the	endpoint
buffer	 to	 send	 to	 the	 host.	 At	 the	 host,	 the	 HID	 driver	 stores	 the	 received
Report	ID	and	report	data.

Describing	the	data’s	use
The	Global	items	that	describe	the	data	and	how	to	use	it	are	the	Usage	Page,
Logical	Minimum	 and	Maximum,	 Physical	Minimum	 and	Maximum,	Unit,
and	 Unit	 Exponent.	 Each	 of	 these	 items	 helps	 the	 receiver	 of	 the	 report
interpret	the	report’s	data.	All	but	the	Usage	Page	are	involved	with	converting
raw	report	data	to	values	with	units	attached.	The	items	make	it	possible	for	a
report	 to	contain	data	 in	a	more	compact	 form	with	 the	receiver	of	 the	data
responsible	for	converting	the	data	to	meaningful	values.
Usage	Page.	An	item’s	Usage	is	a	32-bit	value	that	identifies	a	function	that	a
device	performs.	A	Usage	contains	two	values:	the	upper	16	bits	are	a	Global
Usage	Page	item	and	the	lower	16	bits	are	a	Local	Usage	item.	The	value	in	the

Local	Usage	item	is	a	Usage	ID.	The	term	Usage	can	refer	to	either	the	32-bit
value	or	 the	 16-bit	 Local	 value.	To	prevent	 confusion,	 some	 sources	use	 the
term	Extended	Usage	to	refer	to	the	32-bit	value.	Microsoft	defines	a	USAGE
type	that	is	a	16-bit	value	that	can	contain	a	Usage	Page	or	a	Usage	ID.
Multiple	items	can	share	a	Usage	Page	while	having	different	Usage	IDs.	After
a	Usage	Page	appears	in	a	report,	all	Usage	IDs	that	follow	are	in	that	Usage
Page	until	the	descriptor	declares	a	new	Usage	Page.
The	HID	Usage	Tables	document	defines	many	Usage	Pages.	There	are	Usage
Pages	 for	 common	 device	 types	 including	 generic	 desktop	 controls	 (mouse,
keyboard,	 joystick),	 digitizer,	 barcode	 scanner,	 camera	 control,	 and	 various
game	controls.	A	vendor	can	define	Usage	Pages	using	values	from	0xFF00	to
0xFFFF.
Logical	 Minimum	 and	 Logical	 Maximum.	 The	 Logical	 Minimum	 and
Logical	Maximum	define	 limits	 for	reported	values.	The	 limits	are	expressed
in	 logical	units,	which	means	 that	 they	use	 the	same	units	as	 the	values	 they
apply	to.	For	example,	if	a	device	reports	values	of	up	to	500	mA	in	units	of	2
mA,	the	Logical	Maximum	is	250.
If	the	most	significant	bit	of	the	highest	byte	is	1,	the	value	is	negative	and	is
expressed	 as	 a	 two’s	 complement.	 (To	 express	 a	 negative	 value	 as	 a	 two’s
complement,	complement	each	bit	and	add	1	to	the	result.	Perform	the	same
operations	 to	obtain	 the	negative	value	represented	by	a	 two’s	complement.)
Using	1-byte	values,	0x00	 to	0x7F	represent	 the	decimal	values	zero	 through
+127,	and	0xFF	to	0x80	represent	the	decimal	values	-1	through	-128.
The	 HID	 specification	 says	 that	 if	 both	 the	 Logical	 Minimum	 and	 Logical
Maximum	are	considered	positive,	there’s	no	need	for	a	sign	bit.	To	be	safe,	if
the	desired	result	is	a	minimum	of	zero	and	a	maximum	of	255,	you	can	use	a
2-byte	value	for	the	maximum:
0x15,	0x00,	//	Logical	Minimum

0x26,	0xFF,	0x00,	//	Logical	Maximum

Note	 that	 the	Logical	Maximum	 item	 tag	 is	0x26	 (not	0x25)	 to	 indicate	 that
the	data	 that	 follows	 the	 tag	 is	 two	bytes.	Because	 the	most-significant	bit	of
the	Logical	Maximum	is	zero,	the	value	is	positive.

Converting	units
The	Physical	Minimum,	Physical	Maximum,	Unit	Exponent,	and	Unit	 items

define	how	to	convert	reported	values	into	more	meaningful	units.
Physical	 Minimum	 and	 Physical	 Maximum.	 The	 Physical	 Minimum	 and
Physical	Maximum	define	 the	 limits	 for	a	value	when	expressed	 in	 the	units
defined	by	the	Units	tag.	In	the	earlier	example	of	values	of	zero	through	250
in	units	of	2	mA,	the	Physical	Minimum	is	zero	and	the	Physical	Maximum	is
500.	The	receiving	device	uses	 the	 logical	and	physical	 limit	values	 to	obtain
the	value	in	the	desired	units.	In	the	example,	reporting	the	data	in	units	of	2
mA	means	that	the	value	can	transfer	in	a	single	byte,	with	the	receiver	of	the
data	using	 the	Physical	Minimum	and	Maximum	values	 to	 translate	 to	mA.
The	price	 is	 a	 loss	 in	 resolution,	 compared	 to	 reporting	1	bit	per	mA.	 If	 the
report	 descriptor	 doesn’t	 specify	 these	 items,	 they	 default	 to	 the	 Logical
Minimum	and	Logical	Maximum.
Unit	Exponent.	The	Unit	Exponent	specifies	what	power	of	10	to	apply	to	the
value	obtained	after	using	the	logical	and	physical	limits	to	convert	the	value
into	the	desired	units.	The	USB	2.0	specification	is	unclear	as	to	whether	the
exponent	is	limited	to	four	bits,	but	common	usage	assumes	this	limit.	A	value
of	zero	causes	the	value	to	be	multiplied	by	100,	which	is	the	same	as	applying
no	exponent.	These	are	the	codes:

Exponent 0 1 2 3 4 5 6 7 –8 –7 –6 –5 –4 –3 –2 –1

Code	(hex) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

For	example,	if	the	value	obtained	is	1234	and	the	Unit	Exponent	is	0x0E,	the
final	value	is	12.34.
Unit.	The	Unit	 tag	 specifies	what	units	 to	 apply	 to	 the	 report	 data	 after	 the
value	 is	 converted	 using	 the	 Physical	 and	 Unit	 Exponent	 items.	 The	 HID
specification	 defines	 codes	 for	 the	 basic	 units	 of	 length,	 mass,	 time,
temperature,	current,	and	luminous	intensity.	Most	other	units	can	be	derived
from	these.
Specifying	a	Unit	value	can	be	more	complicated	than	you	might	expect.	Table
12-4	 shows	 values	 to	work	 from.	A	 value	 can	 be	 as	 long	 as	 four	 bytes,	with
each	nibble	having	a	defined	 function.	Nibble	0	 (the	 least	 significant	nibble)
specifies	 the	measurement	system,	either	English	or	SI	 (International	System
of	Units)	and	whether	the	measurement	is	in	linear	or	angular	units.	Each	of
the	nibbles	 that	 follow	represents	a	quality	 to	be	measured	with	 the	value	of
the	 nibble	 representing	 the	 exponent	 to	 apply	 to	 the	 value.	 For	 example,	 a

nibble	 with	 a	 value	 of	 0x2	 means	 that	 the	 corresponding	 value	 is	 in	 units
squared.	A	 nibble	with	 a	 value	 of	 0xD,	which	 represents	 -3,	means	 that	 the
units	 are	 expressed	 as	 1/units3.	 These	 exponents	 are	 distinct	 from	 the	 Unit
Exponent	 value,	which	 is	 a	 power	of	 ten	 applied	 to	 the	data,	 rather	 than	 an
exponent	applied	to	the	units.
Note	 that	 the	 basic	 SI	 units	 for	 length	 and	 temperature	 are	 meters	 and
kilograms,	but	the	HID	specification	uses	centimeters	and	grams	as	basic	units
for	the	Unit	tag.

Converting	raw	data
To	 convert	 raw	data	 to	 values	with	 units	 attached,	 three	 things	must	 occur.
The	firmware’s	report	descriptor	must	contain	the	information	needed	for	the
conversion.	The	sender	must	provide	data	that	matches	the	report	descriptor’s
specifications.	 And	 the	 receiver	 of	 the	 data	 must	 apply	 the	 conversions
specified	in	the	report	descriptor.
Below	are	examples	of	descriptors	and	raw	and	converted	data.	Just	because	a
tag	 exists	 in	 the	 HID	 specification	 doesn’t	 mean	 you	 have	 to	 use	 it.	 If	 the
application	 knows	what	 format	 and	 units	 to	 use	 for	 the	 values	 it’s	 going	 to
send	or	receive,	the	firmware	doesn’t	have	to	specify	these	items.
To	specify	time	in	seconds,	up	to	a	minute,	the	report	descriptor	might	include
this	information:

Logical	Minimum:	0x00
Logical	Maximum:	0x3C	(60)
Physical	Minimum:	0x00
Physical	Maximum:	0x3C	(60)
Unit:	0x1003.	Nibble	0	=	3	to	select	the	English	Linear	measuring	system
(though	in	this	case,	any	value	from	1	to	4	would	work).	Nibble	3	=	1	to
select	time	in	seconds.
Unit	Exponent:	0x00

Table	12-4:	The	units	to	apply	to	a	reported	value	are	a	function	of	the	measuring
system	 and	 exponent	 values	 specified	 in	 the	 Unit	 item.	 Information	 source:
Device	Class	Definition	for	Human	Interface	Devices	(HID)	Version	1.11.
Nibble
Number

Quality
Measured

Measuring	System	(Nibble	0	value)

None	(0x0) SI	Linear
(0x01)

SI	Rotation
(0x2)

English
Linear	(0x3)

English
Rotation

(0x4)

1 Length None Centimeter Radian Inch Degree

2 Mass None Gram Slug

3 Time None Second

4 Temperature None Kelvin Fahrenheit

5 Current None Ampere

6 Luminous
Intensity

None Candela

7 Reserved None

With	this	information,	the	receiver	knows	that	the	value	sent	equals	a	number
of	seconds.
To	 specify	 time	 in	 tenths	 of	 seconds	 up	 to	 a	 minute,	 increase	 the	 Logical
Maximum	and	Physical	Maximum	and	change	the	Unit	Exponent:

Logical	Minimum:	0x00
Logical	Maximum:	0x0258	(600)
Physical	Minimum:	0x00
Physical	Maximum:	0x0258	(600)
Unit:	0x1003.	Nibble	0	=	3	to	select	the	English	Linear	measuring	system.
Nibble	3	=	1	to	select	time	in	seconds.
Unit	 Exponent:	 0x0F.	This	 represents	 an	 exponent	 of	 -1	 to	 indicate	 that
the	value	is	expressed	in	tenths	of	seconds	rather	than	seconds.

Sending	values	as	large	as	600	requires	2	bytes,	which	the	firmware	specifies	in
the	Report	Size	tag.
To	 send	a	 temperature	 value	using	one	byte	 to	 represent	 temperatures	 from
-20	to	110°F,	the	report	descriptor	might	contain	the	following:

Logical	Minimum:	 0x80	 (-128	 decimal	 expressed	 as	 a	 hexadecimal	 two’s
complement)
Logical	Maximum:	0x7F	(127	decimal)
Physical	 Minimum:	 0xEC	 (-20	 expressed	 as	 a	 hexadecimal	 two’s
complement)
Physical	Maximum:	0x6E	(110	decimal)
Unit:	0x10003.	Nibble	0	=	3	to	select	the	English	Linear	measuring	system.
Nibble	4	=	1	to	select	degrees	Fahrenheit.
Unit	Exponent:	0x00

These	 values	 ensure	 the	 highest	 possible	 resolution	 for	 a	 single-byte	 report
item,	because	the	transmitted	values	can	span	the	full	range	from	0	to	255.
In	 this	 case	 the	 logical	 and	 physical	 limits	 differ,	 so	 converting	 is	 required.
This	 function	 accepts	 decimal	 values	 and	 returns	 the	 number	 of	 bits	 per
logical	unit:
private	Single	BitsPerLogicalUnit

(Int32	logical_maximum,

Int32	logical_minimum,

Int32	physical_maximum,

Int32	physical_minimum,

Int32	unit_exponent)

{

Single	calculatedBitsPerLogicalUnit	=	Convert.ToSingle

((logical_maximum	-	logical_minimum)	/

((physical_maximum	-	physical_minimum)	*

(Math.Pow(10,	unit_exponent))));

return	calculatedBitsPerLogicalUnit;

}

With	the	example	values,	the	resolution	is	1.96	bits	per	degree,	or	0.51	degree
per	bit.
This	function	converts	a	logical	value	to	the	specified	physical	units:
private	Single	ValueInPhysicalUnits

(Int32	value,

Int32	logical_maximum,

Int32	logical_minimum,

Int32	physical_maximum,

Int32	physical_minimum,

Int32	unit_exponent)

{

Single	calculatedValueInPhysicalUnits	=	Convert.ToSingle

(value	*

((physical_maximum	-	physical_minimum)	*

(Math.Pow(10,	unit_exponent)))	/

(logical_maximum	-	logical_minimum));

return	calculatedValueInPhysicalUnits;

}

If	 the	 value	 in	 logical	 units	 (the	 raw	 data)	 is	 63,	 the	 converted	 value	 in	 the
specified	units	is	32°	F.

Describing	the	data’s	size	and	format
Two	Global	items	describe	the	size	and	format	of	the	report	data.
Report	Size	specifies	the	size	in	bits	of	a	field	in	an	Input,	Output,	or	Feature
item.	Each	field	contains	one	piece	of	data.
Report	Count	 specifies	 how	many	 fields	 an	 Input,	Output,	 or	 Feature	 item
contains.

For	example,	 if	 a	 report	has	 two	8-bit	 fields,	Report	Size	 is	0x08	and	Report
Count	is	0x02.	If	a	report	has	one	16-bit	field,	Report	Size	is	0x10	and	Report
Count	is	0x01.
A	 single	 Input,	 Output,	 or	 Feature	 report	 can	 contain	multiple	 items,	 each
with	its	own	Report	Size	and	Report	Count.

Saving	and	restoring	Global	items
The	 final	 two	Global	 items	enable	 saving	and	 restoring	 sets	of	Global	 items.
These	items	allow	flexible	report	formats	while	using	minimum	storage	space
in	the	device.
Push	 places	 a	 copy	 of	 the	 Global-item	 state	 table	 on	 the	 CPU’s	 stack.	 The
Global-item	state	table	contains	the	current	settings	for	all	previously	defined
Global	items.
Pop	is	the	complement	to	Push	and	restores	the	saved	states	of	the	previously
pushed	Global	item	states.

The	Local	item	type
Local	items	specify	qualities	of	the	controls	and	data	items	in	a	report.	A	Local
item’s	 value	 applies	 to	 all	 items	 that	 follow	 within	 a	 Main	 item	 until	 the
descriptor	assigns	a	new	value.	Local	items	don’t	carry	over	to	the	next	Main
item;	each	Main	item	begins	fresh	with	no	Local	items	defined.
Local	 items	 relate	 to	 general	 usages,	 body-part	 designators,	 and	 strings.	 A
Delimiter	 item	 enables	 grouping	 sets	 of	 Local	 items.	 Table	 12-5	 shows	 the
values	and	meaning	of	each	of	the	items.
Usage.	 The	 Local	Usage	 item	 is	 the	Usage	 ID	 that	 works	 together	 with	 the
Global	Usage	Page	to	describe	the	function	of	a	control,	data,	or	collection.
The	 HID	 Usage	 Tables	 document	 lists	 many	 Usage	 IDs.	 For	 example,	 the
Buttons	Usage	Page	uses	Local	Usage	IDs	from	0x0001	to	0xFFFF	to	identify
which	 button	 in	 a	 set	 is	 pressed,	 with	 a	 value	 of	 zero	 meaning	 no	 button
pressed.
If	a	single	Usage	precedes	a	series	of	controls	or	data	items,	that	Usage	applies
to	all	of	the	controls	or	data	items.	If	multiple	Usages	precede	controls	or	data
items	and	the	number	of	controls	or	data	items	equals	the	number	of	Usages,
each	 Usage	 applies	 to	 one	 control	 or	 data	 item,	 with	 the	 Usages	 and	 the

controls	or	data	items	pairing	up	in	sequence.

Table	12-5:	Local	 items	can	provide	information	about	Usages,	body	parts,	and
strings.	Information	source:	Device	Class	Definition	for	Human	Interface	Devices
(HID)	Version	1.11.
Local	Item	Type Value	(nn	=	the	number	of

item	bytes	that	follow)
(binary)

Description

Usage 000010nn The	use	for	an	item	or	collection.

Usage	Minimum 000110nn The	starting	Usage	associated	with	the
elements	in	an	array	or	bitmap.

Usage	Maximum 001010nn The	ending	Usage	associated	with	the
elements	in	an	array	or	bitmap.

Designator	Index 001110nn A	Designator	value	in	a	physical
descriptor.	Indicates	what	body	part
applies	to	a	control.

Designator	Minimum 010010nn The	starting	Designator	associated	with
the	elements	in	an	array	or	bitmap.

Designator	Maximum 010110nn The	ending	Designator	associated	with
the	elements	in	an	array	or	bitmap.

String	Index 011110nn Associates	a	string	with	an	item	or
control.

String	Minimum 100010nn The	first	string	index	when	assigning	a
group	of	sequential	strings	to	controls	in
an	array	or	bitmap.

String	Maximum 100110nn The	last	string	index	when	assigning	a
group	of	sequential	strings	to	controls	in
an	array	or	bitmap.

Delimiter 101010nn The	beginning	(1)	or	end	(0)	of	a	set	of
Local	items.

Reserved 101011nn	to	111110nn For	future	use.

In	this	example,	the	report	contains	two	bytes.	The	first	byte’s	Usage	is	X,	and
the	second	byte’s	Usage	is	Y.
Usage	(X),

Usage	(Y),

Report	Count	(0x02),

Report	Size	(0x08),

Input	(Data,	Variable,	Absolute),

If	multiple	Usages	preceded	a	series	of	controls	or	data	items	and	the	number
of	 controls	 or	 data	 items	 is	 greater	 than	 the	 number	 of	Usages,	 each	Usage

pairs	up	with	one	control	or	data	item	in	sequence,	and	the	final	Usage	applies
to	all	of	the	remaining	controls	or	data	items.
In	this	example,	the	report	is	16	bytes,	Usage	X	applies	to	the	first	byte,	Usage
Y	applies	to	the	second	byte,	and	a	vendor-defined	Usage	applies	to	the	third
through	16th	bytes.
Usage	(X)

Usage	(Y)

Usage	(vendor	defined)

Report	Count	(0x10),

Report	Size	(0x08),

Input	(Data,	Variable,	Absolute)

Usage	Minimum	and	Maximum.	The	Usage	Minimum	and	Usage	Maximum
can	assign	 a	 series	of	Usage	 IDs	 to	 the	 elements	 in	 an	 array	or	bitmap.	The
following	example	describes	a	report	that	contains	the	state	(0	or	1)	of	each	of
three	buttons.	The	Usage	Minimum	and	Usage	Maximum	specify	that	the	first
button	has	a	Usage	ID	of	0x01,	the	second	button	has	a	Usage	ID	of	0x02,	and
the	third	button	has	a	Usage	ID	of	0x03:
Usage	Page	(Button	Page)

Logical	Minimum	(0x00)

Logical	Maximum	(0x01)

Usage	Minimum	(0x01)

Usage	Maximum	(0x03)

Report	Count	(0x03)

Report	Size	(0x01)

Input	(Data,	Variable,	Absolute)

Designator	Index.	For	items	with	a	physical	descriptor,	the	Designator	Index
specifies	a	Designator	value	in	a	physical	descriptor.	The	Designator	specifies
what	body	part	the	control	uses.
Designator	Minimum	and	Designator	Maximum.	When	 a	 report	 contains
multiple	Designator	Indexes	that	apply	to	the	elements	in	a	bitmap	or	array,	a
Designator	 Minimum	 and	 Designator	 Maximum	 can	 assign	 a	 sequential
Designator	Index	to	each	bit	or	array	item.
String	 Index.	 An	 item	 or	 control	 can	 include	 a	 String	 Index	 to	 associate	 a
string	 with	 the	 item	 or	 control.	 The	 strings	 are	 stored	 in	 the	 same	 format
described	in	Chapter	4	for	product,	manufacturer,	and	serial-number	strings.
String	 Minimum	 and	 Maximum.	 When	 a	 report	 contains	 multiple	 string
indexes	that	apply	to	the	elements	in	a	bitmap	or	array,	a	String	Minimum	and
String	Maximum	can	assign	a	sequential	String	Index	to	each	bit	or	array	item.
Delimiter.	A	Delimiter	defines	the	beginning	(0x01)	or	end	(0x00)	of	a	 local
item.	 A	 delimited	 local	 item	 may	 contain	 alternate	 usages	 for	 a	 control.
Different	applications	can	thus	define	a	device’s	controls	in	different	ways.	For

example,	 a	button	may	have	a	generic	use	 (Button	1)	 and	a	 specific	use	 (for
example,	Send	or	Quit.).

Physical	descriptors
A	 physical	 descriptor	 specifies	 the	 part	 or	 parts	 of	 the	 body	 intended	 to
activate	 a	 control.	 For	 example,	 each	 finger	 might	 have	 its	 own	 assigned
control.	Similar	physical	descriptors	are	grouped	into	a	physical	descriptor	set.
A	 set	 consists	 of	 a	 header,	 followed	 by	 the	 physical	 descriptors.	 A	 physical
descriptor	 is	 a	 HID-specific	 descriptor.	 The	 host	 can	 retrieve	 a	 physical
descriptor	set	by	sending	a	Get	Descriptor	request	 to	 the	HID	interface	with
0x23	in	the	high	byte	of	the	wValue	field	and	the	number	of	the	descriptor	set
in	the	low	byte	of	the	wValue	field.
Physical	 descriptors	 are	 optional	 and	 rarely	 used.	 For	 most	 devices,	 these
descriptors	either	don’t	apply	or	the	information	they	provide	has	no	practical
use.	 The	 HID	 specification	 has	 more	 information	 on	 how	 to	 use	 physical
descriptors.

Padding
To	 pad	 a	 descriptor	 so	 it	 contains	 a	multiple	 of	 eight	 bits,	 a	 descriptor	 can
include	a	Main	item	with	no	assigned	Usage.	This	excerpt	from	a	keyboard’s
report	descriptor	specifies	an	Output	report	that	transfers	five	bits	of	data	and
three	bits	of	padding:
Usage	Page	(LEDs)

Usage	Minimum	(0x01)

Usage	Maximum	(0x05)

Output	(Data,	Variable,	Absolute)	(five	1-bit	LEDs)

Report	Count	(0x01)

Report	Size	(0x03)

Output	(Constant)	(3	bits	of	padding)

13

Human	Interface	Devices:	Host
Application
Chapter	 10	 showed	 how	 to	 obtain	 a	 handle	 to	 communicate	 with	 a	 device.
This	chapter	shows	how	host	applications	can	use	handles	to	access	HID-class
devices.

HIDClass	support	routines
Windows	 provides	 HIDClass	 support	 routines	 with	 functions	 that
applications	 can	use	 to	 learn	 about	 a	HID’s	 reports	 and	 to	 send	and	 receive
report	data.
The	routines	consider	each	report	item	to	be	either	a	button	or	value.	A	button
is	a	control	or	data	item	that	has	a	discrete,	binary	value,	such	as	on	(1)	or	off
(0).	 Buttons	 include	 items	 represented	 by	 unique	Usage	 IDs	 in	 the	Buttons,
Keyboard,	and	LED	Usage	pages.	Any	report	item	that	isn’t	a	button	is	a	value
usage.	The	report	descriptor	defines	the	range	for	each	value	usage.

Table	13-1:	Applications	can	use	 these	 functions	 to	obtain	 information	about	a
HID	and	its	reports.
Function Purpose

HidD_FreePreparsedData Free	resources	used	by	HidD_GetPreparsedData.

HidD_GetAttributes Retrieve	a	pointer	to	a	structure	containing	the	HID’s	Vendor
ID,	Product	ID,	and	device	release	number.

HidD_GetPhysicalDescriptor Retrieve	a	physical	descriptor.

HidD_GetPreparsedData Return	a	handle	to	a	buffer	with	information	about	the	HID’s
reports.

HidP_GetButtonCaps Retrieve	an	array	with	information	about	the	buttons	in	a	top-
level	collection	for	a	specified	report	type.

HidP_GetCaps Retrieve	a	structure	describing	a	HID’s	reports.

HidP_GetExtendedAttributes Retrieve	a	structure	with	information	about	Global	items	the
HID	parser	didn’t	recognize.

HidP_GetLinkCollectionNodes Retrieve	a	structure	with	information	about	collections	within
a	top-level	collection.

HidP_GetSpecificButtonCaps Like	HidP_GetButtonCaps	but	can	specify	a	Usage	Page,
Usage	ID,	and	link	collection.

HidP_GetSpecificValueCaps Like	HidP_GetValueCaps	but	can	specify	a	Usage	Page,	Usage
ID,	and	link	collection.

HidP_GetValueCaps Retrieve	an	array	with	information	about	the	values	in	a	top-
level	collection	for	a	specified	report	type.

HidP_IsSameUsageAndPage Determine	if	two	Usages	(each	consisting	of	a	Usage	Page	and
Usage	ID)	are	equal.

HidP_MaxDataListLength Retrieve	the	maximum	number	of	HIDP_DATA	structures
that	HidP_GetData	can	return	for	a	HID	report	type	and	top-
level	collection.

HidP_MaxUsageListLength Retrieve	the	maximum	number	of	Usage	IDs	that
HidP_GetUsages	can	return	for	a	report	type	and	top-level
collection.

HidP_TranslateUsagesToI8042ScanCodes Map	Usages	on	the	HID_USAGE_PAGE_KEYBOARD	Usage
Page	to	PS/2	scan	codes.

HidP_UsageAndPageListDifference Retrieve	the	differences	between	two	arrays	of	Usages	(Usage
Page	and	Usage	ID).

HidP_UsageListDifference Retrieve	the	differences	between	two	arrays	of	Usage	IDs.

Table	13-2:	Applications	can	use	these	functions	to	retrieve	strings	from	a	HID.
Function Purpose

HidD_GetIndexedString Retrieve	a	specified	string.

HidD_GetManufacturerString Retrieve	a	manufacturer	string.

HidD_GetProductString Retrieve	a	product	string.

HidD_GetSerialNumberString Retrieve	a	serial-number	string.

Requesting	information	about	the	HID
Table	13-1	lists	routines	that	request	information	about	a	HID	and	its	reports.
Many	applications	use	only	a	few	of	these	routines.	HidD_GetPreparsedData
retrieves	 a	 pointer	 to	 a	 buffer	 that	 contains	 information	 about	 the	 HID’s
reports.	HidP_GetCaps	uses	 the	 pointer	 to	 retrieve	 a	HIDP_CAPS	 structure
that	 specifies	what	 report	 types	 a	 device	 supports	 and	 provides	 information
about	the	information	in	the	reports.	For	example,	the	structure	specifies	the

number	of	HIDP_BUTTON_CAPS	structures	 that	have	 information	about	a
button	 or	 set	 of	 buttons.	 The	 application	 can	 call	 HidP_Get-ButtonCaps	 to
retrieve	these	structures.
For	 values,	 the	 structure	 specifies	 the	 number	 of	 HIDP_VALUE_CAPS
structures,	and	the	application	can	call	HidP_GetValueCaps	to	retrieve	these
structures.
The	support	routines	also	enable	retrieving	strings,	including	serial	numbers.
Table	13-2	lists	these	routines.

Sending	and	receiving	reports
Table	13-3	lists	routines	that	applications	can	use	to	send	and	receive	reports
using	control	transfers.
HidD_GetInputReport	requests	an	Input	report	using	a	control	transfer	with	a
Get	 Report	 request.	 This	 function	 bypasses	 the	 HID	 driver’s	 Input	 report
buffer.	 HidD_Set-OutputReport	 sends	 an	 Output	 report	 using	 a	 control
transfer	with	a	Set	Report	request.
For	 Feature	 reports,	 HidD_GetFeature	 retrieves	 a	 report	 using	 a	 control
transfer	and	Get	Report	request	and	HidD_SetFeature	sends	a	report	using	a
control	transfer	and	Set	Report	request.	Note	that	HidD_SetFeature	is	not	the
same	thing	as	the	standard	USB	request	Set	Feature.
On	failure	or	a	timeout,	these	functions	return	with	an	error	code.
For	 reading	 Input	 reports	 and	 writing	 Output	 reports	 using	 interrupt
transfers,	applications	can	use	 .NET’s	Filestream	class.	The	FileStream	class’s
Read	 and	Write	methods	 are	 synchronous—they	 block	 the	 program	 thread
until	 the	 device	 responds	 or	 the	 Filestream	 closes.	 A	 better	 option	 is
ReadAsync	 and	WriteAsync,	which	don’t	 block	 the	 application	 thread	 if	 the
device	doesn’t	 have	data	 to	 send	or	delays	 in	 accepting	 received	data.	These
methods	also	support	timeouts	if	the	device	doesn’t	respond	within	a	specified
time.	 The	 asynchronous	 methods	 were	 added	 in	 the	 .NET	 Framework	 4.5,
which	doesn’t	 install	on	Windows	XP	or	earlier	and	 thus	aren’t	 available	on
these	earlier	OSes.

Table	13-3:	Applications	can	use	these	routines	to	send	and	receive	reports.
routine Purpose

HidD_GetFeature Read	a	Feature	report.

HidD_GetInputReport Read	an	Input	report	using	a	control	transfer.

HidD_SetFeature Send	a	Feature	report.

HidD_SetOutputReport Send	an	Output	report	using	a	control	transfer.

An	 alternative	 to	 Filestreams	 is	 the	 ReadFile	 and	 WriteFile	 Windows	 API
functions.

Providing	and	using	report	data
After	retrieving	a	report,	an	application	can	use	the	raw	data	directly	from	the
buffer	or	use	HIDClass	support	routines	to	extract	button	or	value	data.	In	a
similar	way,	 an	 application	 can	write	 data	 to	 be	 sent	 directly	 into	 a	 report’s
buffer	 or	 use	 HIDClass	 support	 routines	 to	 place	 the	 data	 in	 a	 buffer	 for
sending.
Table	13-4	lists	routines	that	extract	information	in	received	reports	and	store
information	 in	 reports	 to	 be	 sent.	 For	 example,	 an	 application	 can	 find	 out
what	buttons	have	been	pressed	by	calling	HidP_GetButtons,	which	returns	a
buffer	containing	the	Usage	IDs	of	all	buttons	that	belong	to	a	specified	Usage
Page	and	are	set	to	ON.	An	application	can	set	and	clear	buttons	in	a	report	to
be	sent	by	calling	HidP_SetButtons	and	HidP_UnsetButtons.	Applications	can
retrieve	 and	 set	 values	 in	 a	 report	 using	 HidP_GetUsageValue	 and
Hid_Set_UsageValue.

Managing	HID	communications
Table	 13-5	 lists	 routines	 that	 applications	 can	 use	 in	 managing	 HID
communications.
Chapter	 10	 showed	 how	 to	 use	 HidD_GetHidGuid	 to	 obtain	 the	 device
interface	 GUID	 for	 the	 HID	 class.	 HidD_SetNumInputBuffers	 requests	 to
change	the	size	of	the	HID	driver’s	buffer	for	Input	reports.	A	larger	buffer	can
be	helpful	if	the	application	might	be	too	busy	at	times	to	read	reports	before
the	 buffer	 overflows.	 The	 value	 set	 is	 the	 number	 of	 reports	 the	 buffer	 will
hold,	not	 the	number	of	bytes.	HidD_Flush-Queue	deletes	any	Input	reports
in	the	buffer.

Table	 13-4:	 Applications	 can	 use	 these	 routines	 to	 extract	 information	 in
retrieved	reports	and	store	information	in	reports	to	be	sent.
routine Purpose

HidP_GetButtons Same	as	HidP_GetUsages.

HidP_GetButtonsEx Same	as	HidP_GetUsagesEx.

HidP_GetData Retrieve	an	array	of	structures	with	each	structure
identifying	either	the	data	index	and	state	of	a
button	control	that	is	set	to	ON	(1)	or	the	data	index
and	data	for	a	value	control.

HidP_GetScaledUsageValue Retrieve	a	signed	and	scaled	value	from	a	report.

HidP_GetUsages Retrieve	a	list	of	all	of	the	buttons	that	are	on	a
specified	Usage	Page	and	are	set	to	ON	(1).

HidP_GetUsagesEx Retrieve	a	list	of	all	of	the	buttons	that	are	set	to	ON
(1).

HidP_GetUsageValue Retrieve	the	data	for	a	specified	value.

HidP_GetUsageValueArray Retrieve	data	for	an	array	of	values	with	the	same
Usage	ID.

HidP_InitializeReportForID Set	all	buttons	to	OFF	(0)	and	set	all	values	to	their
null	values	if	defined	and	otherwise	to	zero.

HidP_SetButtons Same	as	HidP_SetUsages.

HidP_SetData Sets	the	states	of	buttons	and	data	in	values	in	a
report.

HidP_SetScaledUsageValue Convert	a	signed	and	scaled	physical	number	to	a
Usage’s	logical	value	and	set	the	value	in	a	report.

HidP_SetUsages Set	one	or	more	buttons	in	a	report	to	ON	(1).

HidP_SetUsageValue Set	the	data	for	a	specified	value.

HidP_SetUsageValueArray Set	the	data	for	an	array	of	values	with	the	same
Usage	ID.

HidP_UnsetButtons Same	as	HidP_UnsetUsages.

HidP_UnsetUsages Set	one	or	more	buttons	in	a	report	to	OFF	(0).

Identifying	a	device
After	obtaining	a	handle	to	a	HID	as	described	in	Chapter	10,	an	application
can	use	HIDClass	support	routines	to	find	out	whether	the	HID	is	the	device
the	 application	 wants	 to	 communicate	 with.	 The	 application	 can	 identify	 a
device	by	 its	Vendor	 ID	and	Product	 ID	or	by	 searching	 for	a	device	with	a
specific	Usage,	such	as	game	controller.

Table	 13-5:	 Applications	 can	 use	 these	 routines	 in	 managing	 HID
communications.

Routine Purpose

HidD_FlushQueue Delete	all	Input	reports	in	the	buffer.

HidD_GetHidGuid Retrieve	the	device	interface	GUID	for	HID-class
devices.

HidD_GetNumInputBuffers Retrieve	the	number	of	reports	the	Input	report
buffer	can	hold.

HidD_SetNumInputBuffers Set	the	number	of	reports	the	Input	report	buffer
can	hold.

HidRegisterMinidriver HID	mini-drivers	call	this	routine	during
initialization	to	register	with	the	HID	class	driver.

The	 code	 examples	 in	 this	 chapter	 assume	 the	 following	 Imports	 and	 using
statements:
using	Microsoft.Win32.SafeHandles;

using	System;

using	System.Diagnostics;

using	System.IO;

using	System.Runtime.InteropServices;

using	System.Threading;

using	System.Threading.Tasks;

Reading	the	Vendor	ID	and	Product	ID
For	 vendor-specific	 HIDs	 that	 don’t	 have	 standard	 Usages,	 searching	 for	 a
device	 with	 a	 specific	 Vendor	 ID	 and	 Product	 ID	 can	 be	 useful.
HidD_GetAttributes	retrieves	a	pointer	to	a	structure	containing	the	Vendor
ID,	Product	ID,	and	device	release	number.

Definitions
internal	struct	HIDD_ATTRIBUTES

{

internal	Int32	Size;

internal	UInt16	VendorID;

internal	UInt16	ProductID;

internal	UInt16	VersionNumber;

[DllImport(“hid.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	HidD_GetAttributes

(SafeFileHandle	HidDeviceObject,

ref	HIDD_ATTRIBUTES	Attributes);

Use
internal	NativeMethods.HIDD_ATTRIBUTES	DeviceAttributes;

//	Example	Product	ID	and	Vendor	ID	values:

Int16	myProductID	=	0x1234;

Int16	myVendorID	=	0x0925;

DeviceAttributes.Size	=	Marshal.SizeOf(DeviceAttributes);

Boolean	success	=	NativeMethods.HidD_GetAttributes	(hidHandle,	ref	DeviceAttributes);

if	(success)

{

if	((DeviceAttributes.VendorID	==	myVendorId)	&&	(DeviceAttributes.ProductID	==

myProductId))

{

Debug.WriteLine(“My	device	detected”);

}

else

{

Debug.WriteLine(“Not	my	device.”);

hidHandle.Close();

}

}

How	it	works
The	hidHandle	parameter	is	a	SafeFileHandle	returned	by	CreateFile	as	shown
in	Chapter	10.	A	 call	 to	HidD_GetAttributes	 passes	 a	HIDD_ATTRIBUTES
structure	with	 the	 Size	member	 set	 to	 the	 structure’s	 length.	 If	 the	 function
returns	 true,	 the	 structure	 filled	 without	 error.	 The	 application	 can	 then
compare	the	retrieved	values	with	the	desired	Vendor	ID	and	Product	ID	and
device	release	number.
If	the	attributes	don’t	indicate	the	desired	device,	the	application	should	close
the	handle	to	the	interface	as	shown	in	Chapter	10.	The	application	can	then
move	 on	 to	 test	 the	 next	 HID	 in	 the	 device	 information	 set	 retrieved	 with
SetupDiGetClassDevs,	also	shown	in	Chapter	10.

Getting	a	pointer	to	device	capabilities
Another	way	to	find	out	more	about	a	device	is	to	examine	its	capabilities.	The
first	 task	 is	 to	 call	HidD_GetPreparsedData	 to	get	 a	pointer	 to	 a	buffer	with
information	about	the	device’s	capabilities.

Definitions
[DllImport(“hid.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	HidD_GetPreparsedData	(SafeFileHandle	HidDeviceObject,

ref	IntPtr	PreparsedData);

Use
var	preparsedData	=	new	IntPtr();

NativeMethods.HidD_GetPreparsedData(hidHandle,	ref	preparsedData);

How	it	works
The	 hidHandle	 parameter	 is	 the	 handle	 returned	 by	 CreateFile.	 The
preparsedData	 variable	 points	 to	 the	 buffer	 containing	 the	 data.	 The

application	 doesn’t	 need	 to	 access	 the	 buffer’s	 data	 directly.	 The	 code	 just
needs	to	pass	the	returned	pointer	to	another	routine.
When	 finished	 using	 the	 PreparsedData	 buffer,	 the	 application	 should	 free
system	 resources	 by	 calling	HidD_FreePreparsedData	 as	 shown	 later	 in	 this
chapter.

Getting	the	device’s	capabilities
HidP_GetCaps	 returns	 a	 pointer	 to	 a	 structure	 that	 contains	 information
about	the	device’s	capabilities.	The	structure	contains	the	HID’s	Usage	Pages,
Usages,	 report	 lengths,	 and	 the	 number	 of	 button-capabilities	 structures,
value-capabilities	 structures,	 and	 data	 indexes	 that	 identify	 specific	 controls
and	data	items	in	Input,	Output,	and	Feature	reports.	An	application	can	use
the	 capabilities	 information	 to	 identify	 a	 specific	 HID	 and	 learn	 about	 its
reports	and	report	data.	Not	every	item	in	the	structure	applies	to	all	devices.

Definitions
internal	struct	HIDP_CAPS

{

internal	Int16	Usage;

internal	Int16	UsagePage;

internal	Int16	InputReportByteLength;

internal	Int16	OutputReportByteLength;

internal	Int16	FeatureReportByteLength;

[MarshalAs(UnmanagedType.ByValArray,	SizeConst	=	17)]

internal	Int16[]	Reserved;

internal	Int16	NumberLinkCollectionNodes;

internal	Int16	NumberInputButtonCaps;

internal	Int16	NumberInputValueCaps;

internal	Int16	NumberInputDataIndices;

internal	Int16	NumberOutputButtonCaps;

internal	Int16	NumberOutputValueCaps;

internal	Int16	NumberOutputDataIndices;

internal	Int16	NumberFeatureButtonCaps;

internal	Int16	NumberFeatureValueCaps;

internal	Int16	NumberFeatureDataIndices;

}

[DllImport(“hid.dll”,	SetLastError	=	true)]

internal	static	extern	Int32	HidP_GetCaps	(IntPtr	PreparsedData,	ref	HIDP_CAPS

Capabilities);

Use
internal	NativeMethods.HIDP_CAPS	Capabilities;

Int32	result	=	NativeMethods.HidP_GetCaps

(preparsedData,	ref	Capabilities);

How	it	works
The	 preparsedData	 parameter	 is	 the	 pointer	 returned	 by

HidD_GetPreparsedData.	 When	 the	 function	 returns,	 the	 application	 can
examine	and	use	whatever	values	are	of	 interest	 in	the	Capabilities	structure.
For	example,	to	look	for	a	joystick,	look	for	Usage	=	0x0004	and	UsagePage	=
0x0001.
InputReportByteLength,	 OutputReportByteLength,	 and
FeatureReportByteLength	are	useful	when	setting	buffer	sizes	for	sending	and
receiving	reports.

Getting	capabilities	of	buttons	and	values
An	application	can	also	retrieve	the	capabilities	of	each	button	and	value	in	a
report.	 HidP_GetValueCaps	 returns	 a	 pointer	 to	 an	 array	 of	 structures
containing	 information	 about	 the	 values	 in	 a	 report.	 The
NumberInputValueCaps	property	of	the	HIDP_CAPS	structure	is	the	number
of	structures	returned	by	HidP_GetValueCaps.
The	 items	 in	 the	 structures	 include	 many	 values	 obtained	 from	 the	 HID’s
report	descriptor	as	described	in	Chapter	12.	The	items	include	the	Report	ID,
whether	 a	 value	 is	 absolute	or	 relative,	whether	 a	 value	has	 a	null	 state,	 and
logical	 and	 physical	minimums	 and	maximums.	 A	 LinkCollection	 identifier
distinguishes	 between	 controls	 with	 the	 same	Usage	 and	Usage	 Page	 in	 the
same	 collection.	 In	 a	 similar	 way,	 the	 HidP_GetButtonCaps	 function	 can
retrieve	 information	about	a	report’s	buttons.	The	 information	 is	 stored	 in	a
HidP_ButtonCaps	structure.	Not	every	application	needs	this	information.

Sending	and	receiving	reports
The	 previous	 routines	 help	 in	 finding	 and	 learning	 about	 a	 device	 that
matches	what	 the	 application	 is	 looking	 for.	On	 finding	a	device	of	 interest,
the	application	and	device	are	ready	to	exchange	data	in	reports.
Table	 13-3	 showed	 routines	 for	 exchanging	 reports	 using	 control	 transfers.
Table	13-6	 summarizes	 the	 transfer	 types	 the	host	uses	with	different	 report
types.	 The	 application	 doesn’t	 have	 to	 know	 or	 care	 which	 transfer	 type	 or
endpoint	the	driver	uses.

Sending	Output	reports	with	interrupt	transfers
On	obtaining	a	handle	and	learning	the	number	of	bytes	in	an	Output	report,
an	application	can	send	a	report	to	the	HID.	The	example	below	places	data	to

send	in	a	buffer	and	uses	a	FileStream	object	to	send	the	data	asynchronously
with	a	timeout	if	the	device	doesn’t	respond.

Table	13-6:	The	transfer	type	used	to	send	or	receive	a	report	can	vary	with	the
API	function,	operating	system	edition,	and	available	endpoints.
Report	Type API	Function	or	.NET

Method
Transfer	Type

Input Filestream:	Read,	ReadAsync Interrupt	IN

HidD_GetInputReport Control,	Get	Report	request

Output Filestream:	Write,	WriteAsync Interrupt	OUT	if	available;	otherwise
control,	Set	Report	request

HidD_SetOutputReport Control,	Set	Report	request

Feature	IN HidD_GetFeature Control,	Get	Report	request

Feature	OUT HidD_SetFeature Control,	Set	Report	request

Use
private	FileStream	deviceData;

private	async	void	SendOutputReport()

{

const	Int32	writeTimeout	=	5000;

var	outputReportBuffer	=	new	Byte[Capabilities.OutputReportByteLength];

outputReportBuffer[0]	=	0;

outputReportBuffer[1]	=	85;

outputReportBuffer[2]	=	83;

outputReportBuffer[3]	=	66;

Action	onWriteTimeoutAction	=	OnWriteTimeout;

var	cts	=	new	CancellationTokenSource();

cts.CancelAfter(writeTimeout);

cts.Token.Register(onWriteTimeoutAction);

Task	t	=	deviceData.WriteAsync

(outputReportBuffer,	0,	outputReportBuffer.Length,	cts.Token);

await	t;

switch	(t.Status)

{

case	TaskStatus.RanToCompletion:

success	=	true;

Debug.Print(“Output	report	written	to	device”);

break;

case	TaskStatus.Canceled:

Debug.Print(“Task	canceled”);

break;

case	TaskStatus.Faulted:

Debug.Print(“Unhandled	exception”);

break;

}

cts.Dispose();

}

private	void	OnWriteTimeout()

{

if	(deviceData	!=	null)

{

deviceData.Dispose();

Debug.Print(“The	attempt	to	send	a	report	timed	out.”);

}

}

How	it	works
The	 FileStream	 object	 deviceData	 provides	methods	 for	 writing	 data	 to	 the
device.
The	SendOutputReport	 routine	 attempts	 to	 send	a	 report	 to	 the	device.	The
async	modifier	defines	 the	 routine	 as	 an	 async	method,	which	doesn’t	 block
the	 calling	 routine’s	 thread.	 In	 other	 words,	 while	 waiting	 for	 the	 data	 to
transmit	and	be	accepted	by	the	device,	the	code	that	calls	SendOutputReport
can	continue	to	respond	to	user	input	and	other	events.	If	the	device	doesn’t
accept	the	data	within	the	specified	time,	the	attempt	to	send	data	times	out.
outputReportBuffer	 is	 the	buffer	 that	will	 store	 the	data	 to	be	written	 to	 the
device.	The	buffer’s	Length	property	is	the	OutputReportByteLength	member
in	the	HIDP_CAPS	structure	retrieved	with	HidP_GetCaps.
The	first	element	in	the	buffer	is	the	Report	ID.	If	the	interface	supports	only
the	default	Report	ID	of	zero,	the	Report	ID	doesn’t	transmit	on	the	bus	but
still	must	 be	 present	 in	 the	 buffer.	 The	 remaining	 elements	 hold	 the	 report
data.	In	this	example,	the	Report	ID	is	zero	and	the	report	data	is	ASCII	codes
that	spell	“USB”.
The	 writeTimeout	 constant	 sets	 the	 number	 of	milliseconds	 to	 wait	 for	 the
device	to	accept	the	data.
cts	 is	 a	CancellationTokenSource	object	 that	 sets	up	 the	 timeout	action.	The
CancelAfter	method	specifies	the	timeout	value.
The	 cts	 object	 requires	 an	 Action	 delegate	 (onWriteTimeoutAction)	 for	 a
routine	that	executes	on	a	timeout	(OnWriteTimeout).
To	 implement	 the	 timeout	 action,	 the	 Token	 property	 of	 cts	 registers	 the
onWriteTimeoutAction	 delegate.	 The	 task	 t	 (an	 asynchronous	 operation)
attempts	to	send	the	data	and	times	out	if	the	operation	isn’t	complete	when
the	timeout	period	elapsed.
deviceData’s	 WriteAsync	 method	 names	 the	 buffer	 with	 data	 to	 send

(outputReportBuffer),	the	offset	to	begin	copying	bytes	from	the	buffer	to	the
stream	 (0),	 the	 maximum	 number	 of	 bytes	 to	 write
(outputReportBuffer.Length),	 and	 the	 token	 to	 monitor	 for	 cancellation
requests	(cts.Token).
The	await	operator	waits	for	the	task	to	complete	or	a	timeout.	While	waiting
for	the	write	operation	to	complete,	the	routine	that	called	SendOutputReport
can	perform	other	operations.
If	the	operation	completes,	t.Status	has	one	of	these	states:	RanToCompletion
(success),	 Canceled	 (a	 cancellation	 was	 requested),	 or	 Faulted	 (unhandled
exception).
The	Dispose	method	stops	the	timeout	timer	and	disposes	of	the	resource.	As
an	alternative	to	calling	Dispose,	you	can	wrap	the	code	that	uses	cts	in	a	using
statement,	which	disposes	of	the	resource	on	exiting	the	block	of	code:
using	(var	cts	=	new	CancellationTokenSource())

{

//	Code	that	uses	cts	goes	here.

}

If	 the	write	operation	 times	out,	 the	OnWriteTimeout	 routine	executes.	The
timeout	routine	can	dispose	of	the	FileStream	and	perform	any	other	needed
actions.
If	 the	HID	 has	 an	 interrupt	OUT	 endpoint,	 the	write	 operation	 initiates	 an
interrupt	 transfer	 to	 send	 the	 report.	 Otherwise,	 the	 host	 uses	 a	 control
transfer	with	a	HID-class	Set_Report	request.	The	application	doesn’t	have	to
know	or	care	which	transfer	type	the	host	uses.

Reading	Input	reports	with	interrupt	transfers
In	a	similar	way,	an	application	can	retrieve	Input	reports	from	a	device.	The
example	 below	 requests	 report	 data	 asynchronously	 with	 a	 timeout	 if	 the
device	 doesn’t	 respond.	 The	 FileStream	 reads	 data	 that	 the	 HID	 driver	 has
requested	from	the	HID’s	interrupt	IN	endpoint.

Use
private	FileStream	deviceData;

private	async	void	GetInputReport()

{

const	Int32	writeTimeout	=	5000;

var	inputReportBuffer	=	new	Byte[Capabilities.InputReportByteLength];

Action	onReadTimeoutAction	=	OnReadTimeout;

var	cts	=	new	CancellationTokenSource();

cts.CancelAfter(readTimeout);

cts.Token.Register(onReadTimeoutAction);

Task<Int32>	t	=	deviceData.ReadAsync	(inputReportBuffer,	0,	inputReportBuffer.Length,

cts.Token);

Int32	bytesRead	=	await	t;

switch	(t.Status)

{

case	TaskStatus.RanToCompletion:

success1	=	1;

Debug.Print(“Input	report	received	from	device”);

		break;

case	TaskStatus.Canceled:

Debug.Print(“Task	canceled”);

		break;

case	TaskStatus.Faulted:

		Debug.Print(“Unhandled	exception”);

		break;

}

cts.Dispose();

}

private	void	OnReadTimeout()

{

deviceData.Dispose();

Debug.Print(“The	attempt	to	send	a	report	timed	out.”);}

}

How	it	works
The	FileStream	object	deviceData	reads	data	from	the	device.
The	GetInputReport	routine	attempts	to	read	a	received	report	from	the	HID
driver’s	 buffer.	 As	 with	 the	 SendOutputReport	 routine,	 the	 async	 modifier
defines	the	routine	as	an	async	method.	While	waiting	for	the	device	to	send	a
report,	 the	 code	 that	 calls	 GetInputReport	 can	 continue	 to	 respond	 to	 user
input	and	other	events.	If	the	device	doesn’t	send	a	report	within	the	specified
time,	the	attempt	to	get	data	times	out.
inputReportBuffer	 is	 the	 buffer	 that	 will	 store	 the	 received	 data.	 In	 the
HIDP_CAPS	 structure	 retrieved	 with	 HidP_GetCaps,	 the	 value	 of	 the
InputReportByteLength	member	is	the	minimum	value	to	use	for	the	buffer’s
Length	property.
The	 readTimeout	 constant	 sets	 the	 number	 of	milliseconds	 to	wait	 for	 data
from	the	device.
cts	 is	 a	CancellationTokenSource	object	 that	 sets	up	 the	 timeout	action.	The
CancelAfter	method	specifies	the	timeout	value.
The	 cts	 object	 requires	 an	 Action	 delegate	 (onReadTimeoutAction)	 for	 a
routine	that	will	execute	on	a	timeout	(OnReadTimeout).
To	 implement	 the	 timeout	 action,	 the	 Token	 property	 of	 cts	 registers	 the

onReadTimeoutAction	delegate.	The	task	t	attempts	to	receive	data	and	times
out	if	the	operation	isn’t	complete	when	the	timeout	period	elapsed.
deviceData’s	ReadAsync	method	passes	the	buffer	that	will	hold	received	data
(inputReportBuffer),	the	offset	in	the	buffer	to	begin	writing	received	data	(0),
the	maximum	number	 of	 bytes	 to	 read	 (inputReportBuffer.Length),	 and	 the
token	to	monitor	for	cancellation	requests	(cts.Token).
The	await	operator	waits	for	the	task	to	complete	or	a	timeout.	While	waiting
for	the	read	operation	to	complete,	the	routine	that	called	GetInputReport	can
perform	other	operations.
If	the	operation	completes,	bytesRead	holds	the	number	of	bytes	received,	and
t.Status	 has	 one	 of	 these	 states:	 RanToCompletion	 (success),	 Canceled	 (a
cancellation	was	requested),	or	Faulted	(unhandled	exception).
The	 Dispose	 method	 of	 cts	 stops	 the	 timeout	 timer	 and	 disposes	 of	 the
resource.
The	task	completes	successfully	if	one	or	more	reports	are	available	before	the
task	times	out.	On	success,	the	first	element	in	inputReportBuffer	is	the	Report
ID.	If	the	interface	supports	only	the	default	Report	ID	of	zero,	the	Report	ID
doesn’t	 transmit	 on	 the	 bus	 but	 is	 present	 in	 the	 buffer.	 The	 report	 data
follows	the	Report	ID.
If	 the	 read	 operation	 times	 out,	 the	 OnReadTimeout	 routine	 executes,
disposing	of	the	Filestream	and	performing	any	other	needed	actions.
The	 read	 operation	 doesn’t	 initiate	 traffic	 on	 the	 bus.	 The	 host	 begins
requesting	 reports	 from	 the	 device	 after	 completing	 enumeration	 of	 the
device.	 The	 host’s	 HID	 driver	 stores	 received	 reports	 in	 a	 ring	 buffer.	 A
request	 to	 get	 a	 report	 returns	 the	oldest	 report	 in	 the	buffer.	 If	 the	driver’s
buffer	is	empty,	the	read	operation	waits	for	a	report	to	arrive	until	a	timeout
occurs.	 If	 the	 buffer	 is	 full	 when	 a	 new	 report	 arrives,	 the	 buffer	 drops	 the
oldest	report.
Each	handle	with	read	access	to	the	HID	has	its	own	Input	buffer,	so	multiple
applications	and	multiple	devices	can	read	the	same	reports.
If	 the	 application	 doesn’t	 request	 reports	 as	 frequently	 as	 the	 device	 sends
them,	 some	 reports	 will	 be	 lost.	 One	 way	 to	 keep	 from	 losing	 reports	 is	 to
increase	the	size	of	the	FileStream	object’s	report	buffer.	If	multiple	reports	are
immediately	 available	 in	 the	HID	 driver’s	 buffer,	 and	 if	 inputReportBuffer’s
size	 and	 the	 maximum	 number	 of	 bytes	 parameter	 enable	 storing	 multiple

reports,	 the	 read	 operation	 returns	 as	 many	 reports	 as	 will	 fit	 in
inputReportBuffer.	If	you	need	to	be	absolutely	sure	not	to	 lose	a	report,	use
Feature	reports.	Also	see	the	tips	in	Chapter	3	about	performing	time-critical
transfers.
The	 Idle	 rate	 introduced	 in	Chapter	11	 determines	whether	 or	 not	 a	 device
sends	a	report	if	the	data	hasn’t	changed	since	the	last	transfer.
If	a	read	operation	is	timing	out,	these	are	possible	reasons:

The	HID’s	interrupt	IN	endpoint	is	NAKing	the	IN	token	packets	because
the	 endpoint	 hasn’t	 been	 armed	 to	 send	 report	 data.	 An	 endpoint’s
interrupt	 typically	 triggers	 only	 after	 endpoint	 sends	 data,	 so	 device
firmware	 must	 arm	 the	 endpoint	 to	 send	 the	 first	 report	 before	 the	 first
interrupt.
The	number	of	bytes	the	endpoint	 is	sending	doesn’t	equal	 the	number	of
bytes	in	a	report	(for	HIDs	that	use	the	default	Report	ID)	or	the	number	of
bytes	in	a	report	+	1	(for	HIDs	that	use	other	Report	IDs).
For	 HIDs	 with	 multiple	 Report	 IDs,	 the	 first	 byte	 doesn’t	 match	 a	 valid
Report	ID.

Writing	Feature	reports
HidD_SetFeature	 attempts	 to	 send	 a	 Feature	 report	 to	 the	 device	 using	 a
control	transfer	with	a	HID-class	Set_Report	request.

Definitions
[DllImport(“hid.dH”,	SetLastError=true)]

internal	static	extern	Boolean	HidD_SetFeature

(SafeFileHandle	HidDeviceObject,

Byte	lpReportBuffer[],

Int32	ReportBufferLength);

Use
var	outFeatureReportBuffer	=

new	Byte[Capabilities.FeatureReportByteLength];

outFeatureReportBuffer[0]	=	0;

outFeatureReportBuffer[1]	=	79;

outFeatureReportBuffer[2]	=	75;

Boolean	success	=	NativeMethods.HidD_SetFeature

(hidHandle,

outFeatureReportBuffer,

outFeatureReportBuffer.Length);

How	it	works

HidD_SetFeature	requires	a	handle	to	the	HID,	an	array	of	bytes	to	write,	and
the	 array’s	 length.	 The	 first	 byte	 in	 the	 outFeatureReportBuffer	 array	 is	 the
Report	 ID.	 The	 array’s	 length	 is	 the	 FeatureReportByteLength	 value	 in	 the
HIDP_CAPS	structure	retrieved	by	HidP_GetCaps.
The	 function	 returns	 true	 on	 success.	 If	 the	 device	 continues	 to	 NAK	 the
report	data,	the	function	times	out	and	returns.

Writing	Output	reports	with	control	transfers
In	much	the	same	way	as	HidD_SetFeature,	HidD_SetOutputReport	writes	an
Output	report	to	the	device	using	a	control	transfer	and	a	Set_Report	request.
The	function	accepts	a	handle	to	the	HID,	a	pointer	to	a	byte	array	containing
an	Output	report,	and	the	number	of	bytes	in	the	report	plus	one	byte	for	the
Report	ID.	The	buffer’s	first	byte	is	the	Report	ID.

Reading	Feature	reports
HidD_GetFeature	 requests	 a	 Feature	 report	 from	 a	 device	 using	 a	 control
transfer	with	 a	HID-class	Get_Feature	 request.	 The	 endpoint	 returns	 report
data	in	the	transfer’s	Data	stage.

Definitions
[DllImport(“hid.dll”,	SetLastError=true)]

internal	static	extern	Boolean	HidD_GetFeature

(SafeFileHandle	HidDeviceObject,

Byte[]	lpReportBuffer,

Int32	ReportBufferLength);

Use
Byte[]	inFeatureReportBuffer	=	null;

inFeatureReportBuffer	=

new	Byte[Capabilities.FeatureReportByteLength];

inFeatureReportBuffer[0]	=	0;

Boolean	success	=	NativeMethods.HidD_GetFeature

(deviceHandle,

inFeatureReportBuffer,

inFeatureReportBuffer.Length);

How	it	works
HidD_GetFeature	requires	a	handle	to	the	HID,	an	array	to	hold	the	retrieved
report(s),	 and	 the	 array’s	 length.	 The	 inFeatureReportBuffer	 array	 holds	 the
retrieved	report.	The	first	byte	in	the	array	is	the	Report	ID.	The	array’s	length
is	the	FeatureReportByteLength	value	in	the	HIDP_CAPS	structure	retrieved

by	HidP_GetCaps.
The	function	returns	true	on	success.	If	the	device	continues	to	return	NAK	in
the	Data	stage	of	the	transfer,	the	function	times	out	and	returns.

Reading	Input	reports	with	control	transfers
In	much	the	same	way	as	HidD_GetFeature,	HidD_GetInputReport	requests
an	 Input	 report	 to	 the	 device	 using	 a	 control	 transfer	 and	 a	 Get_Report
request.	The	 function	accepts	a	handle	 to	 the	HID,	a	pointer	 to	a	byte	array
that	will	hold	the	Input	report,	and	the	number	of	bytes	in	the	report	plus	one
byte	for	the	Report	ID.	The	buffer’s	first	byte	is	the	Report	ID.
The	 function	 requests	 a	 report	 directly	 from	 the	 device,	 bypassing	 the	HID
driver’s	buffer

Closing	communications
When	finished	communicating,	the	application	should	close	any	resources	no
longer	needed.

Definitions
[DllImport(“hid.dH”,	SetLastError=true)]

internal	static	extern	Boolean	HidD_FreePreparsedData

(IntPtr	PreparsedData);

Use
Boolean	success	=	HidD_FreePreparsedData(preparsedData);

if	(deviceData	!=	null)

{

deviceData.Dispose();

}

How	it	works
When	finished	using	the	PreparsedData	buffer	 that	HidD_GetPreparsedData
returned,	the	application	should	call	HidD_FreePreparsedData.
The	FileStream	class’s	Dispose	method	closes	the	Filestream,	including	closing
its	handle.

14

Using	WinUSB	for	Vendor-defined
Functions
For	 devices	 that	 perform	 vendor-defined	 functions	 that	 don’t	 fit	 a	 standard
class,	 Microsoft’s	WinUSB	 driver	 is	 an	 option.	 This	 chapter	 shows	 how	 to
develop	 a	 device	 that	 uses	 the	WinUSB	driver	 and	how	 to	 use	 the	WinUSB
API	to	access	the	device	from	applications.

Capabilities	and	limits
A	device	is	a	candidate	for	using	the	WinUSB	driver	if	the	device	and	its	host
computer(s)	meet	the	requirements	below.

Device	requirements
The	device:

Exchanges	 application	 data	 using	 any	 combination	 of	 control,	 interrupt,
bulk,	or	isochronous	transfers.
Has	descriptors	that	specify	a	vendor-defined	function.

Host	requirements
The	host:

Is	 Windows	 XP	 SP2	 or	 later	 (Windows	 8.1	 and	 later	 for	 isochronous
transfers).
Needs	no	more	than	one	open	handle	to	the	device	at	once.
Has	 a	 vendor-provided	 application	 to	 communicate	 with	 the	 device.
Programming	 languages	 for	 the	 application	 can	 include	 Visual	 C#	 and
other	 languages	 that	 can	 call	Windows	 API	 functions.	Windows	 8.1	 and
later	can	run	Windows	Store	apps	created	using	the	Windows.Devices.Usb
namespace

Driver	requirements
If	 the	 device	 has	 Microsoft	 OS	 descriptors	 that	 contain	 the	 CompatibleID
“WINUSB”	and	a	vendor-defined,	device-specific	value,	 the	host	can	use	 the
system-provided	WinUSB	INF	file.	Otherwise,	the	device	must	provide	an	INF
file	that	matches	the	device’s	Vendor	ID	and	Product	ID	to	a	vendor-defined
GUID.	Chapter	15	shows	how	to	create	descriptors	to	enable	using	the	system
INF	file.

Device	firmware
A	WinUSB	device	has	an	interface	descriptor	with	bInterfaceClass	=	0xFF	to
specify	 a	 vendor-defined	 function.	 Listing	 14-1	 shows	 descriptors	 for	 an
example	WinUSB	device	with	interrupt,	bulk,	and	isochronous	endpoints.	The
example	also	includes	string	descriptors.
The	system-provided	INF	file	places	WinUSB	devices	in	the	USBDevice	class.
For	devices	in	this	class,	under	Windows	8	and	later,	Device	Manager	displays
the	contents	of	 the	 iProduct	string	 from	the	device’s	descriptors,	 if	available,
instead	of	using	the	generic	description	in	the	INF	file.
For	all	transfer	types,	the	host	application	and	device	firmware	can	define	the
meaning	of	 transferred	data	 in	 any	way.	For	 example,	 for	 a	data-acquisition
device,	firmware	might	define	a	vendor-specific	control	request	with	bRequest
=	 0x01	 to	 identify	 the	 request,	 wIndex	 indicating	 which	 sensor	 reading	 to
return,	 and	wLength	 equal	 to	 the	 number	 of	 bytes	 the	 device	 should	 return
with	 the	 requested	 data.	 Or	 device	 firmware	 might	 send	 sensor	 data	 in	 a
defined	 format	 on	 an	 interrupt	 or	 bulk	 endpoint.	 In	 a	 similar	 way,	 a	 host
application	 can	 send	 data	 to	 a	 device	 using	 control,	 bulk,	 or	 interrupt
transfers.
Microchip’s	 USB	 Framework	 provides	 WinUSB	 firmware	 for	 Microchip
microcontrollers.	Texas	 Instruments	also	provides	 firmware	 for	use	with	 the
WinUSB	driver	on	the	host.

UCHAR	device_descriptor[0x12]	=

{

//	Device	descriptor

0x12, //	bLength Descriptor	size	in	bytes

0x01,	0x00,	0x02, //	bDescriptorType

//	bcdUSB

Descriptor	type	(Device)	USB

release	number	(BCD)	(2.00)

0x00, //	bDeviceClass Class	code

0x00, //	bDeviceSubClass Subclass	code

0x00, //	bDeviceProtocol Protocol	code

0x08, //	bMaxPacketSize0 Endpoint	0	maximum	packet	size

0x25,	0x09, //	idVendor Vendor	ID	(Lakeview	Research)

0x56,	0x14 //	idProduct Product	ID

0x00,	0x01 //	bcdDevice Device	release	number	(BCD)

0x01,	0x02, //	iManufacturer

//	iProduct

Manufacturer	string	index

Product	string	index

0x00, //	iSerialNumber Device	serial	number	string

index

0x01 //	bNumConfigurations Number	of	configurations

}

UCHAR	configuration_descriptor[0x3C]	=

{

//	Configuration	descriptor

0x09, //	bLength Descriptor	size	in	bytes

0x02, //	bDescriptorType Descriptor	type	(Configuration)

0x3C,	0x00, //	wTotalLength Total	length	of	this	and

	 // subordinate	descriptors	(60)

0x01, //	bNumInterfaces Number	of	interfaces

0x01, //	bConfigurationValue Index	of	this	configuration

0x00, //	iConfiguration Configuration	string	index

0xE0, //	bmAttributes Self	powered,	remote	wakeup

support

0x32, //	bMaxPower Maximum	power	consumption	(100

mA)

//	Interface	descriptor

0x09, //	bLength Descriptor	size	in	bytes

0x04, //	bDescriptorType Descriptor	type	(Interface)

0x00, //	bInterfaceNumber Interface	number

0x00, //	bAlternateSetting Alternate	setting	number

0x06, //	bNumEndpoints Number	of	endpoints

0xFF, //	bInterfaceClass Interface	class	(vendor

specific)

0x00, //	bInterfaceSubclass Interface	subclass

0x00, //	bInterfaceProtocol Interface	protocol

0x00, //	iInterface Interface	string	index

//	Interrupt	IN	endpoint	descriptor

0x07, //	bLength Descriptor	size	in	bytes

0x05, //	bDescriptorType Descriptor	type	(Endpoint)

0x81, //	bEndpointAddress Endpoint	1	IN

0x03, //	bmAttributes Transfer	type	(interrupt)

0x08,	0x00, //	wMaxPacketSize Maximum	packet	size

0x0A, //	bInterval Polling	interval	(ms)

//	Interrupt	OUT	endpoint	descriptor

0x07, //	bLength Descriptor	size	in	bytes

0x05, //	bDescriptorType Descriptor	type	(Endpoint)

0x01, //	bEndpointAddress Endpoint	1	OUT

0x03, //	bmAttributes Transfer	type	(interrupt)

0x08,	0x00, //	wMaxPacketSize Maximum	packet	size

0x0A, //	bInterval Polling	interval	(ms)

//	Bulk	IN	endpoint	descriptor

0x07, //	bLength Descriptor	size	in	bytes

0x05, //	bDescriptorType Descriptor	type	(Endpoint)

0x82, //	bEndpointAddress Endpoint	2	IN

0x02, //	bmAttributes Transfer	type	(bulk)

0x40,	0x00, //	wMaxPacketSize Maximum	packet	size

0x00, //	bInterval Polling	interval	(ignored)

//	Bulk	OUT	endpoint	descriptor

0x07, //	bLength Descriptor	size	in	bytes

0x05, //	bDescriptorType Descriptor	type	(Endpoint)

0x02, //	bEndpointAddress Endpoint	2	OUT

0x02, //	bmAttributes Transfer	type	(bulk)

0x40,	0x00, //	wMaxPacketSize Maximum	packet	size

0x00, //	bInterval Polling	interval	(ignored)

//	Isochronous	IN	endpoint	descriptor

0x07, //	bLength Descriptor	size	in	bytes

0x05, //	bDescriptorType Descriptor	type	(Endpoint)

0x83, //	bEndpointAddress Endpoint	3	IN

0x01, //	bmAttributes Transfer	type	(isochronous)

0x08,	0x00, //	wMaxPacketSize Maximum	packet	size

0x01, //	bInterval Polling	interval

//	Isochronous	OUT	endpoint	descriptor

0x07, //	bLength Descriptor	size	in	bytes

0x05, //	bDescriptorType Descriptor	type	(Endpoint)

0x03, //	bEndpointAddress Endpoint	3	OUT

0x01, //	bmAttributes Transfer	type	(isochronous)

0x08,	0x00, //	wMaxPacketSize Maximum	packet	size

0x01 //	bInterval Polling	interval

}

UCHAR	string	descriptor	0[0x041	=

{

//	String	descriptor	0

0x04, //	bLength Descriptor	size	in	bytes

0x03, //	bSTRING Descriptor	type	(String)

0x09,	0x04 //	wLANGID Language	ID	(U.S.	English)

}

UCHAR	string_descriptor_1[0x24]	=

{

//	String	descriptor	1

0x22, //	bLength Descriptor	size	in	bytes

0x03, //	bSTRING Descriptor	type	(String)

//	Manufacturer	string,	UTF-16LE	Unicode:	“Lakeview	Research”

0x4C,	0x00,	0x61,	0x00,	0x6B,	0x00,	0x65,	0x00,	0x76,	0x00,	0x69,	0x00,

0x65,	0x00,	0x77,	0x00,	0x20,	0x00,	0x52,	0x00,	0x65,	0x00,	0x73,	0x00,

0x65,	0x00,	0x61,	0x00,	0x72,	0x00,	0x63,	0x00,	0x68,	0x00

}

UCHAR	string_descriptor_2[0x2C]	=

{

//	String	descriptor	2

0x2A, //	bLength Descriptor	size	in	bytes

0x03, //	bSTRING Descriptor	type	(String)

//	Product	string,	UTF-16LE	Unicode:	“WinUSB	Example	Device”

0x57,	0x00,	0x69,	0x00,	0x6E,	0x00,	0x55,	0x00,	0x53,	0x00,	0x42,	0x00,

0x20,	0x00,	0x45,	0x00,	0x78,	0x00,	0x61,	0x00,	0x6D,	0x00,	0x70,	0x00,

0x6C,	0x00,	0x65,	0x00,	0x20,	0x00,	0x44,	0x00,	0x65,	0x00,	0x76,	0x00,

0x69,	0x00,	0x63,	0x00,	0x65,	0x00

}

Listing	14-1:	A	device	that	uses	the	WinUSB	driver	can	use	these	descriptors.

Accessing	the	device
Accessing	 a	 WinUSB	 device	 requires	 finding	 the	 device,	 initializing
communications,	and	exchanging	data	using	bulk,	interrupt,	isochronous,	and
control	transfers	as	needed.	The	WinUSB	driver’s	winusb.dll	exposes	functions
that	 applications	 can	 call	 to	 obtain	 access	 to	 devices	 and	 to	 configure,	 and
exchange	data	with	them.
The	code	examples	in	this	chapter	assume	the	following	using	statements:
using	Microsoft.Win32.SafeHandles;

using	System;

using	System.Runtime.InteropServices;

Creating	a	SafeWinUsbHandle
The	WinUSB	API	provides	a	WinUsb_Initialize	routine	that	returns	a	pointer
to	 a	 handle	 for	 accessing	 a	 WinUSB	 device.	 As	 Chapter	 10	 explained,	 a

SafeHandle	 is	 preferable	 to	 an	 IntPtr.	WinUSB	 devices	 can’t	 use	 any	 of	 the
provided	 classes	 derived	 from	 SafeHandle,	 but	 you	 can	 derive	 a	 new
SafeHandle	class	 from	one	of	 the	defined	classes.	The	example	here,	adapted
from	 Microsoft’s	 example	 in	 the	 SafeHandle	 documentation,	 derives	 the
SafeWinUsbHandle	 class	 from	 the	 provided	 class
SafeHandleZeroOrMinusOneIsInvalid,	 which	 implements	 a	 handle	 where
either	zero	or	-1	is	an	invalid	handle.

Definitions
[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_Free

(IntPtr	InterfaceHandle);

Use
[SecurityPermission

(SecurityAction.InheritanceDemand,	UnmanagedCode	=	true)]

[SecurityPermission(SecurityAction.Demand,	UnmanagedCode	=	true)]

internal	class	SafeWinUsbHandle	:	SafeHandleZeroOrMinusOneIsInvalid

{

internal	SafeWinUsbHandle()

:	base(true)

{

base.SetHandle(handle);

this.handle	=	IntPtr.Zero;

}

[ReliabilityContract

(Consistency.WillNotCorruptState,	Cer.MayFail)]

protected	override	bool	ReleaseHandle()

{

if	(!this.IsInvalid)

{

this.handle	=	IntPtr.Zero;

}

return	NativeMethods.WinUsb_Free(handle);

}

public	override	bool	Islnvalid

{

get

{

if	(handle	==	IntPtr.Zero)

{

return	true;

}

if	(handle	==	(IntPtr)(-1))

{

return	true;

}

return	false;

}

}

public	IntPtr	GetHandleQ

{

if	(IsInvalid)

{

throw	new	Exception(“The	handle	is	invalid.”);

}

return	handle;

}

}

Two	security	actions	in	the	SecurityPermisson	enumeration	enable	the	derived
class	 to	use	unmanaged	code.	The	SecurityAction.InheritanceDemand	action
requires	 inherited	 classes	 to	 have	 permission	 to	 use	 unmanaged	 code.	 The
SecurityAction.	Demand	 action	 requires	 callers	 that	 access	 the	 class	 to	 have
permission	to	use	unmanaged	code.
The	constructor	creates	the	SafeWinUsbHandle	class	and	initializes	the	handle
to	IntPtr.Zero.
The	 ReleaseHandle	 method	 overrides	 the	 class’s	 ReleaseHandle	 method	 to
enable	 calling	 the	 WinUsb_Free	 API	 function	 to	 release	 the	 handle.	 The
method’s	Reliability-Contract	attribute	indicates	that	the	method	may	fail	but
on	failure,	data	will	be	in	a	valid	state.
Microsoft	 requires	 overriding	 the	 IsInvalid	 property	 in	 derived	 classes.	 The
property	returns	true	if	the	handle	equals	zero	or	-1.
The	GetHandle	method	returns	the	handle	or	if	the	handle	is	invalid,	throws
an	exception.

Obtaining	a	WinUSB	handle
Before	exchanging	data	with	a	WinUSB	device,	an	application	obtains	a	device
pathname	using	SetupDi_	functions.	The	application	can	then	use	CreateFile
to	 obtain	 a	 handle.	 The	 application	 must	 know	 the	 device	 interface	 GUID
stored	either	 in	 the	device	 firmware	or	 in	 the	device’s	 INF	file.	 In	 the	call	 to
CreateFile,	 the	 dwFlagsandAttributes	 parameter	 must	 be	 set	 to
FILE_FLAG_OVERLAPPED.
Chapter	 8	 discussed	 how	 to	 generate	 a	 GUID.	 Chapter	 10	 showed	 how	 to
obtain	a	handle	with	CreateFile	and	use	the	handle	to	detect	when	a	device	is
attached	and	removed.
After	 calling	 CreateFile	 to	 obtain	 a	 handle,	 the	 application	 calls
WinUsb_Initialize	to	obtain	a	WinUSB	interface	handle.	The	application	uses
this	handle	for	all	communications	with	the	interface.

Definitions
internal	class	DeviceInfo

{

internal	Byte	BulkInPipe;

internal	Byte	BulkOutPipe;

internal	Byte	InterruptInPipe;

internal	Byte	InterruptOutPipe;

internal	Byte	IsochronousInPipe;

internal	Byte	IsochronousOutPipe;

internal	UInt32	DeviceSpeed;

}

[DllImport(“winusb.dH”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_Initialize

(SafeFileHandle	DeviceHandle,

ref	SafeWinUsbHandle	InterfaceHandle);

Use
private	SafeWinUsbHandle	winUsbHandle;

private	DeviceInfo	myDeviceInfo	=	new	DeviceInfo();

var	success	=	NativeMethods.WinUsb_Initialize

(deviceHandle,	ref	winUsbHandle);

How	it	works
The	DeviceInfo	class	holds	information	about	a	device	and	its	endpoints.	The
device-Handle	 parameter	 is	 a	 handle	 to	 a	 WinUSB	 device	 returned	 by
CreateFile.	On	success,	WinUsb_Initialize	returns	true	and	winUsbHandle	is	a
pointer	to	a	WinUSB	handle	that	the	application	can	use	to	access	the	device.

Requesting	an	interface	descriptor
The	 WinUsb_QueryInterfaceSettings	 function	 returns	 a	 structure	 with
information	about	a	WinUSB	interface.

Definitions
internal	struct	USB_INTERFACE_DESCRIPTOR

{

internal	Byte	bLength;

internal	Byte	bDescriptorType;

internal	Byte	bInterfaceNumber;

internal	Byte	bAlternateSetting;

internal	Byte	bNumEndpoints;

internal	Byte	bInterfaceClass;

internal	Byte	bInterfaceSubClass;

internal	Byte	bInterfaceProtocol;

internal	Byte	iInterface;

}

[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_QueryInterfaceSettings

(SafeWinUsbHandle	InterfaceHandle,

Byte	AlternateInterfaceNumber,

ref	USB_INTERFACE_DESCRIPTOR	UsbAltInterfaceDescriptor);

Use
var	ifaceDescriptor	=	new	NativeMethods.USB_INTERFACE_DESCRIPTOR();

var	success	=	NativeMethods.WinUsb_QueryInterfaceSettings

(winUsbHandle,	0,	ref	ifaceDescriptor);

How	it	works
The	 function	accepts	 a	pointer	 to	 a	WinUsb	handle	 and	a	bAlternateSetting
number	 from	 the	 interface	 descriptor	 to	 indicate	 which	 interface	 setting	 to
query.	 On	 success,	 the	 function	 returns	 true	 and	 a	 pointer	 to	 a
USB_INTERFACE_DESCRIPTOR	structure	containing	information	from	the
requested	interface	descriptor.
For	 interfaces	 with	 alternate	 settings,	 you	 can	 create	 an	 array	 of
USB_INTERFACE_DESCRIPTOR	structures:
var	ifaceDescriptors	=

new	NativeMethods.USB_INTERFACE_DESCRIPTOR[2];

and	query	the	interface	settings	by	specifying	the	ifaceDescriptor	array	index
for	 when	 querying	 the	 interface,	 for	 example,	 ifaceDescriptor[0]	 and
ifaceDescriptor[1].

Identifying	the	endpoints
For	 each	 endpoint	 in	 the	 interface	 descriptor,	 an	 application	 can	 call
WinUsb_QueryPipe	 to	 learn	 the	 endpoint’s	 transfer	 type	 and	direction.	The
myDeviceInfo	structure	can	store	the	information.

Definitions
internal	enum	USBD_PIPE_TYPE

{

UsbdPipeTypeControl,

UsbdPipeTypeIsochronous,

UsbdPipeTypeBulk,

UsbdPipeTypeInterrupt,

}

internal	struct	WINUSB_PIPE_INFORMATION

{

internal	USBD_PIPE_TYPE	PipeType;

internal	Byte	PipeId;

internal	UInt16	MaximumPacketSize;

internal	Byte	Interval;

}

[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_QueryPipe

(SafeWinUsbHandle	InterfaceHandle,

Byte	AlternateInterfaceNumber,

Byte	PipeIndex,

ref	WINUSB_PIPE_INFORMATION	PipeInformation);

Use
var	pipeInfo	=	new	NativeMethods.WINUSB_PIPE_INFORMATION();

private	Boolean	UsbEndpointDirectionIn(Int32	addr)

{

var	directionIn	=	false;

if	(((endpointAddress	&	0X80)	==	0X80))

{

directionIn	=	true;

}

return	directionIn;

}

private	Boolean	UsbEndpointDirectionOut(Int32	addr)

{

var	directionOut	=	false;

if	(((addr	&	0X80)	==	0))

{

directionOut	=	true;

}

return	directionOut;

for	(var	i	=	0;	i	<=	ifaceDescriptor.bNumEndpoints	-	1;

{

NativeMethods.WinUsb_QueryPipe

(winUsbHandle,

0

Convert.ToByte(i),

ref	pipeInfo);

if	(((pipeInfo.PipeType	==

NativeMethods.USBD_PIPE_TYPE.UsbdPipeTypeBulk)	&

UsbEndpointDirectionIn(pipeInfo.PipeId)))

{

myDeviceInfo.BulkInPipe	=	pipeInfo.PipeId;

}

else	if	(((pipeInfo.PipeType	==

NativeMethods.USBD_PIPE_TYPE.UsbdPipeTypeBulk)	&

UsbEndpointDirectionOut(pipeInfo.PipeId)))

{

myDeviceInfo.BulkOutPipe	=	pipeInfo.PipeId;

}

else	if	((pipeInfo.PipeType	==

NativeMethods.USBD_PIPE_TYPE.UsbdPipeTypeInterrupt)	&

UsbEndpointDirectionIn(pipeInfo.PipeId))

{

myDeviceInfo.InterruptInPipe	=	pipeInfo.PipeId;

}

else	if	((pipeInfo.PipeType	==

NativeMethods.USBD_PIPE_TYPE.UsbdPipeTypeInterrupt)	&

UsbEndpointDirectionOut(pipeInfo.Pipeld))

{

myDeviceInfo.InterruptOutPipe	=	pipeInfo.PipeId;

}

else	if	((pipeInfo.PipeType	==

NativeMethods.USBD_PIPE_TYPE.UsbdPipeTypeIsochronous)	&

UsbEndpointDirectionIn(pipeInfo.PipeId))

{

myDeviceInfo.IsochronousInPipe	=	pipeInfo.PipeId;

}

else	if	((pipeInfo.PipeType	==

NativeMethods.USBD_PIPE_TYPE.UsbdPipeTypeIsochronous)

&	UsbEndpointDirectionOut(pipeInfo.PipeId))

{

myDeviceInfo.IsochronousOutPipe	=	pipeInfo.PipeId;

}

}

How	it	works
The	 UsbEndpointDirectionIn	 and	 UsbEndpointDirectionOut	 functions
enable	querying	the	direction	of	an	endpoint.	The	application	can	request	and
store	information	about	each	of	the	interface’s	endpoints	in	turn.	The	PipeId
value	equals	bEndpointAddress	 in	 the	endpoint	descriptor.	A	valid	endpoint
has	a	PipeId	greater	than	zero.
For	 interfaces	 with	 multiple	 alternate	 settings,	 you	 can	 create	 an	 array	 of
pipeInfo	structures:
var	pipeInfo	=	new	NativeMethods.WINUSB_PIPE_INFORMATION[2];

and	 specify	 the	 ifaceDescriptor	 and	 pipeInfo	 array	 index	 for	 each	 alternate
interface	when	retrieving	and	setting	pipe	values.

Setting	pipe	policies
After	 identifying	an	endpoint,	an	application	can	set	vendor-specific	policies
for	transfers	at	the	endpoint.	Table	14-1	shows	the	policies.

Table	 14-1:	 The	 WinUsb_SetPipePolicy	 function	 can	 specify	 how	 the	 driver
responds	 to	 various	 conditions	 when	 performing	 a	 transfer	 and	 whether	 data
bypasses	WinUSB’s	queuing	and	error	handling.
Parameter Value Default Description

SHORT_PACKET_TERMINATE 0x01 False If	True,	terminate	a	write	transfer	that	is
a	multiple	of	wMaxPacketSize	with	a
ZLP.

AUTO_CLEAR_STALL 0x02 False If	True,	clear	a	stall	condition
automatically.

PIPE_TRANSFER_TIMEOUT 0x03 Zero Set	a	transfer	timeout	interval	in
milliseconds.	Zero	=	never	time	out.

IGNORE_SHORT_PACKETS 0x04 False If	True,	complete	a	read	operation	only
on	receiving	the	specified	number	of
bytes.	If	False,	complete	a	read	operation
on	receiving	the	specified	number	of
bytes	or	a	short	packet.

ALLOW_PARTIAL_READS 0x05 True Sets	the	policy	if	the	endpoint	returns
more	data	than	requested.	If	True,
complete	the	read	operation	and	save	or
discard	the	extra	data	as	specified	by
AUTO_FLUSH.	If	False,	fail	the	read

request.

AUTO_FLUSH 0x06 False If	True	and	ALLOW_PARTIAL_READS
is	also	True,	discard	extra	data.	If	False
and	ALLOW_PARTIAL_READS	is
True,	save	extra	data	and	return	it	in	the
next	read	operation.	If
ALLOW_PARTIAL_READS	is	False,
ignore.

RAW_IO 0x07 False Determines	whether	calls	to
WinUsb_ReadPipe	bypasses	WinUSB’s
queuing	and	error	handling,	If	True,	calls
pass	directly	to	the	USB	stack,	and	the
read	buffer	must	be	a	multiple	of
wMaxPacketSize	and	less	than	the	host
controller’s	maximum	per	transfer.	If
False,	calls	don’t	pass	directly	to	the	USB
stack,	and	the	buffers	don’t	have	the	size
restrictions.

Definitions
internal	enum	POLICY_TYPE

{

SHORT_PACKET_TERMINATE	=	1,

AUTO_CLEAR_STALL,

PIPE_TRANSFER_TIMEOUT,

IGNORE_SHORT_PACKETS,

ALLOW_PARTIAL_READS,

AUTO_FLUSH,

RAW_IO,

}

[DllImport(“winusb.dH”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_SetPipePolicy

(SafeWinUsbHandle	InterfaceHandle,

Byte	PipeID,

UInt32	PolicyType,

UInt32	ValueLength,

ref	Byte	Value);

[DllImport(“winusb.dll”,	SetLastError	=	true,

EntryPoint	=	“WinUsb_SetPipePolicy”)]

internal	static	extern	Boolean	WinUsb_SetPipePolicy1

(SafeWinUsbHandle	InterfaceHandle,

Byte	PipeID,

UInt32	PolicyType,

UInt32	ValueLength,

ref	UInt32	Value);

Use
private	Boolean	SetPipePolicy(SafeWinUsbHandle	winUsbHandle,	Byte	pipeId,	UInt32

policyType,	Byte	value)

{

var	success	=	NativeMethods.WinUsb_SetPipePolicy

(winUsbHandle,	pipeId,	policyType,	1,	ref	value);

return	success;

}

private	Boolean	SetPipePolicy(SafeWinUsbHandle	winUsbHandle,	Byte	pipeId,	UInt32

policyType,	UInt32	value)

{

var	success	NativeMethods.WinUsb_SetPipePolicy1

(winUsbHandle,	pipeId,	policyType,	4,	ref	value);

return	success;

}

var	success	=	SetPipePolicy

(winUsbHandle,

myDeviceInfo.BulkOutPipe,

Convert.ToUInt32

(NativeMethods.POLICY_TYPE.IGNORE_SHORT_PACKETS),

Convert.ToByte(false));

UInt32	pipeTimeout	=	2000;

var	success	=	NativeMethods.SetPipePolicy

(winUsbHandle,

myDeviceInfo.BulkOutPipe,

Convert.ToUInt32

(NativeMethods.POLICY_TYPE.PIPE_TRANSFER_TIMEOUT),

pipeTimeout);

How	it	works
The	WinUsb_SetPipePolicy	 function	 accepts	 a	 Byte	 for	 the	 value	 parameter
for	all	policies	except	PIPE_TRANSFER_TIMEOUT,	which	requires	a	UInt32.
To	handle	both	types,	the	definition	for	WinUsb_SetPipePolicy	accepts	a	Byte
value,	 and	 the	 definition	 for	 the	 alias	 WinUsb_SetPipePolicy1	 accepts	 a
UInt32.	Two	overloaded	SetPipePolicy	functions	accept	different	types	for	the
value	 parameter	 and	 pass	 the	 parameter	 to	 WinUsb_SetPipePolicy	 or
WinUsb_SetPipePolicy1.
The	Byte	 parameters	 of	WinUsb_SetPipePolicy	 have	 true/false	meanings,	 so
for	 readability,	 the	 SetPipePolicy	 function	 accepts	 a	 Boolean	 value,	 and	 the
Convert.ToByte	 method	 converts	 the	 value	 to	 a	 Byte	 for	 passing	 to
WinUsb_SetPipePolicy.
The	example	sets	two	policies	for	the	bulk	IN	endpoint.	In	a	similar	way,	you
can	set	policies	 for	all	of	an	 interface’s	endpoints.	A	companion	function	for
reading	pipe	policies	is	WinUsb_GetPipePolicy.

Writing	bulk	and	interrupt	data
The	 WinUsb_WritePipe	 function	 can	 write	 data	 to	 bulk	 and	 interrupt
endpoints.

Definitions
[DllImport(“winusb.dH”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_WritePipe

(SafeWinUsbHandle	InterfaceHandle,

Byte	PipeID,

Byte[]	Buffer,

UInt32	BufferLength,

ref	UInt32	LengthTransferred,

IntPtr	Overlapped);

Use
Byte[]	buffer	=	new	Byte[2];

UInt32	bytesToWrite	=	2;

UInt32	bytesWritten	=	0;

buffer[0]	=	72;

buffer]	=	105;

bytesToWrite	=	Convert.ToUInt32(buffer.Length);

var	success	=	NativeMethods.WinUsb_WritePipe

(winUsbHandle,

myDeviceInfo.bulkOutPipe,

buffer,

bytesToWrite,

ref	bytesWritten,

IntPtr.Zero);

How	it	works
The	 WinUsb_WritePipe	 function	 accepts	 a	 pointer	 to	 a	 WinUSB	 handle
obtained	 with	 WinUsb_Initialize,	 an	 endpoint	 address	 retrieved	 with
WinUsb_QueryPipe,	a	buffer	with	data	to	send,	the	number	of	bytes	to	write,	a
variable	that	will	hold	the	number	of	bytes	written	when	the	function	returns,
and	a	zero	pointer	to	specify	synchronous	operation.	The	example	creates	a	2-
byte	buffer	and	stores	2	bytes	in	it.
The	 example	 is	 synchronous:	 the	 calling	 thread	 blocks	 until
WinUsb_WritePipe	 returns.	On	 success,	 the	 function	 returns	True	with	 the
number	 of	 bytes	 written	 in	 bytesWritten.	 To	 send	 data	 using	 an	 interrupt
transfer,	 change	 myDeviceInfo.bulk-OutPipe	 to
myDeviceInfo.interruptOutPipe.
The	function	returns	on	success	or	a	timeout	or	other	failure.
To	 cause	 the	 driver	 to	 terminate	 transfers	 that	 are	 exact	 multiples	 of
wMaxPacketSize	 with	 ZLPs,	 call	 WinUsb_SetPipePolicy	 with
SHORT_PACKET_TERMINATE	 =	 True.	 This	 option	 can	 be	 useful	 if	 the
device	 firmware	 needs	 a	 way	 to	 identify	 the	 end	 of	 a	 transfer	 of	 unknown
length.

Writing	data	without	blocking
To	write	data	asynchronously,	or	without	blocking,	you	can	use	a	delegate	that

initiates	 the	 operation	 and	 notifies	 the	 calling	 thread	when	 the	 operation	 is
complete.
To	 enable	 calling	 the	 code	 to	 write	 data,	 place	 the	 code	 from	 the	 example
above	in	a	routine:
internal	void	SendDataViaBulkTransfer

(SafeWinUsbHandle	winUsbHandle,

DeviceInfo	myDeviceInfo,

UInt32	bytesToWrite,

Byte[]	dataBuffer,

ref	UInt32	bytesWritten,

ref	Boolean	success)

{

success	=	NativeMethods.WinUsb_WritePipe

(winUsbHandle,

myDeviceInfo.BulkOutPipe,

dataBuffer,

bytesToWrite,

ref	bytesWritten,

IntPtr.Zero);

}

Then	 create	 a	 delegate	 for	 the	 routine	 to	 enable	 calling	 the	 routine
asynchronously.	The	 first	 step	 is	 to	 create	 a	 class	of	delegates	with	 the	 same
parameters	as	SendData-ViaBulk	Transfer:
private	delegate	void	SendToDeviceDelegate

(SafeWinUsbHandle	winUsbHandle,

DeviceInfo	myDevInfo,

UInt32	bufferLength,

Byte[]	buffer,

ref	UInt32	lengthTransferred,

ref	Boolean	success);

Then	create	a	delegate	of	the	SendToDeviceDelegate	class:
SendToDeviceDelegate	mySendToDeviceDelegate	=	SendDataViaBulkTransfer;

The	 delegate’s	 BeginInvoke	 method	 has	 the	 same	 parameters	 as
SendDataViaBulk-Transfer	plus	two	additional	parameters.	GetBulkDataSent
names	 the	 routine	 to	 call	 when	 the	 write	 operation	 completes,	 and	 the
mySendToDeviceDelegate	object	passes	 information	 to	 the	GetBulkDataSent
routine:
mySendToDeviceDelegate.BeginInvoke

(winUsbHandle,

myDeviceInfo,

bytesToWrite,

dataBuffer,

ref	bytesWritten

ref	success,

GetBulkDataSent,

mySendToDeviceDelegate);

When	 SendDataViaBulkTransfer	 completes,	 the	 GetBulkDataSent	 routine
executes:
private	void	GetBulkDataSent(IAsyncResult	ar)

{

UInt32	bytesWritten	=	0;

var	deleg	=	((SendToDeviceDelegate)(ar.AsyncState));

deleg.EndInvoke(ref	bytesWritten,	ref	success,	ar);

if	(ar.IsCompleted)

{

Debug.WriteLine(bytesWritten);

Debug.WriteLine(success);

}

}

The	 EndInvoke	method	 returns	 the	 parameters	 that	 BeginInvoke	 passed	 by
reference.	The	IAsycnResult	parameter’s	IsCompleted	property	returns	true	if
the	method	completed.

Reading	bulk	and	interrupt	data
The	 WinUsb_ReadPipe	 function	 can	 read	 data	 from	 bulk	 and	 interrupt
endpoints.

Definitions
[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_ReadPipe

(SafeWinUsbHandle	InterfaceHandle,

Byte	PipeID,

Byte[]	Buffer,

UInt32	BufferLength,

ref	UInt32	LengthTransferred,

IntPtr	Overlapped);

Use
Byte[]	buffer	=	new	Byte[64];

UInt32	bytesRead	=	0;

UInt32	bytesToRead	=	64;

var	success	=	NativeMethods.WinUsb_ReadPipe

(winUsbHandle,

myDeviceInfo.bulkInPipe,

buffer,

bytesToRead,

ref	bytesRead,

IntPtr.Zero);

How	it	works
The	 WinUsb_ReadPipe	 function	 accepts	 a	 pointer	 to	 a	 WinUSB	 handle
obtained	 with	 WinUsb_Initialize,	 an	 endpoint	 address	 retrieved	 with
WinUsb_QueryPipe,	a	buffer	 that	will	 store	 the	received	data,	 the	maximum
number	of	bytes	to	read,	a	pointer	to	a	buffer	that	will	contain	the	number	of
bytes	 read	 when	 the	 function	 returns,	 and	 a	 zero	 pointer	 to	 specify
synchronous	 operation.	 On	 success,	 the	 function	 returns	 true	 with	 the
received	data	in	the	passed	buffer	and	the	number	of	bytes	read	in	bytes-Read.
To	 send	 data	 using	 interrupt	 transfers,	 change	 myDeviceInfo.bulkInPipe	 to

myDeviceInfo.interruptInPipe.
The	 number	 of	 bytes	 read	 can	 depend	 on	 the	 policies	 set	 by
WinUsb_SetPipePolicy.

Reading	data	without	blocking
In	 the	 example	 above,	 the	 calling	 thread	 blocks	 until	 WinUsb_ReadPipe
returns.	As	when	writing	data,	you	can	read	data	without	blocking	by	using	a
delegate	to	 initiate	 the	read	operation	and	notify	the	calling	thread	when	the
operation	is	complete.
To	enable	calling	the	code	to	read	data,	place	the	code	from	the	example	above
in	a	routine	as	shown	in	the	example	below.
internal	void	ReceiveDataViaBulkTransfer

(SafeWinUsbHandle	winUsbHandle,

Deviceinfo	myDeviceInfo,

UInt32	bytesToRead,

ref	Byte[]	dataBuffer,

ref	UInt32	bytesRead,

ref	Boolean	success)

{

var	success	=	NativeMethods.WinUsb_ReadPipe

(winUsbHandle,

myDeviceInfo.BulkInPipe,

dataBuffer,

bytesToRead,

ref	bytesRead,

IntPtr.Zero);

}

Then	 create	 a	 delegate	 for	 the	 routine	 to	 enable	 calling	 the	 routine
asynchronously.
The	 first	 step	 is	 to	 create	 a	 class	 of	 delegates	 with	 the	 same	 parameters	 as
Receive-DataViaBulk	Transfer:
private	delegate	void	ReceiveFromDeviceDelegate(

SafeWinUsbHandle	winUsbHandle,

DeviceInfo	myDeviceInfo,

UInt32	bytesToRead,

ref	Byte[]	dataBuffer,

ref	UInt32	bytesRead,

ref	Boolean	success);

Then	create	a	delegate	of	the	ReceiveFromDeviceDelegate	class:
ReceiveFromDeviceDelegate	myReceiveFromDeviceDelegate	=	ReceiveDataViaBulkTransfer;

The	 delegate’s	 BeginInvoke	 method	 has	 the	 same	 parameters	 as
ReceiveDataViaBulk-Transfer	 plus	 two	 additional	 parameters.
GetBulkDataReceived	is	the	routine	to	call	when	the	read	operation	completes,
and	 the	 myReceiveFromDeviceDelegate	 object	 passes	 information	 to	 the
GetBulkDataReceived	routine:
myReceiveFromDeviceDelegate.BeginInvoke

(winUsbHandle,

myDeviceInfo,

bytesToRead,

ref	dataBuffer,

ref	bytesRead,

ref	success,

GetBulkDataReceived,

myReceiveFromDeviceDelegate);

When	 ReceiveDataViaBulkTransfer	 completes,	 the	 GetBulkDataReceived
routine	executes:
private	void	GetBulkDataReceived(IAsyncResult	ar)

{

UInt32	bytesRead	=	0;

var	success	=	false;

Byte[]	receivedDataBuffer	=	null;

var	deleg	=	((ReceiveFromDeviceDelegate)(ar.AsyncState));

deleg.EndInvoke

(ref	receivedDataBuffer,

ref	bytesRead,

ref	success,	ar);

if	(ar.IsCompleted)

{

Debug.WriteLine(bytesRead);

Debug.WriteLine(success);

for	(Int32	i	=	0;	i	<=	bytesRead	-	1;

{

Debug.WriteLine(receivedDataBuffer[i]);

}

}

}

The	 EndInvoke	method	 returns	 the	 parameters	 that	 BeginInvoke	 passed	 by
reference,	 including	 the	 received	 data.	 The	 IAsycnResult	 parameter’s
IsCompleted	property	returns	true	if	the	method	completed.

Using	vendor-defined	control	transfers
Another	 option	 for	 transferring	 data	 is	 to	 use	 vendor-defined	 requests	 sent
using	control	transfers	directed	to	the	WinUSB	interface.
Requests	can	use	any	value	from	0x0000	to	0xFFFF	for	wValue	and	wLength
in	 the	Setup	packet.	 If	 the	 request	 is	directed	 to	 the	device	 (bmRequestType
bits	4..0	=	00000b),	the	entire	wIndex	field	is	also	available	for	any	use.	If	the
request	 is	 directed	 to	 an	 interface	 (bmRequestType	 bits	 4..0	 =	 00001b),	 the
WinUSB	driver	passes	the	interface	number	in	the	low	byte	of	wIndex	so	only
the	high	byte	is	available	for	vendor	use.
In	 the	bmRequestType	 field,	bits	6..5	 equal	10b	 to	 indicate	 a	 vendor-defined
request.	The	bRequest	field	is	a	vendor-defined	request	number.

Definitions
internal	struct	WINUSB_SETUP_PACKET

{

internal	Byte	RequestType;

internal	Byte	Request;

internal	UInt16	Value;

internal	UInt16	Index;

internal	UInt16	Length;

}

[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_ControlTransfer

(SafeWinUsbHandle	InterfaceHandle,

WINUSB_SETUP_PACKET	SetupPacket,

Byte[]	Buffer,

UInt32	BufferLength,

ref	UInt32	LengthTransferred,

IntPtr	Overlapped);

Use
UInt32	bytesReturned	=	0;

Byte[]	dataStage	=	new	Byte[2];

NativeMethods.WINUSB_SETUP_PACKET	setupPacket;

//	Use	this	for	a	vendor-specific	request	to	an	interface	with	a

//	device-to-host	Data	stage.

//	setupPacket.RequestType	=	0XC1;

//	Use	this	for	a	vendor-specific	request	to	an	interface	with	a

//	host-to-device	Data	stage.

setupPacket.RequestType	=	0X41;

setupPacket.Request	=	1;

setupPacket.Value	=	3;

setupPacket.Length	=	Convert.ToUInt16(dataStage.Length);

//	For	control	write	transfers	(host-to-device	Data	stage),

//	provide	data	for	the	Data	stage.	Example:

dataStage[0]	=	65;

dataStage[1]	=	66;

var	success	=	NativeMethods.WinUsb_ControlTransfer

(winUsbHandle,

setupPacket,

dataStage,

Convert.ToUInt16(dataStage.Length),

ref	bytesReturned,

IntPtr.Zero);

How	it	works
The	WINUSB_SETUP_PACKET	structure	holds	the	contents	of	the	fields	in
the	Setup	 stage’s	data	packet	 as	described	 in	Chapter	2.	The	application	 sets
RequestType	 to	 the	 bmRequestType	 value	 for	 a	 vendor-specific	 request
directed	 to	an	 interface	with	bit	7	 indicating	 the	direction	of	 the	Data	 stage.

The	Request	and	Value	fields	are	the	desired	values	for	bRequest	(the	request
number)	and	wValue	(vendor-defined	data)	in	the	request.
For	 requests	directed	 to	 an	 interface,	 the	WinUSB	driver	 sets	wIndex	 to	 the
interface	number	of	the	WinUSB	interface.	For	requests	directed	to	the	device
(setup-Packet.RequestType	=	0x40	or	0xC0),	the	application	can	send	a	value
in	setup-Packet.Index.
For	 a	 control	 write	 request,	 the	 application	 places	 the	 data	 to	 send	 to	 the
device	in	an	array.	For	a	control	read	request,	the	application	passes	an	array
to	hold	data	received	from	the	device.
The	 setupPacket.Length	 field	 is	 the	 number	 of	 bytes	 in	 the	 request’s	 Data
stage.
The	 WinUsb_ControlTransfer	 function	 initiates	 a	 control	 transfer.	 The
function	 passes	 a	 pointer	 to	 a	 WinUSB	 handle	 to	 the	 interface,	 a
WINUSB_SETUP_PACKET	structure,	a	pointer	to	a	byte	array	that	contains
data	to	send	or	space	for	received	data,	the	number	of	bytes	to	read	or	write,	a
pointer	 to	 variable	 that	 will	 contain	 the	 number	 of	 bytes	 read	 (for	 read
operations),	and	a	zero	pointer	to	specify	synchronous	operation.	For	control
write	transfers,	bytesReturned	can	be	a	null	pointer.	On	success,	the	function
returns	 True	 with	 the	 number	 of	 bytes	 read	 or	 written	 in	 the
LengthTransferred	 parameter.	 For	 control	 read	 transfers,	 the	 passed	 array
contains	the	received	data.

Selecting	an	alternate	interface
A	device’s	default	interface	should	request	no	isochronous	bandwidth.	To	use
isochronous	transfers,	the	host	should	select	an	alternate	interface	that	has	one
or	 more	 isochronous	 endpoints	 whose	 wPacketSize	 is	 greater	 than	 zero.
WinUSB	provides	a	 function	 to	select	an	alternate	 interface	 for	 this	or	other
uses.

Definitions
[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_SetCurrentAlternateSetting

(SafeWinUsbHandle	InterfaceHandle,

Byte	AlternateSetting);

Use
var	success	=	NativeMethods.WinUsb_SetCurrentAlternateSetting

(winUsbHandle,

1);

How	it	works
The	WinUsb_SetCurrentAlternateSetting	function	selects	a	bAlternateSetting
value	 to	 use	 for	 the	 current	 interface.	 InterfaceHandle	 is	 a	 pointer	 to	 a
WinUSB	 handle	 to	 the	 desired	 interface.	 AlternateSetting	 is	 the
bAlternateSetting	value	in	the	interface	descriptor	with	the	desired	endpoints.
If	using	an	array	of	interface	descriptors,	you	can	specify	a	descriptor	from	the
array,	for	example:
ifaceDescriptors[1].bAlternateSetting

The	function	returns	true	on	success.

Writing	data:	isochronous	transfers
Isochronous	OUT	transfers	require	Windows	8.1	or	later	and	a	device	that	has
an	isochronous	OUT	endpoint	and	support	for	isochronous	transfers.

Definitions
[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean

WinUsb_RegisterIsochBuffer

(SafeWinUsbHandle	InterfaceHandle,

Byte	PipeID,

Byte[]	Buffer,

UInt32	BufferLength,

out	IntPtr	BufferHandle);

[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_WriteIsochPipeAsap

(IntPtr	BufferHandle,

UInt32	Offset,

UInt32	Length,

Boolean	ContinueStream,

IntPtr	Overlapped);

[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_UnregisterIsochBuffer

(IntPtr	BufferHandle);

Use
IntPtr	bufferHandle	=	IntPtr.Zero;

var	dataOutBuffer	=	new	Byte[24];

var	success	=	false;

//	Store	data	to	send	in	a	buffer,	for	example:

for	(var	i	=	0;	i	<=	23;

{

dataOutBuffer[i]	=	(Byte)	(97	+	i);

}

success	=	NativeMethods.WinUsb_RegisterIsochBuffer

(winUsbHandle,

myDeviceInfo.IsochronousOutPipe,

dataOutBuffer,

(UInt32)	dataOutBuffer.Length,

out	bufferHandle);

success	=	NativeMethods.WinUsb_WriteIsochPipeAsap

(bufferHandle,

0,

(UInt32)	dataBuffer.Length,

false,

IntPtr.Zero);

success	=	NativeMethods.WinUsb_UnregisterIsochBuffer	(bufferHandle);

How	it	works
WinUsb_RegisterIsochBuffer	registers	a	buffer	to	use	in	isochronous	transfers.
The	function	accepts	a	handle	to	a	WinUSB	interface,	a	PipeID	value	obtained
by	WinUsb_QueryPipe,	a	buffer	 that	will	hold	the	 isochronous	data	 to	send,
the	buffer’s	 length	in	bytes,	and	a	pointer	that	will	hold	a	returned	handle	to
the	buffer.	The	function	returns	true	on	success.
WinUsb_WriteIsochPipeAsap	 writes	 data	 to	 an	 isochronous	OUT	 endpoint
using	the	next	available	 frame	number.	The	function	accepts	a	buffer	handle
returned	by	WinUsb_RegisterIsochBuffer,	an	offset	that	specifies	where	in	the
buffer	 to	 start	 sending	 data,	 the	 buffer’s	 size,	 a	 ContinueStream	 value,	 and
either	a	pointer	 to	an	overlapped	structure	or	 IntPtr.Zero	 for	a	 synchronous
operation.	If	ContinueStream	is	true,	the	host	will	cancel	the	transfer	if	unable
to	 schedule	 it	 in	 the	 first	 frame	 after	 the	 previous	 transfer.	 The	 function
returns	true	on	success.
When	 transfers	 are	 complete,	 WinUsb_UnregisterIsochBuffer	 releases	 the
resources	allocated	by	WinUsb_RegisterIsochBuffer.
An	 alternative	 to	WinUsb_WriteIsochPipeAsap	 is	WinUsb_WriteIsochPipe,
which	enables	specifying	a	starting	frame	number	for	the	transfer.

Reading	data:	isochronous	transfers
Isochronous	IN	transfers	require	Windows	8.1	or	 later	and	a	device	 that	has
an	isochronous	IN	endpoint	and	support	for	isochronous	transfers.

Definitions
internal	struct	USBD_ISO_PACKET_DESCRIPTOR

{

internal	UInt32	Offset;

internal	UInt32	Length;

internal	UInt32	Status;

}

[DllImport(“winusb.dll”,	SetLastError	=	true)]

internal	static	extern	Boolean	WinUsb_ReadIsochPipeAsap

(IntPtr	BufferHandle,

UInt32	Offset,

UInt32	Length,

Boolean	ContinueStream,

UInt32	NumberOfPackets,

ref	USBD_ISO_PACKET_DESCRIPTOR	IsoPacketDescriptors,

IntPtr	Overlapped);

Use
IntPtr	bufferHandle;

var	dataInBuffer	=	new	Byte[24];

UInt32	numberOfPackets	=	3;

var	isoPacketDescriptors	=

new	NativeMethods.USBD_ISO_PACKET_DESCRIPTOR[numberOfPackets];

success	=	NativeMethods.WinUsb_RegisterIsochBuffer

(winUsbHandle,

myDeviceInfo.IsochronousInPipe,

dataInBuffer,

(UInt32)	dataInBuffer.Length

out	bufferHandle

success	=	NativeMethods.WinUsb_ReadIsochPipeAsap

(bufferHandle,

0,

dataInBuffer.Length,

false,

numberOfPackets,

ref	isoPacketDescriptors[0],

IntPtr.Zero);

for	(var	i	=	0;	i	<=	numberOfPackets	-	1;	{

Debug.WriteLine(“packet	offset	=	”	+

isoPacketDescriptors[i].Offset);

Debug.WriteLine(“packet	length	=	”	+

isoPacketDescriptors[i].Length);

Debug.WriteLine(“packet	status	=	”	+

isoPacketDescriptors[i].Status);

for	(var	j	=	0;	j	<	isoPacketDescriptors	[i].Length;

{

Debug.WriteLine(dataInBuffer[j]);

}

}

success	=	NativeMethods.WinUsb_UnregisterIsochBuffer	(bufferHandle);

How	it	works
Reading	 isochronous	 data	 requires	 an	 array	 of
USBD_ISO_PACKET_DESCRIPTOR	 structures.	 The	 array	 must	 have	 a
structure	for	each	packet	to	be	received	in	a	read	operation.	In	each	structure,
on	 completing	 a	 read	 operation,	 Offset	 is	 the	 offset	 in	 bytes	 of	 the	 packet
within	the	transfer	buffer,	Length	is	the	number	of	bytes	received	in	a	packet,
and	Status	 is	 the	USBD_STATUS	code	 (defined	 in	usbdi.h	 in	 the	WDK)	 for
the	packet.
As	 with	 isochronous	 OUT	 transfers,	 the	 application	 must	 call
WinUsb_RegisterIsoch-Buffer	to	register	a	buffer.	For	IN	transfers,	when	the

function	returns,	the	buffer	holds	the	received	data.
WinUsb_ReadIsochPipeAsap	requests	data	from	an	isochronous	IN	endpoint
using	the	next	frame	number	after	any	pending	transfers	on	the	endpoint.	The
function	accepts	a	buffer	handle	returned	by	WinUsb_RegisterIsochBuffer,	an
offset	 that	 specifies	 where	 in	 the	 buffer	 to	 begin	 storing	 received	 data,	 the
buffer’s	 size,	 a	 ContinueStream	 value,	 the	 number	 of	 isochronous	 packets
needed	 to	 hold	 the	 received	 data,	 a	 pointer	 to	 an	 array	 of
USBD_ISO_PACKET_DESCRIPTOR	 structures,	 and	 either	 a	 pointer	 to	 an
overlapped	structure	or	IntPtr.Zero	for	a	synchronous	transfer.	The	function
returns	true	on	success.
The	 example	 requests	 to	 read	 three	 8-byte	 packets.	 The
USBD_ISO_PACKET_DESCRIPTOR	 structures	 contain	 information	 about
the	 received	 data,	 and	 the	 data	 buffer	 registered	 by
WinUsb_RegisterIsochBuffer	contains	the	data.
When	 transfers	 are	 complete,	 WinUsb_UnregisterIsochBuffer	 releases	 the
resources	allocated	by	WinUsb_RegisterIsochBuffer.
An	 alternative	 to	 WinUsb_ReadIsochPipeAsap	 is	 WinUsb_ReadIsochPipe,
which	enables	specifying	a	starting	frame	number	for	the	transfer.

Closing	communications
When	 finished	 communicating	 with	 a	 device,	 the	 application	 should	 free
reserved	resources.

Use
winUsbHandle.Close();

deviceHandle.Close();

How	it	works
The	Close	method	marks	each	handle	for	releasing	and	freeing	resources.

15

Using	WinUSB’s	System	INF	File
For	Windows	8	and	later,	the	system-provided	winusb.inf	eliminates	the	need
for	 a	 digitally	 signed,	 device-specific	 INF	 file.	 With	 supporting	 device
firmware,	 the	 host	 system	 can	 detect	 a	 device	 that	 uses	 the	WinUSB	driver,
and	applications	can	find	the	device	they	want	to	communicate	with.
To	 obtain	 a	 system	 INF	 tile	 to	 use	 with	 Windows	 versions	 previous	 to
Windows	 8,	 from	 the	Microsoft	Update	Catalog,	 search	on	windows	 phone
winusb,	 and	 download	 the	 associated	 .cab	 file,	 which	 contains
winusbcompat.cat	and	winusbcompat.inf.
To	use	the	system	INF	file,	a	device	must	support	Microsoft	OS	1.0	descriptors
or	 Microsoft	 OS	 2.0	 descriptors.	 Microsoft	 OS	 1.0	 descriptors	 require
Windows	 XP	 SP2	 or	 later	 while	 Microsoft	 OS	 2.0	 Descriptors,	 which	 have
greater	capabilities,	require	Windows	8.1	or	later.

Microsoft	OS	1.0	descriptors
A	WinUSB	device	that	uses	Microsoft	OS	1.0	descriptors	must	provide	these
descriptors:

Microsoft	OS	string	descriptor
Extended	compat	ID	OS	feature	descriptor
Extended	properties	OS	feature	descriptor.

Listing	 15-1	 shows	 example	 Microsoft	 OS	 1.0	 descriptors	 for	 a	 WinUSB
device.
The	 descriptors	 are	 defined	 in	 a	 series	 of	 documents	 collectively	 titled
Microsoft	OS	1.0	Descriptors	Specification.
The	string	descriptor	must	have	an	 index	of	0xEE	and	contain	 the	 signature
“MSFT100”.	Windows	XP	 SP1	 and	 later	 request	 this	 string	 descriptor	 from
vendor-defined	devices	on	first	attachment.	A	device	that	doesn’t	support	the
descriptor	should	return	STALL.

http://www.winusb.inf
http://www.winusbcompat.inf

After	successfully	retrieving	a	Microsoft	OS	string	descriptor,	the	host	requests
Microsoft	 OS	 feature	 descriptors.	 The	 extended	 compat	 ID	 OS	 feature
descriptor	 contains	 a	Microsoft-defined	 ID	 that	 can	 help	Windows	 locate	 a
driver	 for	 device	 functions	 that	 don’t	 have	Windows-provided	 drivers.	 The
extended	 properties	 OS	 feature	 descriptor	 can	 provide	 a	 GUID	 value	 that
identifies	a	specific	vendor-defined	device	function.
A	WinUSB	 device	 that	 supports	 Microsoft	 OS	 1.0	 descriptors	 must	 have	 a
device	descriptor	with	bcdUSB	=	0x0200	or	higher.

Microsoft	OS	string	descriptor
The	Microsoft	OS	String	Descriptor	(Table	15-1)	contains	a	qwSignature	value
that	indicates	that	the	device	supports	Microsoft	OS	descriptors.
The	 value	 for	Microsoft	OS	 String	Descriptor	 version	 1.00	 is	 the	UTF-16LE
Unicode	 string	 “MSFT100”.	The	 string	doesn’t	have	 a	null	 termination.	The
string’s	seven	16-bit	characters	transmit	LSB	first	on	the	bus:
0x4Ds,	 0x00,	 0x53,	 0x00,	 0x46,	 0x00,	 0x54,	 0x00,	 0x31,	 0x00,

0x30,	0x00,	0x30,	0x00,

The	bMS_VendorCode	value	enables	the	host	to	request	additional	Microsoft
OS	descriptors.	The	host	 passes	 the	 value	 in	 the	 bRequest	 field	 of	 the	 Setup
packet	for	a	Get	Descriptor	request.	The	value	can	be	any	vendor-defined	byte
except	0x00.
The	 host	 requests	 a	 Microsoft	 OS	 string	 descriptor	 by	 sending	 a	 Get
Descriptor	 request	 with	 bmRequestType	 =	 0x80,	 bRequest	 =	 0x06	 (Get
Descriptor),	wValue’s	high	byte	=	0x03	to	request	a	string	descriptor,	wValue’s
low	byte	=	0xEE	(the	Microsoft-defined	index	for	the	descriptor),	and	wIndex
=	0x0000.	(Note	that	the	USB	2.0	specification	says	wIndex	should	contain	a
language	ID,	but	Windows	incorrectly	uses	0x0000.)

//	Microsoft	OS	1.0	String	Descriptor

UCHAR	ms	os	10	string	descriptor[0x12]	=

{

0x12, //	Descriptor	size	(18	bytes)

0x03, //	Descriptor	type	(string)

//	MSFT100	signature

0x4D,	0x00,	0x53,	0x00,	0x46,	0x00,	0x54,	0x00,	0x31,	0x00,	0x30,	0x00,	0x30,	0x00,

0x05, //	Vendor-defined	bMS_VendorCode

0x00 //	Pad	byte

}

//	Microsoft	Extended	Compat	ID	OS	feature	descriptor

UCHAR	ms	extended	compat	id	os	feature	descriptor[0x28]	=

{

0x28,	0x00, //	Descriptor	size	(40	bytes)

0x01,	0x00, //	Descriptor	version	number	(1.00)

0x04,	0x00, //	Extended	Compat	ID	OS	descriptor	identifier

0x01,	0x00, //	Number	of	custom	property	sections	that	follow

0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00, //	Reserved

0x00, //	bInterfaceNumber	of	the	WinUSB	interface

0x01, //	Reserved,	set	to	0x01

0x57,	0x49,	0x4E,	0x55,	0x53,	0x42,	0x00,	0x00, //	WINUSB	ID

0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00, //	Secondary	ID

0x00,	0x00,	0x00,	0x00,	0x00,	0x00 //	Reserved

}

//	Microsoft	extended	properties	OS	feature	descriptor

UCHAR	ms_extended_properties_os_feature_descriptor[0x8E]	=

{

0x8E,	0x00,	0x00,	0x00, //	Descriptor	size	in	bytes	(142	bytes)

0x00,	0x01, //	Descriptor	version	number	(1.00)

0x05.	0x00. //	Extended	Compat	ID	OS	descriptor	identifier

0x01,	0x00, //	Number	of	custom	property	sections	that

	 //	follow

0x84,	0x00,	0x00,	0x00, //	Length	of	custom	property	section

	 //	(132	bytes)

0x01,	0x00,	0x00,	0x00, //	String	format	(UTF-16LE	Unicode)

0x28,	0x00, //	Length	of	property	name	(40	bytes)

//	Property	Name	(DeviceInterfaceGUID)

0x44,	0x00,	0x65,	0x00,	0x76,	0x00,	0x69,	0x00,	0x63,	0x00,	0x65,	0x00,	0x49,	0x00,	0x6E,

0x00,	0x74,	0x00,	0x65,	0x00,	0x72,	0x00,	0x66,	0x00,	0x61,	0x00,	0x63,	0x00,	0x65,	0x00,

0x47,	0x00,	0x55,	0x00,	0x49,	0x00,	0x44,	0x00,	0x00,	0x00,

0x4e,	0x00,	0x00,	0x00, //	Length	of	property	data	(78	bytes)

//	Vendor-defined	property	data:	{ecceff35-146c-4ff3-acd9-8f992d09acdd}

0x7B,	0x00,	0x65,	0x00,	0x63,	0x00,	0x63,	0x00,	0x65,	0x00,	0x66,	0x00,	0x66,	0x00,	0x33,

0x00,	0x35,	0x00,	0x2D,	0x00,	0x31,	0x00,	0x34,	0x00,	0x36,	0x00,	0x33,	0x00,	0x2D,	0x00,

0x34,	0x00,	0x66,	0x00,	0x66,	0x00,	0x33,	0x00,	0x2D,	0x00,	0x61,	0x00,	0x63,	0x00,	0x64,

0x00,	0x39,	0x00,	0x2D,	0x00,	0x38,	0x00,	0x66,	0x00,	0x39,	0x00,	0x39,	0x00,	0x32,	0x00,

0x64,	0x00,	0x30,	0x00,	0x39,	0x00,	0x61,	0x00,	0x63,	0x00,	0x64,	0x00,	0x64,	0x00,	0x7D,

0x00,	0x00,	0x00

}

Listing	15-1:	These	Microsoft	OS	1.0	descriptors	inform	the	host	that	the	device
uses	the	WinUSB	driver.

If	 a	device	 returns	a	 string	descriptor	with	 the	correct	qwSignature,	 the	host
may	 request	 an	 extended	 compat	 ID	OS	 feature	descriptor	 and	 an	 extended
properties	OS	feature	descriptor.

Table	15-1:	The	Microsoft	OS	string	descriptor	contains	a	qwSignature	value	that
indicates	that	the	device	supports	Microsoft	OS	descriptors.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x12)

1 bDescriptorType 1 The	constant	String	(0x03)

2 qwSignature 14 UTF-16LE	Unicode	string	“MSFT100”	(for	version	1.00)

16 bMS_VendorCode 1 Vendor-defined	code	(anything	except	0x00)

17 bPad 1 0x00

Extended	compat	ID	OS	feature	descriptor
The	Microsoft-defined	extended	compat	ID	OS	feature	descriptor	can	identify
a	 device	 that	 uses	 the	WinUSB	 driver.	 The	 descriptor	 consists	 of	 a	 header
followed	 by	 one	 or	 more	 function	 sections.	 A	 device	 can	 have	 only	 one
extended	compat	ID	OS	feature	descriptor.
Listing	15-2	shows	the	fields	in	an	extended	compat	ID	OS	feature	descriptor
for	a	device	that	uses	the	WinUSB	driver.	The	first	five	fields	are	the	header,
followed	by	a	function	section.
In	the	header:
wIndex	 =	 0x0004	 identifies	 the	 descriptor	 as	 an	 extended	 compat	 ID	 OS
feature	descriptor.
bCount	contains	the	number	of	function	sections	that	follow.	A	descriptor	for
a	WinUSB	device	has	one	function	section	for	each	WinUSB	interface	in	the
device.
In	the	function	section:
bFirstInterfaceNumber	 contains	 the	 bInterfaceNumber	 value	 of	 an	 interface
descriptor	for	an	interface	that	uses	the	WinUSB	driver.
compatibleID	contains	ASCII	codes	for	the	string	“WINUSB”	followed	by	two

zero	bytes:
0x57,	0x49,	0x4e,	0x55,	0x53,	0x42,	0x00,	0x00

Devices	with	 interfaces	 that	use	other	drivers	return	other	Microsoft-defined
compatibleID	 values	 in	 a	 function	 section.	 Other	 functions	 with	 defined
compatibleID	values	include	RNDIS,	Picture	Transfer	Protocol	(PTP),	Media
Transfer	Protocol	(MTP),	and	Bluetooth	radio.
For	 functions	 other	 than	 Bluetooth,	 the	 subCompatibleID	 field	 contains
0x0000000000000000.

Table	15-2:	 In	a	Microsoft	 extended	compat	 ID	OS	 feature	descriptor,	 the	 first
five	fields	are	the	header,	followed	by	a	function	section.
Offset
(decimal)

Field Size
(bytes)

Description

0 dwLength 4 Descriptor	size	in	bytes	(0x00000028)

4 bcdVersion 2 Version	number	in	BCD	format	(Use	0x0100	for	version
1.00)

6 wIndex 2 Extended	compat	ID	descriptor	identifier	(0x0004)

8 bCount 1 The	number	of	function	sections	that	follow	(1	function
section	per	WinUSB	interface)

9 RESERVED 7 Zeroes

16 bFirstInterfaceNumber 1 bInterfaceNumber	of	the	first	WinUSB	interface

17 RESERVED 1 0x01

18 compatibleID 8 ASCII	codes	for	“WINUSB”	followed	by	2	zero	bytes

26 subCompatibleID 8 0x0000000000000000

34 RESERVED 6 0x000000000000

The	host	 requests	a	Microsoft	 extended	compat	 ID	OS	 feature	descriptor	by
sending	a	Get	Descriptor	request	with	bmRequestType	=	0xC0	(to	specify	an
IN	 data	 stage	 for	 a	 vendor	 request	 directed	 to	 the	 device),	 bRequest	 =	 the
bMS_VendorCode	from	the	OS	string	descriptor,	wValue’s	high	byte	=	0x00,
wValue’s	 low	 byte	 =	 the	 bInterfaceNumber	 associated	 with	 the	 interface
specified	by	the	descriptor	or	0x00	if	the	descriptor	request	 is	directed	to	the
device,	 and	 wIndex	 =	 0x0004	 to	 specify	 the	 Extended	 Compat	 ID	 OS
descriptor.
Because	a	device	can	have	only	one	Microsoft	Extended	Compat	ID	OS	feature
descriptor,	Microsoft	advises	that	devices	can	ignore	the	low	byte	of	wValue.

Because	the	host	doesn’t	know	the	length	of	the	descriptor	in	advance,	the	host
typically	 begins	 by	 requesting	 the	 header’s	 16	 bytes	 to	 learn	 the	 dwLength
value,	then	resending	the	request	with	a	request	for	dwLength	bytes.
For	descriptors	with	dwLength	greater	 than	64	KB,	 the	high	byte	of	wValue
contains	 a	 zero-based	 page	 number	 to	 enable	 the	 host	 to	 retrieve	 the	 entire
descriptor	using	multiple	requests.

Extended	properties	OS	feature	descriptor
Because	 devices	with	many	 different	 purposes	may	 use	 the	WinUSB	 driver,
applications	 need	 a	 way	 to	 identify	 the	 specific	 device	 they	 want	 to
communicate	 with.	 The	 Microsoft-defined	 extended	 properties	 OS	 feature
descriptor	can	contain	a	vendor-defined	GUID	value	that	identifies	a	vendor-
defined	 device	 function	 to	 application	 software.	 A	 device	 that	 provides	 an
extended	 properties	 OS	 feature	 descriptor	 must	 also	 provide	 an	 extended
compat	ID	OS	feature	descriptor.
The	descriptor	consists	of	a	header	followed	by	one	or	more	custom	property
sections.
Listing	15-3	shows	the	fields	in	an	extended	properties	OS	feature	descriptor
that	 contains	 a	 GUID	 for	 a	 WinUSB	 device.	 The	 first	 four	 fields	 are	 the
header,	followed	by	one	or	more	custom	property	sections.
In	the	header:
wIndex	=	0x0005	to	indicate	that	the	descriptor	is	an	extended	properties	OS
feature	descriptor.
wCount	specifies	the	number	of	custom	property	sections	that	follow.
In	the	custom	property	section:
dwPropertyDataType	=	0x00000001	to	indicate	UTF-16LE	Unicode	string.
wPropertyNameLength	is	the	length	in	bytes	of	the	bPropertyName	field	that
follows.
bPropertyName	 contains	 the	 UTF-16LE	 Unicode	 string
“DeviceInterfaceGUID”	followed	by	two	zero	bytes.
dwPropertyDataLength	 is	 the	 length	 in	bytes	of	 the	bPropertyData	 field	 that
follows.
bPropertyData	contains	a	vendor-defined,	76-byte	UTF-16LE	Unicode	GUID
value	followed	by	2	zero	bytes.	Here	is	an	example:

{ecceff35-146c-4ff3-acd9-8f992d09acdd}

Each	 character	 is	 2	 bytes,	 and	 the	 GUID	 string	 includes	 the	 opening	 and
closing	curly	brackets.
The	GUID	should	be	unique	to	a	device	capability	that	a	host	application	can
use	 to	 identify	 devices	 to	 communicate	with.	Multiple	 devices	 that	 have	 the
same	function	and	use	the	same	communications	protocols	can	use	the	same
GUID.
The	 host	 requests	 a	Microsoft	 extended	 properties	OS	 feature	 descriptor	 by
sending	a	Get	Descriptor	request	with	bmRequestType	=	0xC0	(to	specify	an
IN	 data	 stage	 and	 a	 vendor	 request	 directed	 to	 the	 device)	 or	 0xC1	 (for	 a
request	directed	to	an	interface),	bRequest	=	the	bMS_VendorCode	from	the
OS	 string	 descriptor,	 wValue’s	 high	 byte	 =	 0x00,	 wValue’s	 low	 byte	 =	 the
bInterfaceNumber	 associated	 with	 the	 descriptor,	 and	 wIndex	 =	 0x0005	 to
specify	the	extended	properties	OS	feature	descriptor.
The	 Microsoft	 OS	 1.0	 Descriptors	 Specification	 shows	 how	 an	 extended
properties	 OS	 feature	 descriptor	 can	 also	 configure	 power	 options	 such	 as
enabling	selective	Suspend.

Table	15-3:	A	Microsoft	extended	properties	OS	feature	descriptor	can	provide	a
vendor-defined	GUID	value	that	identifies	a	specific	device.
Offset
(decimal)

Field Size
(bytes)

Description

0 dwLength 4 Descriptor	size	in	bytes	(0x008e)

4 bcdVersion 2 Version	number	in	BCD	format	(0x0100)

6 wIndex 2 Extended	compat	ID	descriptor	identifier	(0x0005)

8 wCount 2 The	number	of	custom	property	sections	that	follow

9 dwSize 4 Length	of	the	custom	property	section	in	bytes
(0x00000084)

13 dwPropertyDataType 4 0x00000001	=	UTF-16LE	Unicode	string

17 wPropertyNameLength 2 Length	of	bPropertyName	in	bytes	(0x0028)

19 bPropertyName 40 Null-terminated	UTF-16LE	Unicode	string
“DeviceInterfaceGUID”	followed	by	2	zero	bytes

59 dwPropertyDataLength 4 Length	of	bPropertyData	(0x0000004e)

63 bPropertyData 78 GUID	value	expressed	as	a	UTF-16LE	Unicode	string
followed	by	2	zero	bytes

Enumeration
If	 a	device	 returns	 the	 compatID	 “WINUSB”	 in	 an	 extended	 compat	 ID	OS
feature	 descriptor,	 the	 OS	 assigns	 the	 WinUSB	 driver	 to	 the	 device.
Applications	 can	 use	 the	 DeviceInterfaceGUID	 returned	 in	 an	 extended
properties	OS	feature	descriptor	to	open	a	handle	to	the	device.
A	device	 that	doesn’t	 support	 the	Microsoft	OS	 string	descriptor	or	 another
requested	 Microsoft	 OS	 descriptor	 should	 return	 STALL.	 However,	 some
devices	don’t	handle	the	request	for	a	Microsoft	OS	string	descriptor	correctly
and	may	 even	 fail	 to	 complete	 enumeration	 after	 receiving	 the	 request.	 For
this	reason,	a	Windows	host	requests	the	Microsoft	OS	string	descriptor	only
on	the	first	enumeration	attempt,	whether	or	not	the	request	was	successful	on
previous	attachments.
During	 debugging	 of	 the	 descriptors,	 you	 may	 want	 to	 force	 the	 host	 to
request	the	Microsoft	OS	descriptors	again.	To	do	so,	delete	the	device’s	entry
in	the	system	registry	here:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\usbflags\<VVVVPPPPRRRR>

using	these	values	from	the	device	descriptor:
VVVV	is	the	device’s	idVendor
PPPP	is	the	device’s	idProduct
RRRR	is	the	devices	bcdDevice
Then	remove	and	reattach	the	device	to	re-enumerate.

Microsoft	OS	2.0	descriptors
Microsoft	OS	 2.0	 descriptors	 remove	 the	 need	 to	 request	 a	Microsoft	 string
descriptor	 and	 the	 problems	 that	 can	 result	 and	 also	 add	 capabilities	 to	 the
descriptors.
A	WinUSB	device	 that	 supports	Microsoft	OS	2.0	descriptors	provides	 these
descriptors:

BOS	descriptor
Microsoft	OS	2.0	platform	capability	descriptor
Microsoft	OS	2.0	compatible	ID	descriptor
Microsoft	OS	2.0	registry	property	descriptor

Listing	 15-2	 shows	 example	 Microsoft	 OS	 2.0	 descriptors	 for	 a	 WinUSB

device.
Microsoft	OS	2.0	descriptors	add	the	ability	to	assign	the	WinUSB	driver	to	an
entire	 composite	 device	 and	 to	 return	 descriptors	 that	 apply	 to	 specific
Windows	versions.
In	 the	 device	 descriptor,	 bcdUSB	 must	 equal	 0x0210	 or	 higher	 to	 enable
supporting	the	BOS	descriptor.
The	 document	 that	 defines	 the	 descriptors	 is	 Microsoft	 OS	 2.0	 Descriptors
Specification.

Microsoft	OS	2.0	platform	capability	descriptor
A	BOS	descriptor	(see	Chapter	4)	tells	the	host	that	the	device	supports	one	or
more	device	capability	descriptors.	As	Table	15-4	shows,	for	WinUSB	devices,
the	 BOS	 descriptor	 has	 one	 subordinate	 descriptor,	 the	 Microsoft	 OS	 2.0
platform	 capability	 descriptor.	 A	 host	 can	 request	 the	 BOS	 descriptor’s	 five
bytes	 to	 learn	 the	 length	 of	 the	 full	 BOS	 descriptor	 set,	 then	 request
wTotalLength	 bytes	 to	 retrieve	 the	 BOS	 descriptor	 and	 its	 subordinate
descriptor.
The	 Microsoft	 OS	 2.0	 platform	 capability	 descriptor	 tells	 the	 host	 that	 the
device	supports	Microsoft	OS	2.0	descriptors.
The	first	20	bytes	are	the	header:
bDevCapabilityType	 field	 =	 0x05	 to	 indicate	 that	 the	 descriptor	 defines	 a
device	 capability	 specific	 to	 a	 particular	 platform	 or	 operating	 system
(Windows).
PlatformCapabilityUUID	 holds	 a	 128-bit	 value	 that	 is	 unique	 to	 the	 device
capability.
To	indicate	Microsoft	OS	2.0	platform	capability,	the	field	contains	this	UUID:
D8DD60DF-4589-4CC7-9CD2-659D9E648A9F

//	BOS	descriptor	with	platform	capability	descriptor

UCHAR	platform_capability_descriptor[0x21]	=	{

//	BOS	descriptor

0x05, //	Descriptor	size	(5	bytes)

0x0F, //	Descriptor	type	(BOS)

0x21,	0x00, //	Length	of	this	+	subordinate	descriptors

	 //	(33	bytes)

0x01, //	Number	of	subordinate	descriptors

//	Microsoft	OS	2.0	Platform	Capability	Descriptor

0x1C, //	Descriptor	size	(28	bytes)

0x10, //	Descriptor	type	(Device	Capability)

0x05, //	Capability	type	(Platform)

0x00, //	Reserved

//	MS	OS	2.0	Platform	Capability	ID	(D8DD60DF-4589-4CC7-9CD2-659D9E648A9F)

0xDF,	0x60,	0xDD,	0xD8, 	

0x89,	0x45, 	

0xC7,	0x4C, 	

0x9C,	0xD2, 	

0x65,	0x9D,	0x9E,	0x64,	0x8A,	0x9F,

0x00,	0x00,	0x03,	0x06, //	Windows	version	(8.1)	(0x06030000)

0x9E,	0x00, //	Size,	MS	OS	2.0	descriptor	set	(158	bytes)

0x01, //	Vendor-assigned	bMS	VendorCode

0x00 //	Doesn’t	support	alternate	enumeration

}

//	Microsoft	OS	2.0	Descriptor	Set

UCHAR	ms_os_20_descriptor_set[0x9E]	=	{

0x0A,	0x00, //	Descriptor	size	(10	bytes)

0x00,	0x00, //	MS	OS	2.0	descriptor	set	header

0x00,	0x00,	0x03,	0x06, //	Windows	version	(8.1)	(0x06030000)

0x9E,	0x00, //	Size,	MS	OS	2.0	descriptor	set	(158	bytes)

//	Microsoft	OS	2.0	compatible	ID	descriptor

0x14,	0x00, //	Descriptor	size	(20	bytes)

0x03,	0x00, //	MS	OS	2.0	compatible	ID	descriptor

0x57,	0x49,	0x4E,	0x55,	0x53,	0x42,	0x00,	0x00, //	WINUSB	string

0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00, //	Sub-compatible	ID

//	Registry	property	descriptor

0x80,	0x00, //	Descriptor	size	(130	bytes)

0x04,	0x00, //	Registry	Property	descriptor

0x01,	0x00, //	Strings	are	null-terminated	Unicode

0x28,	0x00, //	Size	of	Property	Name	(40	bytes)

//Property	Name	(“DeviceInterfaceGUID”)

0x44,	0x00,	0x65,	0x00,	0x76,	0x00,	0x69,	0x00,	0x63,	0x00,	0x65,	0x00,	0x49,	0x00,	0x6E,

0x00,	0x74,	0x00,	0x65,	0x00,	0x72,	0x00,	0x66,	0x00,	0x61,	0x00,	0x63,	0x00,	0x65,	0x00,

0x47,	0x00,	0x55,	0x00,	0x49,	0x00,	0x44,	0x00,	0x00,	0x00,

0x4E,	0x00, //	Size	of	Property	Data	(78	bytes)

//	Vendor-defined	Property	Data:	{ecceff35-146c-4ff3-acd9-8f992d09acdd}

0x7B,	0x00,	0x65,	0x00,	0x63,	0x00,	0x63,	0x00,	0x65,	0x00,	0x66,	0x00,	0x66,	0x00,	0x33,

0x00,	0x35,	0x00,	0x2D,	0x00,	0x31,	0x00,	0x34,	0x00,	0x36,	0x00,	0x33,	0x00,	0x2D,	0x00,

0x34,	0x00,	0x66,	0x00,	0x66,	0x00,	0x33,	0x00,	0x2D,	0x00,	0x61,	0x00,	0x63,	0x00,	0x64,

0x00,	0x39,	0x00,	0x2D,	0x00,	0x38,	0x00,	0x66,	0x00,	0x39,	0x00,	0x39,	0x00,	0x32,	0x00,

0x64,	0x00,	0x30,	0x00,	0x39,	0x00,	0x61,	0x00,	0x63,	0x00,	0x64,	0x00,	0x64,	0x00,	0x7D,

0x00,	0x00,	0x00

Listing	15-2:	These	Microsoft	OS	2.0	descriptors	inform	the	host	that	the	device
uses	the	WinUSB	driver.

Table	15-4:	The	5-byte	BOS	descriptor	serves	as	a	header	that	 informs	the	host
about	the	subordinate	Microsoft	OS	2.0	platform	device	capability	descriptor.
Offset
(decimal)

Field Size
(bytes)

Description

0 bLength 1 Descriptor	size	in	bytes	(0x05).

1 bDescriptorType 1 BOS	(0x0F)

2 wTotalLength 2 The	number	of	bytes	in	this	descriptor	and	all	of	its
subordinate	descriptors	(0x0021)

4 bNumDeviceCaps 1 The	number	of	device	capability	descriptors	subordinate	to
this	BOS	descriptor	(0x01)

5 bLength 1 Descriptor	size	in	bytes	(0x1C)

6 bDescriptorType 1 DEVICE	CAPABILITY	(0x10)

7 bDevCapabilityType 1 PLATFORM	(0x05)

8 bReserved 1 Reserved,	(0x00)

9 MS_OS_20_Platform_
Capability_ID

16 128-bit	value	that	identifies	a	platform-specific	device
capability:	D8DD60DF–4589–4CC7–9CD2–
659D9E648A9F

25 dwWindowsVersion 4 Windows	version	(Windows	8.1	=	0x00000603)

29 wMSOSDescriptorSet-
TotalLength

2 Length	in	bytes	of	the	MS	OS	2.0	descriptor	set	(0x9E)

31 bMS_VendorCode 1 Vendor-defined	code,	can	be	anything	except	0x00

32 bAltEnumCode 1 0x00	or	a	non-zero	bAltInterface	value	for	use	by	the
Microsoft	OS	2.0	Set	Alternate	Enumeration	request

When	 expressed	 as	 text,	 a	 UUID	 consists	 of	 five	 groups	 of	 2-character
hexadecimal	values	separated	by	hyphens.	Confusingly,	each	of	the	first	three
groups	 is	 considered	 to	 be	 a	 single	 hexadecimal	 value,	 while	 the	 final	 two
groups	are	considered	to	be	sequences	of	bytes.	For	the	groups	that	represent

single	values,	the	LSB	transmits	first.	For	the	other	groups,	the	bytes	transmit
in	sequence	as	expressed.	So	the	UUID	transmits	in	this	order:
0xDF,	0x60,	0xDD,	0xD8,

0x89,	0x45,

0xC7,	0x4C,

0x9C,	0xD2,

0x65,	0x9D,	0x9E,	0x64,	0x8A,	0x9F

Following	the	header	are	additional	fields.
dwWindowsVersion	 is	 the	 lowest	Windows	 version	 the	 descriptor	 requires.
The	value	 is	an	NTDDI	version	constant	 from	sdkddkver.h	 in	 the	WDK	and
must	be	set	to	Windows	8.1	or	later.
wMSOSDescriptorSetTotalLength	 is	 the	 length	 in	 bytes	 of	 the	Microsoft	OS
2.0	 descriptor	 set	 supported	 by	 the	 device	 (0x9E	 for	 a	WinUSB	 device	 that
provides	a	compatible	ID	descriptor	and	a	registry	property	descriptor	with	a
GUID).
bMS_VendorCode	is	a	vendor-defined	value	that	performs	the	same	function
as	this	value	does	in	a	Microsoft	OS	1.0	string	descriptor.
bAltEnumCode	 may	 contain	 a	 non-zero	 value	 to	 indicate	 support	 for	 the
Microsoft	OS	2.0	Set	Alternate	Enumeration	request.	This	request	informs	the
device	 that	 it	 may	 return	 non-default	 descriptors	 during	 enumeration.
Regardless	 of	 the	 value	 in	 this	 field,	 for	 WinUSB	 devices	 that	 support	 an
alternate	 interface	 setting,	 a	 host	 can	 use	 the
WinUsb_SetCurrentAlternateSetting	 function	 to	 select	 an	 alternate	 interface
setting.

Microsoft	OS	2.0	descriptor	set
For	 a	 WinUSB	 device	 that	 uses	 the	 system	 INF	 file,	 the	 Microsoft	 OS	 2.0
descriptor	 set	 consists	 of	 a	 10-byte	 Microsoft	 OS	 2.0	 descriptor	 set	 header
followed	by	a	Microsoft	OS	2.0	compatible	ID	descriptor	and	a	Microsoft	OS
2.0	 registry	 property	 descriptor	 (Table	 15-5).	 The	 descriptor	 set	 may	 also
contain	additional	descriptors	as	described	later	in	this	chapter.
The	 Microsoft	 OS	 2.0	 compatible	 ID	 descriptor	 provides	 the	 “WINUSB”
string	that	specifies	that	the	device	uses	the	WinUSB	driver.	The	Microsoft	OS
2.0	 registry	 property	 descriptor	 provides	 a	 Device	 Interface	 GUID	 that
applications	can	use	to	find	a	WinUSB	device	with	a	specific	function.
The	 host	 requests	 the	 Microsoft	 OS	 2.0	 descriptor	 set	 by	 sending	 a	 Get

Descriptor	request	with	these	values:
bmRequestType	 =	 0xC0	 to	 specify	 a	 vendor	 request	 with	 an	 IN	 data	 stage
directed	to	the	device.
bRequest	=	the	bMS_VendorCode	from	the	platform	capability	descriptor.
wValue	=	0x00.
wIndex	=	0x0007	to	specify	a	Microsoft	OS	2.0	descriptor.
In	the	header:
wLength	=	the	length	in	bytes	of	the	header	(0x0A).
wDescriptorType	 =	 0x0000	 to	 indicate	 a	 Microsoft	 OS	 2.0	 descriptor	 set
header.
dwWindowsVersion	 has	 the	 same	 meaning	 as	 in	 the	 Microsoft	 OS	 2.0
platform	capability	descriptor.
wTotalLength	must	match	wMSOSDescriptorSetTotalLength	in	the	Microsoft
OS	2.0	platform	capability	descriptor.

Table	15-5:	For	a	WinUSB	device,	the	Microsoft	OS	2.0	descriptor	set	consists	of
a	 Microsoft	 OS	 2.0	 descriptor	 set	 header	 followed	 by	 a	 Microsoft	 OS	 2.0
compatible	 ID	 feature	 descriptor	 and	 a	 Microsoft	 OS	 2.0	 registry	 property
feature	descriptor.
Offset
(decimal)

Field Size
(bytes)

Description

0 wLength 2 Header	length	(0x0A)

2 wDescriptorType 2 MSOS20_SET_HEADER_DESCRIPTOR	(0x0000)

4 dwWindowsVersion 4 Windows	version	(Windows	8.1	=	0x00000603)

8 wTotalLength 2 Length	in	bytes	of	the	header	and	the	descriptor	that
follows	(0x009E)

10 wLength 2 Descriptor	length	in	bytes	(0x0014)

12 wDescriptorType 2 MS_OS_FEATURE_COMPATIBLE_ID	(0x0003)

14 CompatibleID 8 ASCII	codes	for	“WINUSB”	followed	by	two	zero	bytes

22 SubCompatibleID 8 0x0000000000000000

30 wLength 2 Descriptor	length	in	bytes	(0x0080)

32 wDescriptorType 2 MS_OS_20_FEATURE_REG_PROPERTY	(0x0004)

34 wPropertyDataType 2 0x0001	=	null-terminated	Unicode	string

36 wPropertyNameLength 2 Length	of	bPropertyName	in	bytes	(0x0028)

38 PropertyName 40 UTF-16LE	Unicode	string	“DeviceInterfaceGUID”
followed	by	2	zero	bytes

78 wPropertyDataLength 2 Length	of	bPropertyData	(0x004E)

80 PropertyData 78 GUID	value	expressed	as	a	UTF-16LE	Unicode	string
followed	by	2	zero	bytes

In	the	compatible	ID	feature	descriptor:
wLength	is	the	length	in	bytes	of	the	descriptor	(0x0014).
wDescriptorType	=	0x0003	to	indicate	Microsoft	OS	2.0	compatible	ID	feature
descriptor.
CompatibleID	=	the	ACSII	codes	for	“WINUSB”	followed	by	two	zero	bytes:
0x57,	0x49,	0x4E,	0x55,	0x53,	0x42,	0x00,	0x00

SubCompatibleID	=	0x0000000000000000.

In	the	registry	property	feature	descriptor:
wLength	is	the	length	in	bytes	of	the	descriptor	(0x0080).
wDescriptorType	 =	 0x0004	 to	 indicate	 a	Microsoft	OS	 2.0	 registry	 property
feature	descriptor.
The	final	five	fields	have	the	same	values	as	contained	in	the	Microsoft	OS	1.0
extended	properties	descriptor:
wPropertyDataType	 =	 0x00000001	 to	 indicate	 text	 values	 are	 UTF-16LE
Unicode	strings.
wPropertyNameLength	 is	 the	 length	 in	bytes	of	 the	PropertyName	 field	 that
follows.
PropertyName	 contains	 the	 UTF-16LE	 Unicode	 string
“DeviceInterfaceGUID”	followed	by	two	zero	bytes.
wPropertyDataLength	 is	 the	 length	 in	 bytes	 of	 the	 PropertyData	 field	 that
follows.
PropertyData	 contains	 a	 vendor-defined,	 76-byte	UTF-16LE	Unicode	GUID
value	followed	by	2	zero	bytes,	for	example:
{ecceff35-146c-4ff3-acd9-8f992d09acdd}

Each	 character	 is	 2	 bytes,	 and	 the	 GUID	 string	 includes	 the	 opening	 and
closing	curly	brackets.
For	the	registry	property	descriptor,	Microsoft	warns	that	Windows	uses	only
the	values	retrieved	in	the	device’s	first	enumeration.	During	debugging,	if	you
want	 to	 edit	 the	 descriptor,	 change	 the	 device’s	 Product	 ID	 or	 delete	 the

device’s	original	registry	entry,	then	remove	and	reattach	the	device.
A	 registry	 property	 descriptor	 can	 add	 other	 registry	 entries	 such	 as	 the
SelectiveSuspendEnabled	property.
The	Microsoft	 OS	 2.0	 Descriptors	 Specification	 document	 defines	 additional
descriptors:

For	 descriptors	 that	 apply	 to	 a	 single	 configuration	 or	 function,	 the
descriptor	set	can	include	a	configuration	subset	or	function	subset	header
with	subordinate	descriptors.
The	 Microsoft	 OS	 2.0	 minimum	 resume	 time	 descriptor	 can	 specify
shorter	required	times	for	detecting	and	resuming	from	the	Suspend	state.
The	descriptor	applies	only	to	USB	2.0	speeds.
The	Microsoft	OS	 2.0	model	 ID	descriptor	 provides	 a	 128-bit	 value	 that
uniquely	identifies	a	physical	device.
The	Microsoft	OS	 2.0	CCGP	device	 descriptor	 requests	 the	host	 to	 treat
the	device	as	a	composite	device.

Enumeration
If	 a	 device	 returns	 a	Microsoft	 OS	 2.0	 platform	 capability	 descriptor	 and	 a
Microsoft	 OS	 2.0	 descriptor	 set	 with	 the	 compatID	 “WINUSB”,	 Windows
assigns	 the	 WinUSB	 driver	 to	 the	 device.	 Applications	 can	 use	 the
DeviceInterfaceGUID	 in	 the	 descriptor	 set’s	 registry	 property	 descriptor	 to
open	a	handle	to	the	device.

16

Using	Hubs	to	Extend	and	Expand
the	Bus
A	hub	is	an	intelligent	device	that	provides	attachment	points	for	devices	and
manages	 the	devices’	 connections	on	 the	bus.	Devices	 that	plug	directly	 into
the	host	computer	connect	to	the	bus’s	root	hub.	Other	devices	can	connect	to
external	hubs	downstream	from	the	root	hub.
A	 hub	 manages	 power,	 helps	 initiate	 communications	 with	 newly	 attached
devices,	 and	 passes	 traffic	 up	 and	 down	 the	 bus.	 To	 manage	 power,	 a	 hub
provides	current	to	attached	devices	and	limits	current	on	detecting	an	over-
current	 condition.	 To	 help	 initiate	 communications	 with	 devices,	 the	 hub
detects	 and	 informs	 the	 host	 of	 newly	 attached	 devices	 and	 responds	 to
requests	that	relate	to	status	and	control	of	the	hub’s	ports.	The	hub’s	role	in
passing	traffic	up	and	down	the	bus	varies	with	the	speeds	of	the	host,	device,
and	hubs	between	them.
This	 chapter	presents	 essentials	 about	hub	communications.	You	don’t	need
to	 know	 every	 detail	 about	 hubs	 in	 order	 to	 design	 a	 USB	 peripheral,	 but
understanding	what	 a	 hub	 does	 can	 help	 in	 understanding	 how	 devices	 are
detected	 and	 communicate	 on	 the	 bus,	 how	 to	 help	 ensure	 devices	 get	 the
bandwidth	they	need,	and	the	limits	to	extending	a	bus	with	hubs.

Figure	16-1.	The	front	of	this	hub	(top)	has	seven	downstream-facing	ports	with
Standard-A	 receptacles	 on	 the	 front,	 and	 the	 back	 (bottom)	 has	 an	 upstream-
facing	port	with	a	Standard-B	receptacle	and	a	power	connection.

USB	2.0
Each	external	USB	2.0	hub	has	one	port,	or	attachment	point,	that	connects	in
the	upstream	direction	(toward	the	host)	(Figure	16-1).	The	upstream-facing
port	may	 connect	 directly	 to	 the	host’s	 root	 hub	or	 to	 a	 downstream-facing
port	on	another	external	hub.	Every	hub	has	one	or	more	downstream-facing
ports.	 Most	 downstream	 ports	 have	 a	 receptacle	 for	 attaching	 a	 cable.	 An
exception	 is	 a	 hub	 in	 a	 compound	 device,	 whose	 downstream-facing	 ports
connect	to	functions	embedded	in	the	device.	Hubs	with	one,	 two,	 four,	and
seven	 downstream	 ports	 are	 common.	 A	 hub	 may	 be	 self	 powered	 or	 bus
powered.	As	Chapter	17	explains,	bus-powered	hubs	are	 limited	because	you
can’t	attach	high-power	devices	to	them.
A	USB	2.0	hub	acts	as	a	remote	processor	with	store-and-forward	capabilities.
As	needed,	 the	hub	 converts	between	high-speed	upstream	communications
and	low-and	full-speed	downstream	communications.	The	hub	also	performs
other	functions	that	help	make	efficient	use	of	bus	time.
USB	 1.1	 hubs,	 which	 support	 only	 low	 and	 full	 speeds,	 are	 no	 longer	 in
common	use,	but	understanding	the	operation	of	a	USB	1.1	hub	can	help	 in
understanding	USB	2.0	hubs.	A	USB	1.1	hub	doesn’t	convert	between	speeds;
it	just	passes	received	traffic	up	or	down	the	bus.	For	traffic	to	and	from	low-
speed	devices,	a	USB	1.1	hub	changes	the	edge	rate	and	signal	polarity	but	not

the	bit	rate.

Figure	 16-2.	A	USB	 2.0	 hub	 contains	 one	 or	more	 transaction	 translators	 and
routing	logic	that	enables	a	hub	on	a	high-speed	bus	to	communicate	with	low-
and	 full-speed	 devices.	 A	 USB	 1.1	 hub	 doesn’t	 convert	 between	 bus	 speeds.
(Content	from:	Universal	Serial	Bus	Specification	Revision	2.0.)

Controller	chips	for	hubs	contain	dedicated	silicon	to	perform	hub	functions.
Due	 to	 timing	 requirements,	 implementing	 a	 hub	 function	 with	 a	 general-
purpose	device	controller	chip	isn’t	feasible.	Compound	devices	can	use	chips
that	contain	an	embedded	hub	and	a	generic	device	controller.
An	external	USB	2.0	hub	contains	a	hub	repeater	and	a	hub	controller	(Figure
16-2).	The	hub	repeater	passes	USB	traffic	between	the	upstream	hub	(which
may	be	on	the	host)	and	attached	and	enabled	downstream	devices.	The	hub
controller	manages	 communications	between	 the	host	 and	 the	hub	 repeater.
State	machines	 control	 the	hub’s	 response	 to	 events	 at	 the	hub	 repeater	 and

upstream	 and	 downstream	 ports.	 A	 USB	 2.0	 hub	 also	 has	 one	 or	 more
transaction	 translators	 and	 routing	 logic	 that	 enable	 low-	 and	 full-speed
devices	to	communicate	on	a	high-speed	bus.
The	host’s	root	hub	is	a	special	case.	The	host	controller	performs	many	of	the
functions	that	the	hub	repeater	and	hub	controller	perform	in	an	external	hub,
so	 a	 root	 hub	 may	 contain	 little	 more	 than	 routing	 logic	 and	 downstream
ports.

The	hub	repeater
The	hub	 repeater	 re-transmits	 the	packets	 it	 receives,	 sending	 them	on	 their
way	up	or	down	stream	with	minimal	changes.	The	hub	repeater	also	detects
when	a	device	is	attached	and	removed,	establishes	the	connection	of	a	device
to	 the	 bus,	 detects	 bus	 faults	 such	 as	 over-current	 conditions,	 and	manages
power	to	the	device.
A	 USB	 2.0	 hub	 repeater	 has	 two	 modes	 of	 operation	 depending	 on	 the
upstream	 bus	 speed.	When	 the	 hub	 connects	 upstream	 to	 a	 full-speed	 bus
segment,	 the	 repeater	 functions	 as	 a	 low-	 and	 full-speed	 repeater.	When	 the
hub	connects	upstream	to	a	high-speed	bus	segment,	the	repeater	functions	as
a	high-speed	repeater.	The	repeaters	in	USB	1.1	hubs	always	function	as	low-
and	full-speed	repeaters.

The	low-	and	full-speed	repeater
When	a	USB	2.0	hub’s	upstream	port	connects	to	a	full-	or	low-speed	port,	the
hub	doesn’t	send	or	receive	high-speed	traffic	but	instead	functions	identically
to	a	USB	1.1	hub.
A	 low-	 and	 full-speed	 repeater	 re-transmits	 all	 low-	 and	 full-speed	 packets
received	 from	 the	host,	 including	data	 that	has	passed	 through	one	or	more
additional	 hubs,	 to	 all	 enabled,	 full-speed,	 downstream	ports.	 Enabled	 ports
include	 all	 ports	 with	 attached	 devices	 that	 are	 ready	 to	 receive
communications	from	the	hub.	Devices	with	ports	that	aren’t	enabled	include
devices	that	the	host	controller	has	stopped	communicating	with	due	to	errors
or	 other	 problems,	 devices	 in	 the	 Suspend	 state,	 and	 devices	 that	 aren’t	 yet
ready	to	communicate	because	they	have	just	attached	or	are	in	the	process	of
exiting	the	Suspend	state.
The	 hub	 repeater	 doesn’t	 translate,	 examine	 the	 contents	 of,	 or	 process	 the
traffic	 to	or	 from	full-speed	ports.	The	repeater	 just	 regenerates	 the	edges	of

the	signal	transitions	and	passes	the	traffic	on.
Low-speed	devices	never	see	full-speed	traffic.	The	hub	identifies	a	low-speed
packet	by	the	PRE	packet	identifier	that	precedes	the	packet.	The	hub	repeats
the	low-speed	packets,	and	only	these	packets,	to	any	enabled	low-speed	ports.
The	 hub	 also	 repeats	 low-speed	 packets	 to	 its	 full-speed	 downstream	 ports
because	 a	 full-speed	 port	 could	 connect	 to	 a	 hub	 that	 in	 turn	 connects	 to	 a
low-speed	device.	To	give	hubs	 time	 to	make	 their	 low-speed	ports	 ready	 to
receive	data,	the	host	adds	a	delay	of	at	least	four	full-speed	bit	widths	between
the	PRE	packet	and	the	low-speed	packet.
Compared	to	full	speed,	traffic	in	a	low-speed	cable	segment	varies	not	only	in
speed,	 but	 also	 in	 edge	 rate	 and	 polarity.	 A	 hub	 whose	 downstream	 port
connects	directly	to	a	low-speed	device	uses	low	speed’s	edge	rate	and	polarity
when	 communicating	with	 the	 device.	When	 communicating	 upstream,	 the
hub	uses	full-speed’s	faster	edge	rate	and	an	inverted	polarity	compared	to	low
speed.	 The	 hub	 repeater	 converts	 between	 the	 edge	 rates	 and	 polarities	 as
needed.	 Chapter	 19	 has	 more	 on	 the	 signal	 polarities,	 and	 Chapter	 20	 has
more	about	edge	rates.

The	high-speed	repeater
A	 USB	 2.0	 hub	 uses	 a	 high-speed	 repeater	 when	 the	 hub’s	 upstream	 port
connects	to	a	high-speed	bus	segment.	In	this	case,	the	hub	sends	and	receives
all	upstream	traffic	at	high	speed	even	if	the	traffic	is	to	or	from	a	low-	or	full-
speed	device.	Routing	logic	in	the	hub	determines	whether	traffic	to	or	from	a
downstream	port	passes	through	a	transaction	translator.
Unlike	a	low-	and	full-speed	repeater,	a	high-speed	repeater	re-clocks	received
data	to	minimize	accumulated	jitter.	In	other	words,	instead	of	just	repeating
received	 transitions,	 a	 high-speed	 repeater	 uses	 its	 own	 local	 clock	 to	 time
transitions	when	retransmitting.	The	edge	rate	and	polarity	don’t	change.	An
elasticity	buffer	allows	for	small	differences	between	the	hub’s	clock	frequency
and	the	timing	of	the	received	data.	When	the	buffer	is	half	full,	the	received
data	begins	clocking	out.

The	transaction	translator
Every	USB	2.0	hub	must	have	one	or	more	transaction	translators	to	manage
communications	with	 low-	and	full-speed	devices.	When	the	hub’s	upstream
port	 connects	 at	 high	 speed,	 the	 hub’s	 transaction	 translator	 communicates

upstream	at	high	speed	while	enabling	low-	and	full-speed	devices	to	continue
to	 communicate	 at	 low	 and	 full	 speeds.	 The	 transaction	 translator	 stores
received	data	and	forwards,	or	transmits,	the	data	toward	its	destination	at	the
appropriate	speed.
The	 transaction	 translator	 frees	bus	 time	by	enabling	other	 communications
to	use	 the	bus	while	a	hub	completes	a	 low-	or	 full-speed	 transaction	with	a
device.	Transaction	translators	can	also	enable	low-	and	full-speed	devices	to
use	more	bandwidth	 than	 the	host	 could	allocate	on	a	 shared	 low/full-speed
bus.
For	 traffic	 to	 and	 from	 low-	 and	 full-speed	 devices,	 the	 high-speed	 repeater
communicates	 with	 the	 transaction	 translator,	 which	 manages	 transactions
with	the	devices.
A	hub	can	use	a	single	transaction	translator	for	all	ports,	or	the	hub	can	have
as	many	as	one	transaction	translator	per	port.	To	find	out	if	a	hub	has	one	or
multiple	 transaction	 translators,	open	Device	Manager,	 locate	 the	hub	under
Universal	 Serial	 Bus	 controllers,	 right-click	 the	 hub’s	 entry,	 select
Properties,	and	view	the	Advanced	tab.

Figure	16-3.	A	transaction	translator	contains	a	high-speed	handler	for	upstream
traffic,	buffers	for	storing	information	in	split	transactions,	and	a	low-	and	full-
speed	 handler	 for	 downstream	 traffic	 to	 low-	 and	 full-speed	 devices.	 Content
from:	Universal	Serial	Bus	Specification	Revision	2.0.

Sections
The	 transaction	 translator	 contains	 three	 sections	 (Figure	 16-3).	 The	 high-
speed	handler	communicates	with	the	host	at	high	speed.	The	low/full-speed
handler	communicates	with	devices	at	 low	and	full	speeds.	Buffers	store	data
used	 in	 transactions	 with	 low-	 and	 full-speed	 devices.	 Each	 transaction
translator	has	to	have	at	least	four	buffers:	one	for	interrupt	and	isochronous
start-split	 transactions,	 one	 for	 interrupt	 and	 isochronous	 complete-split
transactions,	and	two	or	more	for	control	and	bulk	transfers.

Managing	split	transactions
When	a	USB	2.0	host	wants	to	communicate	with	a	low-	or	full-speed	device
that	 connects	 to	 a	 hub	 on	 a	 high-speed	 bus,	 the	 host	 initiates	 a	 split
transaction	 with	 the	 USB	 2.0	 hub	 that	 is	 nearest	 the	 device	 and
communicating	 upstream	 at	 high	 speed.	 Figure	16-4	 shows	 the	 transactions
that	make	up	a	split	transaction.

Figure	16-4.	In	a	transfer	that	uses	split	transactions,	the	host	communicates	at
high	speed	with	a	USB	2.0	hub,	and	the	hub	communicates	at	low	or	full	speed
with	 the	device.	 Information	 source:	Universal	Serial	Bus	Specification	Revision
2.0.

One	or	more	start-split	transactions	contain	the	information	the	hub	needs	to

complete	 the	 transaction	 with	 the	 device.	 The	 transaction	 translator	 stores
information	 received	 from	 the	host	 and	completes	 the	 start-split	 transaction
with	the	host.
On	 completing	 a	 start-split	 transaction,	 the	 hub	 performs	 the	 function	 of	 a
host	controller	in	carrying	out	the	transaction	with	the	device.	The	transaction
translator	 initiates	 the	 transaction	 in	 the	 token	 phase,	 sends	 data	 or	 stores
received	data	or	status	information	as	needed	in	the	data	phase,	and	sends	or
receives	a	status	code	as	needed	in	the	handshake	phase.	The	hub	uses	low	or
full	speed	as	required	in	its	communications	with	the	device.
After	the	hub	has	had	time	to	exchange	data	with	the	device,	in	all	transactions
except	 isochronous	 OUTs,	 the	 host	 initiates	 one	 or	 more	 complete-split
transactions	to	retrieve	the	 information	returned	by	the	device	and	stored	in
the	transaction	translator’s	buffer.	The	hub	performs	these	transactions	at	high
speed.
Table	16-1	compares	the	structure	and	contents	of	transactions	with	low-	and
full-speed	devices	at	different	bus	speeds.

Table	16-1:	When	a	low-	or	full-speed	device	has	a	transaction	on	a	high-speed
bus,	the	host	uses	start-split	(SSPLIT)	and	complete-split	(CSPLIT)	transactions
with	the	USB	2.0	hub	that	is	nearest	the	device	and	communicating	upstream	at
high	speed.
Bus	Speed Transaction	Type Transaction	Phase

Token Data Handshake

Low/full-speed
communications
with	the	device

Setup,	OUT PRE	if	low	speed,
LS/FS	token

PRE	if	low	speed,
data

status	(except	for
isochronous)

IN PRE	if	low	speed,
LS/FS	token

data	or	status PRE	if	low	speed,
status	(except	for
isochronous)

High-speed
communications
between	a	USB	2.0
hub	and	host	in
transactions	with	a
low-	or	full-speed
device

Setup,	OUT
(isochronous	OUT
has	no	CSPLIT
transaction)

SSPLIT,	LS/FS
token

data status	(bulk	and
control	only)

CSPLIT,	LS/FS
token

– status

IN SSPLIT,	LS/FS
token

– status	(bulk	and
control	only)

CSPLIT,	LS/FS
token)

data	or	status –

Bulk	and	control	transfers
For	bulk	and	control	transfers,	in	the	start-split	transaction,	the	USB	2.0	host
sends	the	start-split	token	packet	(SSPLIT),	followed	by	the	usual	low-	or	full-
speed	token	packet	and	any	data	packet	destined	for	the	device.	The	USB	2.0
hub	 that	 is	 nearest	 the	 device	 and	 communicating	 upstream	 at	 high	 speed
returns	 ACK	 or	 NAK.	 The	 host	 is	 then	 free	 to	 use	 the	 bus	 for	 other
transactions.	The	device	knows	nothing	about	the	transaction	yet.
After	 returning	 ACK	 in	 a	 start-split	 transaction,	 the	 hub	 has	 two
responsibilities.	The	hub	must	 complete	 the	 transaction	with	 the	device	 and
also	must	continue	 to	handle	any	other	bus	 traffic	 received	 from	the	host	or
other	attached	devices.
To	complete	the	transaction,	the	hub	converts	the	packet	or	packets	received
from	the	host	to	the	appropriate	speed,	sends	them	to	the	device	and	stores	the
data	or	handshake	returned	by	the	device.	Depending	on	the	transaction,	the
device	may	send	data,	a	handshake,	or	nothing.	For	IN	transactions,	the	hub
sends	 a	 handshake	 packet	 to	 the	 device.	 To	 the	 device,	 the	 transaction	 has
proceeded	at	the	expected	low	or	full	speed	and	is	now	complete.	The	device
has	no	knowledge	that	the	transaction	is	a	split	transaction.	The	host	hasn’t	yet
received	the	device’s	response.
While	 the	 hub	 is	 completing	 the	 transaction	 with	 the	 device,	 the	 host	may
initiate	 other	 bus	 traffic	 that	 the	 device’s	 hub	must	 handle	 as	well.	 Separate
hardware	modules	within	 the	 hub	 handle	 the	 two	 functions.	When	 the	 hub
has	 had	 enough	 time	 to	 complete	 the	 transaction	 with	 the	 device,	 the	 host
begins	a	complete-split	transaction	with	the	hub.
In	a	 complete-split	 transaction,	 the	host	 sends	a	 complete-split	 token	packet
(CSPLIT),	followed	by	a	low-	or	full-speed	token	packet	to	request	the	data	or
status	 information	 the	hub	has	 received	 from	 the	device.	The	hub	 sends	 the
information.	The	transfer	is	now	complete	at	the	host.	The	host	doesn’t	send
an	ACK	to	the	hub.	If	the	hub	doesn’t	have	the	packet	ready	to	send,	the	hub
sends	NYET,	and	the	host	retries	later.	The	device	is	unaware	of	the	complete-
split	transaction.

Interrupt	and	isochronous	transfers
In	 split	 transactions	 in	 interrupt	 and	 isochronous	 transfers,	 the	 process	 is
similar	but	with	 stricter	 timing.	The	goals	 are	 to	 transfer	data	 to	 the	host	 as
soon	as	possible	after	the	device	has	data	available	to	send	and	to	transfer	data

to	 the	device	 just	 as	 the	device	 is	 ready	 to	 receive	new	data.	To	 achieve	 this
timing,	isochronous	transactions	with	large	packets	use	multiple	start	splits	or
complete	splits	and	transfer	a	portion	of	the	data	in	each.
Unlike	with	bulk	and	control	transfers,	start-split	transactions	in	interrupt	and
isochronous	 transfers	 have	 no	 handshake	 phase,	 just	 the	 start-split	 token
followed	by	an	IN	or	OUT	token	and	for	OUT	transactions,	data.
In	an	interrupt	transaction,	the	hub	schedules	the	start	split	in	the	microframe
just	before	 the	earliest	 time	that	 the	hub	 is	expected	to	begin	the	 transaction
with	 the	 device.	 For	 example,	 assume	 that	 the	 microframes	 in	 a	 frame	 are
numbered	 in	 sequence,	 0–7.	 If	 the	 start	 split	 is	 in	 microframe	 0,	 the
transaction	 with	 the	 device	 can	 occur	 as	 early	 as	microframe	 1.	 The	 device
may	 have	 data	 or	 a	 handshake	 response	 to	 send	 to	 the	 host	 as	 early	 as
microframe	 2,	 and	 the	 host	 schedules	 time	 for	 three	 complete-split
transactions	 in	 microframes	 2,	 3,	 and	 4.	 If	 the	 hub	 doesn’t	 yet	 have	 the
information	 to	return	 in	a	complete	split,	 the	hub	sends	NYET	and	the	host
retries.
Full-speed	isochronous	transactions	can	transfer	up	to	1023	bytes.	To	ensure
that	 the	 data	 transfers	 as	 soon	 as	 the	 device	 has	 data	 to	 send	 or	 is	 ready	 to
receive	 data,	 transactions	 with	 large	 packets	 use	 multiple	 start	 splits	 or
complete	 splits	 with	 up	 to	 188	 data	 bytes	 in	 each.	 This	 amount	 is	 the
maximum	 quantity	 of	 full-speed	 data	 that	 fits	 in	 a	 microframe.	 A	 single
transaction’s	 data	 can	 require	 up	 to	 eight	 start-split	 or	 complete-split
transactions.
In	 an	 isochronous	 IN	 transaction,	 the	 host	 schedules	 complete-split
transactions	in	every	microframe	where	the	host	expects	the	device	to	have	at
least	 a	 portion	 of	 the	 data	 to	 send.	 Requesting	 the	 data	 in	 smaller	 chunks
ensures	that	the	host	receives	the	data	as	quickly	as	possible.	The	host	doesn’t
have	to	wait	for	all	of	the	data	to	transfer	from	the	device	at	full	speed	before
beginning	to	retrieve	the	data.
In	an	 isochronous	OUT	transaction,	 the	host	 sends	 the	data	 in	one	or	more
start-split	transactions.	The	host	schedules	the	transactions	so	the	hub’s	buffer
will	 never	 be	 empty	 but	 will	 contain	 as	 few	 bytes	 as	 possible.	 Each	 SPLIT
packet	contains	bits	that	indicate	the	data’s	position	in	the	low-	or	full-speed
data	 packet	 (beginning,	 middle,	 end,	 or	 all).	 There	 is	 no	 complete-split
transaction.

Bandwidth	use	of	low-	and	full-speed	devices
Because	a	USB	2.0	hub	acts	as	a	host	controller	in	managing	transactions,	low-
and	full-speed	devices	share	low-	and	full-speed	bandwidth	only	with	devices
that	use	 the	same	transaction	translator.	A	hub	may	provide	one	transaction
translator	 for	 all	 ports,	 but	 a	 single	 hub	 can	 also	 provide	 a	 transaction
translator	for	each	port	that	connects	to	a	low-	or	full-speed	device.
If	 two	 full-speed	 devices	 each	 have	 a	 dedicated	 transaction	 translator	 on	 a
high-speed	 bus,	 each	 device	 can	 use	 all	 of	 the	 transaction	 translator’s
downstream,	 full-speed	 bandwidth.	When	 the	 hub(s)	 convert	 to	 high	 speed,
the	full-speed	traffic	uses	little	of	the	high-speed	bandwidth.
However,	 for	 bulk	 transactions,	 the	 extra	 transaction	 with	 the	 host	 in	 each
split	 transaction	 can	 result	 in	 lower	 throughput	 for	 a	 full-speed	 device	 that
connects	to	a	hub	on	a	busy	bus	that	is	also	carrying	high-speed	bulk	traffic.

The	hub	controller
A	USB	2.0	hub	controller	manages	communications	between	the	host	and	the
hub.	As	 it	does	 for	 all	 devices,	 the	host	 enumerates	 a	newly	detected	hub	 to
learn	about	it.	The	hub	descriptor	retrieved	during	enumeration	tells	the	host
the	number	of	ports	on	the	hub.	After	enumerating	the	hub,	the	host	requests
to	know	if	the	hub	has	any	attached	devices.	If	so,	the	host	enumerates	these	as
well.
The	host	 finds	out	 if	 a	device	 is	 attached	 to	 a	port	by	 sending	 the	hub-class
request	Get	Port	Status.	This	is	similar	to	the	standard	Get	Status	request	but
is	directed	to	a	hub	and	provides	a	port	number	in	the	wIndex	field.	The	hub
returns	two	16-bit	values	that	indicate	whether	a	device	is	attached	and	other
information	such	as	whether	the	device	is	in	the	Suspend	state.
The	hub	controller	is	also	responsible	for	disabling	any	port	that	caused	loss	of
bus	activity	or	babble.	Loss	of	bus	activity	occurs	when	a	packet	doesn’t	end
with	 the	 expected	 EOP.	 Babble	 occurs	 when	 a	 device	 continues	 to	 transmit
beyond	the	EOP.
Each	hub	has	a	Status	Change	endpoint	configured	for	interrupt	IN	transfers.
A	USB	2.0	host	polls	 the	endpoint	 to	 find	out	 if	 the	hub	has	any	changes	 to
report.	On	 each	poll,	 the	hub	 controller	 returns	NAK	 if	 there	have	 been	no
changes	or	data	that	indicates	a	specific	port	or	the	hub	itself	as	the	source	of
the	change.	After	a	reported	change,	the	host	sends	requests	to	find	out	more

about	the	change	and	take	whatever	action	is	needed.	For	example,	if	the	hub
reports	attachment	of	a	new	device,	the	host	attempts	to	enumerate	the	device.

Speed
An	external	USB	2.0	hub’s	downstream	ports	must	support	low,	full,	and	high
speeds.	In	the	upstream	direction,	if	a	USB	2.0	hub’s	upstream	segment	is	high
speed,	 the	 hub	 communicates	 at	 high	 speed.	 Otherwise,	 the	 hub
communicates	upstream	at	low	and	full	speeds.

Filtering	traffic	according	to	speed
Low-speed	 devices	 aren’t	 capable	 of	 receiving	 full-speed	 data	 so	 hubs	 don’t
repeat	 full-speed	 traffic	 to	 low-speed	 devices.	Otherwise,	 a	 low-speed	 device
would	 try	 to	 interpret	 full-speed	 traffic	 as	 low-speed	 data	 and	 might	 even
mistakenly	see	what	 looks	 like	valid	data.	Full-	or	high-speed	data	on	a	 low-
speed	 cable	 could	 also	 cause	 problems	 due	 to	 radiated	 electromagnetic
interference	(EMI).	In	the	other	direction,	hubs	repeat	received	low-speed	data
upstream.
Low-	 and	 full-speed	 devices	 aren’t	 capable	 of	 receiving	 high-speed	 data,	 so
USB	2.0	hubs	don’t	repeat	high-speed	traffic	 to	 these	devices,	 including	USB
1.1	hubs.

Detecting	device	speed
On	attachment,	every	USB	2.0	device	must	support	either	low	or	full	speed.	A
hub	detects	whether	an	attached	device	is	low	or	full	speed	by	detecting	which
signal	line	is	more	positive	on	an	idle	line.	Figure	16-5	illustrates.	As	Chapter	4
explained,	the	hub	has	pull-down	resistors	of	14.25k–24.8kΩ	on	D+	and	D-.	A
newly	 attached	 device	 has	 a	 pull-up	 of	 900–1575Ω	 on	 either	 D+	 for	 a	 full-
speed	device	or	D-	for	a	 low-speed	device.	When	a	device	attaches	to	a	port,
the	 line	 with	 the	 pull-up	 is	 more	 positive	 than	 the	 hub’s	 logic-high	 input
threshold.	 The	 hub	 detects	 the	 voltage,	 assumes	 a	 device	 is	 attached,	 and
determines	the	speed	by	detecting	which	line	is	pulled	up.
After	 detecting	 a	 full-speed	 device,	 a	 USB	 2.0	 hub	 determines	 whether	 the
device	supports	high	speed	by	using	the	high-speed	detection	handshake.	The
handshake	 occurs	 during	 the	 Reset	 state	 that	 the	 hub	 initiates	 during
enumeration.	 If	 the	 handshake	 succeeds,	 the	 device	 removes	 its	 pull-up	 and
communications	 are	 at	 high	 speed.	 A	 USB	 1.1	 hub	 ignores	 the	 attempt	 to
handshake,	 and	 the	 failure	of	 the	handshake	 informs	 the	device	 that	 it	must

use	full	speed.	Chapter	19	has	more	about	the	handshake.

Maintaining	active	links
SOF	packets	keep	full-	and	high-speed	devices	from	entering	the	Suspend	state
on	an	otherwise	idle	bus.	On	an	idle,	full-speed	bus,	the	host	continues	to	send
an	 SOF	 once	 per	 frame,	 and	 hubs	 pass	 these	 packets	 on	 to	 their	 full-speed
devices.	On	an	otherwise	 idle,	high-speed	bus,	 the	host	continues	 to	send	an
SOF	once	per	microframe,	and	hubs	pass	these	packets	on	to	their	high-speed
devices.	A	full-speed	device	that	connects	to	a	USB	2.0	hub	that	communicates
upstream	at	high	speed	will	also	receive	an	SOF	once	per	frame	from	the	hub.

Figure	 16-5.	The	device’s	 port	 has	 a	 stronger	pull-up	 than	 the	hub’s	 port.	The
location	of	the	pull-up	tells	the	hub	whether	the	device	is	low	or	full	speed.	High-
speed	devices	are	full	speed	at	attachment.	Information	source:	Universal	Serial
Bus	Specification	Revision	2.0.

Low-speed	devices	don’t	see	 the	SOFs.	 Instead,	at	 least	once	per	 frame,	hubs
must	 send	 their	 low-speed	 devices	 a	 low-speed	 End-of-Packet	 (EOP)	 signal
(defined	in	Chapter	19).	This	signal	functions	as	a	keep-alive	signal	that	keeps

a	device	from	entering	the	Suspend	state	on	a	bus	with	no	low-speed	activity.
A	host	can	also	request	a	hub	to	suspend	the	bus	at	a	single	port.	Chapter	17
has	more	on	how	hubs	manage	the	Suspend	state.

Figure	16-6.	A	USB	3.1	hub	contains	a	USB	2.0	hub	and	a	hub	for	SuperSpeed
and	SuperSpeedPlus.	 Information	 source:	Universal	 Serial	 Bus	 3.1	 Specification
Revision	1.0.

USB	3.1
A	USB	3.1	hub	contains	both	a	USB	2.0	hub	that	supports	low,	full,	and	high
speeds	and	an	Enhanced	SuperSpeed	hub	that	contains	a	SuperSpeed	hub	and
a	SuperSpeedPlus	hub	(Figure	16-6).	The	USB	2.0	and	Enhanced	SuperSpeed
hubs	 operate	 independently	 except	 for	 sharing	 logic	 to	 control	 VBUS.	 The
host	enumerates	a	USB	3.1	hub	as	 two	hubs.	Hubs	are	 the	only	devices	with
ports	 that	 can	 communicate	 upstream	 at	 the	 same	 time	 at	 both	 Enhanced
SuperSpeed	and	high	speed.

Bus	speeds
The	speed	of	a	hub’s	upstream	port	determines	what	bus	speeds	are	available
to	 downstream	 ports.	 If	 the	 upstream	 port	 connects	 at	 SuperSpeedPlus,	 the
hub	can	communicate	with	downstream	devices	at	any	speed.	If	the	upstream

port	 connects	 at	 SuperSpeed,	 the	 hub	 can	 communicate	 with	 downstream
devices	at	SuperSpeed	and	all	USB	2.0	speeds.	If	the	upstream	port	connects	at
high	 speed,	 the	 hub	 can	 communicate	 downstream	 at	 low,	 full,	 and	 high
speeds.	If	the	upstream	port	connects	at	full	speed,	the	hub	can	communicate
downstream	 at	 low	 and	 full	 speeds.	 A	 downstream-facing	 hub	 port	 that
connects	internally	to	an	embedded	device	can	support	a	single	speed.
At	the	hub’s	upstream	port,	traffic	to	and	from	downstream	devices	operating
at	 SuperSpeed	 or	 SuperSpeedPlus	 use	 the	 Enhanced	 SuperSpeed	 data	 wires,
and	 traffic	 to	 and	 from	downstream	 low-,	 full-,	 and	high-speed	devices	uses
the	USB	2.0	data	wires.	As	with	USB	2.0	hubs,	all	upstream	traffic	on	the	USB
2.0	wires	uses	high	speed	(unless	a	USB	1.1	hub	is	upstream	from	the	hub).

SuperSpeed
The	SuperSpeed	components	 in	 a	USB	3.1	hub	 include	a	 repeater/forwarder
for	data	and	a	hub	controller.	The	hub	repeats	DPs	and	stores	and	 forwards
header	packets.	A	hub	may	partially	store	a	DP	before	beginning	to	repeat	it.
The	 hub	 must	 be	 able	 to	 store	 eight	 header	 packets	 directed	 to	 the	 same
downstream	port	and	eight	header	packets	received	at	a	downstream	port.
Like	 the	hub	 repeater	 in	 a	USB	2.0	hub,	 the	 repeater/forwarder	 re-transmits
received	 packets,	 detects	 device	 attachment	 and	 removal,	 establishes	 the
connection	 of	 a	 device	 to	 the	 bus,	 detects	 bus	 faults	 such	 as	 over-current
conditions,	and	manages	power	to	the	device.
Buffers	help	manage	traffic	that	passes	through	the	hub.	Buffers	enable	storing
packet	headers	for	later	delivery	to	a	downstream	device	that	must	exit	a	low-
power	 mode	 before	 receiving	 traffic.	 Buffers	 also	 enable	 receiving
asynchronous	 messages	 from	 multiple	 downstream	 devices	 at	 once	 and
holding	received	payload	data	to	repeat.	To	enable	retrying,	after	transmitting
a	 DP,	 the	 buffer	 retains	 the	 packet	 until	 receiving	 a	 link-level
acknowledgment.
As	in	a	USB	2.0	hub,	a	SuperSpeed	hub	controller	manages	communications
between	 the	 host	 and	 the	 hub.	 The	 hub	 sends	 status	 information	 using	 an
interrupt	IN	Status	Change	endpoint.	A	hub	with	information	to	report	sends
an	ERDY	TP	to	the	host.

SuperSpeedPlus
The	SuperSpeedPlus	components	in	a	USB	3.1	hub	include	a	SuperSpeedPlus

hub	controller,	a	SuperSpeedPlus	upstream	controller,	and	a	SuperSpeedPlus
downstream	 controller	 for	 each	 port.	 (USB	 3.0	 hubs	 don’t	 have	 these
components.)	The	hub	uses	a	store-and-forward	architecture,	where	 the	hub
can	store	one	or	more	received	data	packets	before	sending	them	up	or	down
stream.	 The	 result	 is	 more	 efficient	 scheduling	 compared	 to	 the
repeater/forwarder	architecture	used	by	hubs	operating	at	SuperSpeed.
The	upstream	controller	buffers	packets	received	from	upstream,	buffers	and
arbitrates	to	determine	priority	for	packets	waiting	to	transmit	upstream,	and
routes	received	packets	to	a	downstream	controller	or	the	hub	controller.	The
downstream	controllers	buffer	packets	received	from	downstream,	buffer	and
arbitrate	 to	 determine	 priority	 for	 packets	 waiting	 to	 transmit	 downstream,
and	route	received	packets	to	the	upstream	controller.
A	 SuperSpeedPlus	 hub	 has	 these	 abilities	 that	 are	 not	 available	 on	 a
SuperSpeed	hub:

Schedule	 simultaneous	 transactions	 for	 SuperSpeed	 endpoints	 and
SuperSpeedPlus	IN	endpoints.
Intermingle	and	reorder	packets	on	the	SuperSpeedPlus	bus.

Managing	traffic
During	hub	enumeration,	the	host	sends	a	Set	Hub	Depth	request	to	assign	a
hub-depth	 value	 to	 the	 hub.	 The	 value	 equals	 the	 number	 of	 additional
upstream	hubs	 that	 lie	 in	 the	path	between	 the	hub	and	 the	 root	hub.	Hubs
that	connect	directly	to	the	root	hub	have	a	hub	depth	of	zero.	Any	hubs	that
connect	 to	 downstream	 ports	 on	 those	 hubs	 have	 a	 hub	 depth	 of	 one.	 Any
hubs	that	connect	to	those	hubs	have	a	hub	depth	of	 two,	and	so	on	up	to	a
maximum	hub	depth	of	four.	The	USB	2.0	specification	defines	the	root	hub
as	tier	1	in	the	bus	topology,	so	hub	depth	equals	the	hub’s	tier	-	2.
Unlike	USB	 2.0	 hubs,	USB	 3.1	 hubs	 don’t	 broadcast	 downstream	 traffic	 but
instead	direct	 traffic	 only	 toward	 the	 target	 device.	Using	 routing	 instead	of
broadcasting	 enables	 ports	 to	 enter	 a	 low-power	 state	 when	 not
communicating	 with	 the	 host	 even	 if	 the	 bus	 is	 carrying	 traffic	 to	 other
devices.	 In	 the	 upstream	direction,	 hubs	 route	 all	 traffic	 to	 the	 host	 as	with
USB	2.0.
On	 receiving	 a	 packet	 from	 the	 host,	 a	 hub	 uses	 its	 hub-depth	 value	 and	 a
Route	 String	 in	 the	 packet	 header	 to	 determine	 whether	 the	 hub	 should

process	the	packet	or	route	the	packet	to	a	downstream	port.	The	Route	String
has	five	4-bit	fields.	Each	field	contains	information	that	applies	to	one	of	up
to	five	external	hubs	in	the	path	that	the	packet	travels.	The	hub-depth	value
identifies	which	4-bit	field	in	a	received	Route	String	applies	to	the	hub.	The
field	 contains	 either	 a	 port	 number	 to	 route	 the	 packet	 to	 or	 zero	 if	 the
packet’s	destination	is	the	hub	itself.	Because	the	Route	String’s	fields	are	four
bits,	 a	USB	3.1	hub	can	have	at	most	15	downstream	ports.	A	hub	 that	 isn’t
configured	assumes	all	packets	are	directed	to	itself.

The	hub	class
Hubs	are	members	of	the	hub	class,	which	is	the	only	device	class	defined	in
the	USB	2.0	and	USB	3.1	specifications.

Hub	descriptors
The	 hub	 descriptor	 informs	 the	 host	 of	 hub-specific	 capabilities	 such	 as
supported	modes	 for	 power	 switching	 and	 overcurrent	 protection.	 For	USB
3.1	 hubs,	 the	 hub	 descriptor	 has	 additional	 fields	 to	 support	 USB	 3.1
capabilities.	 A	 host	 can	 request	 the	 descriptor	 with	 a	 Get	 Hub	 Descriptor
control	request.
A	hub	that	connects	at	SuperSpeed	must	return	a	SUPERSPEED_USB	device
capability	descriptor	that	describes	supported	speeds	and	features	and	latency
values	 for	 SuperSpeed	 communications.	 A	 hub	 that	 connects	 at
SuperSpeedPlus	 must	 return	 a	 SUPERSPEED_PLUS	 device	 capability
descriptor	 that	 describes	 supported	 features	 and	 capabilities	 for
SuperSpeedPlus	 communications.	 Enhanced	 SuperSpeed	 hubs	 also	 support
the	CONTAINER_ID	device	capability	descriptor,	which	identifies	the	device
instance.	The	Container	ID	is	the	same	value	for	the	USB	2.0	and	USB	3.1	hub
functions	in	a	device.

Hub	class	requests
A	host	can	use	hub-class	 requests	 to	obtain	status	 information,	 set	and	clear
hub	and	port	features,	and	monitor	and	control	transaction	translators.

17

Managing	Power
The	USB	interface	can	provide	power	to	devices	when	they	need	it,	conserve
power	 when	 devices	 are	 idle,	 and	 charge	 batteries.	 Hosts	 and	 devices	 that
support	the	USB	Power	Delivery	Rev.	2.0,	v1.0	specification	can	use	higher	bus
voltages	and	currents,	fine-tune	power	delivery,	and	even	reverse	the	flow	so	a
device	provides	power	to	the	host.
This	 chapter	 shows	 how	USB	manages	 power,	 including	 how	 to	 decide	 if	 a
device	can	be	bus-powered	or	requires	its	own	power	supply.

Power	options
The	USB	 cable	 includes	 power	 and	 ground	 lines	 that	 can	 provide	 power	 to
devices.	 A	 device	 can	 provide	 its	 own	 power	 supply,	 rely	 entirely	 on	 bus
power,	 or	 use	 both	 bus	 power	 and	 self	 power.	 Devices	 that	 use	 their	 own
power	must	at	minimum	be	able	to	detect	 the	presence	of	 the	VBUS	voltage
on	the	cable.
The	 capabilities	 described	 below	 don’t	 include	 the	 expanded	 capabilities	 of
USB	Power	Delivery	Rev.	2.0,	v1.0,	detailed	later	in	this	chapter.

Using	bus	current
USB	2.0	defines	a	low-power	device	as	a	device	that	draws	up	to	100	mA	from
the	bus	and	a	high-power	device	as	a	device	that	draws	up	to	500	mA	from	the
bus.	A	self-powered	device	can	draw	up	to	100	mA	from	the	bus	and	as	much
power	as	is	available	from	the	device’s	supply.
A	self-powered	USB	2.0	device	may	draw	up	to	100	mA	from	the	bus	any	time
the	device	isn’t	in	the	Suspend	state.	This	capability	enables	the	device’s	USB
interface	to	function	if	a	device’s	power	supply	is	off	and	the	host	detects	and
enumerates	the	device.	Otherwise,	if	a	device’s	pull-up	is	bus	powered	and	the
rest	of	the	interface	is	self	powered,	the	host	will	detect	the	device	but	won’t	be
able	to	communicate	with	it.

A	high-power	device	must	be	able	to	enumerate	at	low	power.	On	connecting
to	the	bus,	a	USB	2.0	device	can	draw	up	to	100	mA	of	bus	current	until	the
host	 has	 configured	 the	 device	 unless	 the	 device	 is	 required	 to	 enter	 the
Suspend	state	as	explained	below.	After	retrieving	a	configuration	descriptor,
the	host	examines	the	amount	of	current	requested	in	bMaxPower,	and	if	the
current	 is	 available,	 the	 host	 sends	 a	 Set	Configuration	 request	 to	 select	 the
configuration.	 The	 device	 can	 then	 draw	 up	 to	 the	 value	 specified	 in
bMaxPower	 from	 the	 bus.	 In	 practice,	 hosts	 and	 hubs	 are	 likely	 to	 allocate
either	 100	mA	 or	 500	mA	 to	 a	 device	 rather	 than	 the	 amount	 requested	 in
bMaxPower.	Hosts	and	hubs	 that	 support	USB	Power	Delivery	Rev.	2.0,	 v1.0
can	manage	bus	current	more	precisely.
The	current	 limits	are	absolute	maximums,	not	averages.	Also,	VBUS	can	be
as	 high	 as	 5.5V,	 and	 a	 higher	 voltage	 can	 result	 in	 greater	 current
consumption.
Except	as	defined	 in	USB	Power	Delivery	Rev.	2.0,	 v1.0,	 a	 device	must	never
provide	 upstream	 power.	 Even	 the	 pull-up	 on	 D+	 or	 D-	 must	 remain
unpowered	until	VBUS	is	present.	A	device	that	provides	upstream	power	can
cause	 problems	 that	 include	 a	 host	 PC	 that	 doesn’t	 boot	 or	 doesn’t	 resume
from	the	Suspend	state,	a	hub	that	doesn’t	enumerate	its	downstream	devices,
and	failure	of	an	upstream	device.	The	USB-IF’s	compliance	testing	includes	a
back-voltage	 test	 to	 verify	 that	 a	 device	 doesn’t	 provide	 upstream	 power.	 A
self-powered	device	must	connect	 to	VBUS	to	detect	 its	presence	even	 if	 the
device	 never	 uses	 bus	 power.	 If	 VBUS	 is	 removed,	 the	 device	must	 remove
power	from	the	pull-up	within	10	s.
Devices	that	connect	at	SuperSpeed	and	SuperSpeedPlus	follow	the	same	rules
for	 using	 power	 but	 with	 higher	 limits	 of	 150	mA	 for	 low-power	 and	 self-
powered	devices	and	900	mA	for	high-power	devices.

Current	limits	on	attachment
Originally,	 the	 USB	 specification	 required	 devices	 to	 support	 entering	 the
Suspend	 state	 from	 any	 powered	 state.	 Meeting	 this	 requirement	 proved
difficult,	and	the	USB	2.0	Connect	Timing	Update	ECN	loosened	the	rules	for
just-connected	devices.
The	ECN	specifies	that	devices	aren’t	required	to	enter	the	Suspend	state	and
reduce	their	use	of	bus	current	until	1	s	after	connecting	even	if	the	condition
of	 the	upstream	bus	segment	would	otherwise	mandate	entering	Suspend.	A

USB	2.0	device	 is	considered	to	be	connected	when	the	device	has	pulled	up
D+	or	D-.

Detecting	device	attachment
USB	hosts	 in	embedded	systems	may	 turn	off	VBUS	 to	 save	power	but	may
still	 need	 the	 ability	 to	 detect	 device	 attachment	 even	 when	 VBUS	 is	 off.
Chapter	 21	 describes	 the	 Attach	 Detection	 Protocol	 (ADP),	 which	 enables
device	detection	when	VBUS	is	off.
The	Device	Capacitance	ECN	to	 the	USB	2.0	specification	requires	a	device’s
VBUS	line	to	have	sufficient	capacitance	to	enable	using	the	Attach	Detection
Protocol	(ADP).	The	ECN	mandates	a	capacitance	of	1–10	μF	between	VBUS
and	GND	on	a	device’s	upstream-facing	port.

Bus	voltage
The	 nominal	 voltage	 between	 VBUS	 and	 GND	 in	 a	 USB	 cable	 is	 5	 V,	 but
VBUS	at	a	host	or	hub’s	downstream	port	can	be	anywhere	in	the	range	4.45–
5.5	 V.	 Cable	 and	 connector	 losses	 further	 reduce	 the	 voltage	 available	 at	 a
device’s	 port.	 ECNs	 to	 the	 USB	 2.0	 and	 USB	 3.1	 specifications	 raised	 the
maximum	VBUS	voltage	from	5.25	V	to	5.5	V.	On	links	that	use	USB	Type-C
connectors,	which	can	carry	up	to	5	A,	a	higher	voltage	can	help	ensure	that
the	downstream	voltage	is	valid	despite	electrical	losses.
These	 are	 the	 minimum	 and	 maximum	 valid	 voltages	 for	 connectors	 on
downstream-facing	ports:

Hub	Type USB	per
Version

Available
Current	Port
(mA)

VBUS	at	Hub	Port	(V)

Minimum Maximum

High	power 2.0 500 4.75 5.5

3.1 900 4.45 5.5

Low	power 2.0 100 4.4 5.5

3.1 150 4.45 5.5

When	VBUS	is	at	least	4.4	V	at	the	upstream	hub’s	port,	 low-power	USB	2.0
devices	must	fully	function,	and	high-power	USB	2.0	devices	attached	to	low-
power	ports	must	at	minimum	respond	to	enumeration	requests.	All	USB	3.1
devices	must	at	minimum	respond	to	enumeration	requests	when	VBUS	is	at
least	 4.0	 V	 at	 the	 device’s	 upstream-facing	 port.	 Transient	 conditions	 can

cause	the	voltage	to	drop	briefly	by	a	few	additional	tenths	of	a	volt.
USB	controller	chips	typically	use	a	power	supply	of	5	V,	3.3	V,	or	even	1.2	V.
Devices	powered	at	3.3	V	or	1.2	V	can	use	a	 low-dropout	 linear	regulator	to
obtain	 the	needed	supply	voltage	 from	VBUS.	For	devices	 that	need	+5	V,	a
step-up	switching	regulator	can	produce	the	needed	voltage	from	VBUS.

Bus-powered	devices
A	bus-powered	device	doesn’t	need	to	provide	a	battery	or	a	power	supply	that
connects	to	a	wall	socket.	Without	an	internal	power	supply,	the	device	can	be
physically	smaller,	lighter	in	weight,	and	cheaper	to	manufacture.	Figure	17-1
will	help	you	decide	whether	a	device	can	use	bus	power.
A	device	 that	 requires	 up	 to	 100	mA	 can	be	 bus	 powered	 from	 any	host	 or
hub.	A	device	that	requires	up	to	500	mA	can	use	bus	power	when	attached	to
a	self-powered	hub	or	any	host	except	some	battery-powered	hosts.
An	Enhanced	SuperSpeed	device	on	 a	USB	3.1	bus	 can	draw	up	 to	 150	mA
from	any	USB	3.1	hub	and	up	to	900	mA	when	attached	to	any	host	or	self-
powered	hub	except	some	battery-powered	hosts.
Except	when	connected	to	a	USB	charger,	no	device	should	draw	more	than
100	 mA	 (USB	 2.0)	 or	 150	 mA	 (USB	 3.1)	 until	 the	 host	 has	 issued	 a	 Set
Configuration	 request	 for	 a	 configuration	 that	 allows	more	 current.	Devices
must	limit	their	power	consumption	further	when	in	the	Suspend	state.
Of	course,	devices	such	as	cameras	that	need	to	function	when	not	attached	to
a	 host	 need	 self	 power.	 Self	 power	 can	 use	 batteries	 or	 power	 from	 a	 wall
socket.	Because	a	device	 in	 the	Suspend	state	 should	draw	very	 little	 current
from	the	bus,	some	devices	need	their	own	power	supplies	to	enable	operating
when	the	device’s	bus	segment	is	suspended.
During	enumeration,	the	host	learns	whether	the	device	is	self	powered	or	bus
powered	 and	 the	maximum	 current	 the	 device	 will	 draw	 from	 the	 bus.	 All
hubs	 must	 have	 over-current	 protection	 that	 blocks	 excessive	 current	 to	 a
device.

Hub	power
Power	use	on	hubs	has	special	considerations.	A	hub	must	control	power	to	its
downstream	devices	 and	must	monitor	 power	 consumption	 and	 take	 action

when	 devices	 try	 to	 draw	 an	 amount	 of	 current	 that	would	 present	 a	 safety
hazard.

Figure	17-1.	Some	devices	can	draw	all	of	their	power	from	the	bus.

Power	sources
The	root	hub	gets	its	power	from	the	host.	External	hubs	may	be	self-powered
or	bus-powered.

If	the	host	uses	power	from	a	wall	socket	or	another	external	source,	a	USB	2.0
root	hub	must	be	capable	of	supplying	500	mA	to	each	port	on	the	hub.	If	the
host	is	battery-powered,	the	root	hub	may	supply	either	500	mA	or	100	mA	to
each	 port.	 A	 high-power	 hub	 supplies	 500	mA	 per	 port.	 A	 low-power	 hub
supplies	100	mA	per	port.
All	of	a	bus-powered,	USB	2.0	hub’s	downstream	devices	must	be	low	power
because	 the	hub	can	draw	no	more	 than	500	mA	and	 the	hub	 itself	will	use
some	 current,	 leaving	 less	 than	 500	 mA	 for	 all	 attached	 devices	 combined.
Thus	 two	 bus-powered	 hubs	 shouldn’t	 connect	 in	 series.	 The	 upstream	hub
can	 guarantee	 no	 more	 than	 100	 mA	 to	 each	 downstream	 port,	 and	 that
amount	doesn’t	leave	enough	current	to	power	a	second	hub	that	also	has	one
or	more	downstream	ports	that	each	require	100	mA.
An	exception	is	a	bus-powered	compound	device,	which	consists	of	a	hub	and
one	 or	 more	 downstream,	 non-removable	 devices.	 In	 this	 case,	 the	 hub’s
configuration	descriptor	can	report	the	maximum	power	required	by	the	hub’s
electronics	plus	its	non-removable	device(s).	The	configuration	descriptors	for
the	 non-removable	 device(s)	 report	 that	 the	 devices	 are	 self-powered	 with
bMaxPower	=	0x00.	The	hub	descriptor	indicates	whether	a	hub’s	ports	have
removable	devices.
Like	other	high-power,	bus-powered	devices,	a	USB	2.0	bus-powered	hub	can
draw	up	to	100	mA	until	configured	and	up	to	500	mA	after	being	configured.
During	 configuration,	 the	 hub	 must	 manage	 the	 available	 current	 so	 its
devices	and	the	hub	combined	don’t	exceed	the	allowed	current.
Like	other	self-powered	devices,	a	self-powered	USB	2.0	hub	may	also	draw	up
to	100	mA	from	the	bus	so	the	hub	interface	can	continue	to	function	when
the	hub’s	power	 supply	 is	 off.	 If	 the	hub’s	power	 is	 from	an	 external	 source
such	 as	 AC	 power	 from	 a	 wall	 socket,	 the	 hub	 is	 high	 power	 and	must	 be
capable	of	supplying	500	mA	to	each	port	on	the	hub.	If	the	hub	uses	battery
power,	the	hub	may	supply	100	mA	or	500	mA	to	each	port	on	the	hub.
When	a	 self-powered	hub’s	power	 supply	 is	 removed	or	 turned	off,	 the	hub
must	 remain	 in	 the	Configured	 state,	 transition	 its	 downstream	ports	 to	 the
Powered	 Off	 state,	 and	 inform	 the	 host	 of	 the	 change	 via	 the	 hub’s	 Status
Change	endpoint.
USB	3.1	hubs	can	provide	up	to	900	mA	per	port	if	high	power	and	150	mA
per	port	if	low	power.	If	a	USB	3.1	hub’s	upstream-facing	port	isn’t	connected,
the	hub	doesn’t	provide	power	to	the	downstream-facing	ports	unless	the	hub

supports	the	USB	battery	charging	specification.

Over-current	protection
As	a	safety	precaution,	hubs	must	be	able	to	detect	an	over-current	condition,
which	occurs	when	the	current	used	by	the	total	of	all	devices	attached	to	the
hub	exceeds	a	set	value.	On	detecting	an	over-current	condition,	a	hub’s	port
circuits	 limit	 the	 current	 at	 the	 port,	 and	 the	 hub	 informs	 the	 host	 of	 the
problem.
The	current	 that	 triggers	 the	over-current	actions	must	be	 less	 than	5	A.	To
allow	for	transient	currents,	the	over-current	value	should	be	greater	than	the
total	of	the	maximum	allowed	currents	for	the	devices.	In	the	worst	case,	seven
high-power,	bus-powered,	USB	2.0	downstream	devices	can	legally	draw	up	to
3.5	A.	So	a	supply	for	a	self-powered	hub	with	up	to	seven	downstream	ports
would	 provide	much	 less	 than	 5	 A	 at	 all	 times	 unless	 something	 goes	 very
wrong.	A	single	hub	can	implement	multiple	over-current	gangs.
A	device	 can	briefly	 draw	 a	 larger	 inrush	 current	 on	 attachment	 to	 the	 bus.
The	 over-current	 protection	 circuits	 typically	 don’t	 see	 the	 inrush	 current
because	 a	 capacitor	 downstream	 from	 the	 protection	 provides	 the	 stored
energy.	But	a	too-large	inrush	current	can	cause	the	VBUS	voltage	on	adjacent
ports	 to	 drop,	 causing	 attached	 devices	 to	 disconnect.	 For	 this	 reason,
compliance	tests	measure	inrush	current.

Power	switching
A	bus-powered	hub	must	 support	power	switching	 that	can	provide	and	cut
off	power	to	downstream	ports	in	response	to	control	requests.	A	single	switch
may	 control	 all	 ports,	 or	 the	 ports	may	 switch	 individually.	 A	 self-powered
hub	must	 support	 switching	 its	ports	 to	 the	Powered	Off	 state	and	may	also
support	power	switching	using	control	transfers.

Conserving	power
With	a	couple	of	exceptions	described	below,	all	USB	devices	must	support	the
low-power	 Suspend	 state.	 Additional	 low-power	 states	 enable	 conserving
power	 with	 faster	 transitions	 from	 a	 low-power	 state	 and	 less	 stringent
requirements	compared	to	Suspend.

USB	2.0	Link	Power	Management
The	 USB	 2.0	 Link	 Power	 Management	 (LPM)	 Addendum	 to	 the	 USB	 2.0
specification	defines	four	USB	link	power	management	states.	USB	3.1	devices
must	support	link	power	management	when	operating	at	high	speed.	USB	2.0
devices	may	also	 support	 link	power	management.	A	 link	consists	of	a	cable
segment	and	the	two	ports,	or	link	partners,	that	the	cable	connects.
The	 document	 assigns	 new	 names	 to	 states	 defined	 in	 the	 USB	 2.0
specification	and	adds	the	new	L1	(Sleep)	state:
L0	(On).	The	link	is	carrying	data	or	is	able	to	do	so.	When	not	carrying	data,
the	link	carries	SOF	(full	and	high	speed)	or	keep-alive	(low	speed)	signals.
L1	(Sleep).	The	link	doesn’t	carry	data	or	SOF/keep-alive	signals.	The	device
may	reduce	power	consumption.
L2	 (Suspend).	 The	 link	 doesn’t	 carry	 data	 or	 SOF/keep-alive	 signals.	 The
device	must	reduce	power	consumption.
L3	(Off).	The	link	is	powered	off,	disconnected,	or	disabled	and	isn’t	capable
of	performing	data	signaling.
The	USB	 2.0	 Phase-locked	 SOFs	 ECN	 to	 the	USB	 2.0	 specification	 can	 help
isochronous	 devices	 save	 power.	 To	 comply	 with	 the	 ECN,	 SOFs	 issued	 on
exiting	 the	 Sleep	 or	 selective	 Suspend	 states	must	 be	 in	 phase	 lock	with	 the
SOFs	that	preceded	the	low-power	state.	Isochronous	devices	can	thus	enter	a
low-power	 state	 and	maintain	 synchronization	 to	 SOFs	 on	 returning	 to	 full
power.

Suspend
The	 L2	 Suspend	 state	 reduces	 a	 device’s	 use	 of	 bus	 power	 when	 the	 host
doesn’t	 need	 to	 communicate.	 Beginning	 1	 s	 after	 connecting,	 a	 USB	 2.0
device	must	enter	the	Suspend	state	when	the	bus	has	had	no	activity	for	3	ms.
While	in	the	Suspend	state,	a	device	must	draw	no	more	than	2.5	mA	from	the
bus.	A	device	that	needs	to	function	when	the	host	has	ceased	communicating
may	need	to	be	self-powered.	However,	many	device	controllers	can	consume
very	little	power	while	remaining	able	to	detect	activity	requiring	attention	on
an	I/O	pin	and	wake	the	host	as	needed.
There	are	two	exceptions	to	the	requirement	to	support	the	Suspend	state.	The
USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0	 specification	 defines	 a	 USB	 Suspend

Supported	 flag	 that	 enables	 a	 host	 to	 inform	 a	 device	 that	 the	 device	 may
ignore	 the	 requirement	 to	 reduce	 current	 in	 the	 Suspend	 state.	And	devices
that	use	USB	Type-C	connectors	and	have	a	negotiated	maximum	current	of
1.5	A	or	3.0	A	can	 ignore	 the	requirement	 to	reduce	current	 in	 the	Suspend
state.
On	ports	 that	use	USB	Type-C	connectors,	 the	VCONN	pin	 should	provide
no	more	than	7.5	mA	in	the	Suspend	state.

Global	and	selective	suspends
In	a	global	suspend,	a	USB	2.0	host	stops	communicating	with	the	entire	bus,
which	carries	no	traffic	or	SOFs.	When	a	full-or	high-speed	device	detects	that
no	SOF	has	arrived	for	3	ms,	the	device	enters	the	Suspend	state.	Low-speed
devices	enter	the	Suspend	state	when	they	haven’t	received	a	low-speed	keep-
alive	signal	for	3	ms.	A	device	must	be	in	the	Suspend	state	within	10	ms	of	no
bus	activity.
A	host	may	 also	 request	 a	 selective	 suspend	 of	 an	 individual	 port.	 The	 host
issues	the	class-specific	Set	Port	Feature	request	to	a	hub	with	wIndex	set	to	a
port	number	and	wValue	set	 to	PORT_SUSPEND.	The	request	 instructs	 the
hub	 to	 stop	 sending	 any	 traffic,	 including	SOFs	or	 low-speed	keep-alives,	 to
the	specified	port.
Windows	implements	global	suspend	by	selectively	suspending	each	device	in
turn,	beginning	with	the	farthest	downstream	devices.

Current	limits	for	suspended	devices
A	device	 in	 the	 Suspend	 state	 should	 consume	maximum	of	 2.5	mA	of	 bus
current	averaged	over	1	s.	The	limit	 includes	current	through	the	pull-up	on
D+	or	D-.
The	USB	2.0	specification	originally	defined	a	limit	of	just	500	μA	for	devices
that	don’t	support	remote	wakeup.	However,	the	limit	was	difficult	for	many
devices	to	meet,	and	the	Suspend	Current	Limit	Changes	ECN	raised	the	limit,
which	also	applies	to	USB	3.1	devices.
Configured	 bus-powered	 hubs	 and	 configured	 bus-powered	 compound
devices	can	draw	up	to	12.5	mA	in	the	Suspend	state.	So	a	bus-powered	hub
can	 consume	 2.5	 mA	 while	 providing	 2.5	 mA	 for	 each	 of	 up	 to	 four
downstream	ports.

Resuming	communications
To	resume	communications	on	a	suspended	bus,	a	USB	2.0	host	places	the	bus
in	the	Resume	state	(the	K	state,	defined	in	Chapter	19)	for	at	least	20	ms.	The
host	 follows	 the	 Resume	 with	 a	 low-speed	 EOP.	 The	 host	 then	 resumes
sending	 SOFs	 and	 any	 other	 communications.	 (For	 low-speed	 devices,	 the
upstream	 hub	 issues	 low-speed	 keep-alive	 signals	 instead	 of	 SOFs.)	 For
selectively	 suspended	 devices,	 a	 host	 can	 request	 a	 hub	 to	 resume
communications	 with	 a	 downstream-facing	 port	 by	 issuing	 a	 Clear	 Port
Feature(PORT_SUSPEND)	request.
A	device	that	wants	to	be	able	to	request	to	resume	communications	indicates
support	 for	 remote	 wakeup	 in	 the	 configuration	 descriptor’s	 bmAttributes
field.	 The	 host	 enables	 remote	 wakeup	 by	 sending	 a	 Set	 Port
Feature(DEVICE_REMOTE_WAKEUP)	 request	 to	 the	 hub	 port	 that	 is	 the
device’s	link	partner.
A	 suspended	 device	 with	 remote	 wakeup	 enabled	 can	 request	 to	 resume
communications	by	driving	the	upstream	bus	segment	in	the	Resume	state	for
1–15	ms.	The	device	then	places	its	drivers	in	a	high-impedance	state	to	enable
receiving	 traffic	 from	 the	 upstream	 hub.	 The	 resume	 signaling	 propagates
upstream	to	the	first	non-suspended	hub,	which	may	be	the	root	hub.
After	the	resume	signaling	completes,	the	device	again	receives	SOFs	or	low-
speed	keep-alives	and	other	 traffic.	A	device	may	 initiate	a	Resume	any	time
after	the	bus	has	been	 idle	 for	at	 least	5	ms.	The	host	must	allow	a	device	at
least	10	ms	to	recover	from	a	Resume.
Some	 device	 controllers	 require	 firmware	 support	 to	 monitor	 the	 bus	 to
determine	when	to	enter	the	Suspend	state,	while	other	controllers	handle	the
task	 entirely	 in	hardware.	A	device’s	 serial	 interface	 engine	 typically	handles
the	resume	signaling	without	firmware	support.
When	 a	 device	 uses	 bus	 power,	 firmware	 may	 need	 to	 control	 power	 to
external	circuits,	removing	power	on	entering	the	Suspend	state	and	restoring
power	 on	 resuming.	 A	 power	 switch	 with	 soft-start	 capability	 can	 reduce
current	 surges	 when	 switching.	 Micrel	 Inc.	 is	 one	 source	 for	 power-
distribution	switches	suitable	for	use	with	USB	devices.	Each	switch	contains
one	 or	 more	 high-side	 MOSFET	 switches	 with	 soft-start	 capability	 that
minimizes	inrush	current.

Sleep
The	L1	Sleep	 state	provides	a	way	 for	devices	 to	 reduce	power	consumption
without	having	to	meet	the	Suspend	state’s	stringent	requirements.	The	Sleep
state	 also	 enables	 faster	 transitions	 to	 and	 from	 the	 powered	 state.	A	major
purpose	in	defining	the	Sleep	state	was	to	provide	a	more	effective	mechanism
for	power	conservation	on	mobile,	battery-powered	systems.
In	 the	 Sleep	 state,	 a	 device	 receives	 no	USB	 traffic	 including	 SOFs	 or	 keep-
alive	signaling.	The	device	can	reduce	power	consumption	but	 isn’t	required
to	do	so.
To	place	a	device	 in	 the	Sleep	state,	a	host	 issues	a	Set_and_Test(PORT_L1)
request	 to	 the	hub	 that	 is	 the	device’s	 link	partner.	A	hub	 that	 supports	 the
Sleep	state	then	initiates	an	LPM	transaction	to	the	device	by	issuing	a	token
packet	with	an	EXT	Packet	ID,	followed	by	an	extended	token	packet	with	an
LPM	Packet	 ID	 (0011b).	 (Chapter	2	 covered	Packet	 IDs.)	 In	 the	 LPM	 token
packet,	 the	 bmAttributes	 field	 requests	 the	 Sleep	 state	 and	 provides
information	used	in	resume	signaling	(Table	17-1).
A	device	that	receives	an	EXT	token	packet	followed	by	an	LPM	token	packet
can	return	ACK	(ready	 to	 transition	 to	 the	Sleep	state),	NYET	(not	 ready	 to
transition	 to	 the	Sleep	state),	STALL	(requested	 link	state	not	supported),	or
no	 response	 (the	 device	 doesn’t	 support	 the	 transaction	 type	 or	 detected	 an
error).
The	hub	NAKs	the	Data	stage	of	the	Set_and_Test	request	as	needed	until	the
downstream	 device	 returns	 ACK	 or	 STALL	 or	 fails	 to	 respond	 after	 three
attempts.	 The	 hub	 then	 returns	 a	 completion	 code	 in	 the	Data	 stage	 of	 the
request.
To	 resume	 communications	with	 a	 device	 in	 the	 Sleep	 state,	 a	 host	 issues	 a
Clear	 Port	 Feature(PORT_L1)	 request	 to	 the	 device’s	 link	 partner.	 The	 hub
then	initiates	resume	signaling	with	the	device.	The	signaling	is	identical	to	a
resume	 from	Suspend	except	 for	 timing.	The	HIRD	value	 in	 the	LPM	token
packet	indicates	how	long	the	hub	will	hold	the	line	in	the	Resume	state	when
exiting	Sleep.	The	encoded	value	can	specify	a	range	from	50	μs	to	1.2	ms.

Table	17-1:	 In	an	LPM	extended	 token	packet,	 the	bmAttributes	 field	provides
information	about	the	requested	Sleep	state.
Bits Field Description

3..0 bLinkState 0001b	=	L1	(Sleep).	Other	values
reserved.

7..4 HIRD Host	initiated	resume	duration	(encoded
value)

8 bRemoteWake 1	=	the	device	can	wake	the	host.	0	=	the
device	cannot	wake	the	host.

10..9 Reserved For	future	use.

If	in	the	LPM	token	packet,	bRemoteWake	=	1,	the	device	can	request	to	wake
the	host	by	driving	the	line	in	the	Resume	state	for	50	μs.
A	host	 that	doesn’t	support	 the	Sleep	state	will	never	request	 it.	Devices	 that
don’t	 support	 the	 Sleep	 state	 can	 return	 STALL	 or	 no	 response	 to	 token
packets	that	contain	the	LPM	Packet	ID.

Enhanced	SuperSpeed	power	management
Enhanced	 SuperSpeed	 offers	 more	 ways	 to	 conserve	 power,	 including	 new
low-power	 states	 and	 latency	 tolerance	messages	 that	 help	 the	 host	manage
power	on	the	bus	and	for	the	system.
If	 you’re	 developing	 a	 device	 that	 must	 use	 as	 little	 power	 as	 possible,	 you
might	choose	a	USB	3.1	controller	even	if	the	device	doesn’t	require	Enhanced
SuperSpeed’s	 bus	 rate.	With	 Enhanced	 SuperSpeed’s	 fast	 data	 transfers	 and
new	low-power	states,	some	devices	can	save	significant	power	by	entering	a
low-power	state	between	transactions.

Link	states
Enhanced	SuperSpeed	defines	four	operational	link	states:

U0	 is	normal	operation	and	 is	 the	highest	 link	state.	This	 is	 the	only	state
where	the	link	can	carry	packets.
U1	 is	 a	 low-power	 state	 with	 fast	 transitions	 to	 U0.	 The	 state	 has	 no
mandated	reduction	in	bus	current,	but	the	link	carries	no	signaling	and	the
device	can	implement	power-saving	measures.
U2	is	a	more	aggressive	low-power	state	with	slower	transitions	to	U0.	The
state	 has	 no	 mandated	 reduction	 in	 bus	 current,	 but	 the	 link	 carries	 no
signaling,	 and	 the	 device	 can	 turn	 off	 clock	 circuits	 and	 implement	 other
power-saving	measures	that	require	more	time	to	transition	to	U0.
U3	 is	 the	 Suspend	 state	 and	 is	 the	 lowest	 link	 state.	 The	 link	 carries	 no

signaling,	and	a	device	whose	port	 is	 in	U3	can	draw	up	to	2.5	mA	of	bus
current.	A	device	in	the	Suspend	state	must	detect	Warm	Reset	(defined	in
Chapter	19)	and	wakeup	signaling.	A	device	 that	supports	remote	wakeup
must	be	capable	of	sending	wakeup	signaling.

Managing	 the	 transitions	 between	 states	 in	 a	 device	 may	 require	 firmware
support.
In	addition	to	the	above	states,	which	apply	to	links,	an	Enhanced	SuperSpeed
device	can	have	one	or	more	functions	that	are	in	the	function	suspend	state
(defined	below)	while	the	link	and	other	function(s)	in	the	device	remain	in	a
higher-power	state.
For	each	device,	the	host	calculates	U1	and	U2	System	Exit	Latency	values	that
are	 a	measure	 of	 the	 time	 required	 to	 transition	 from	U1	or	U2	 to	U0.	 For
devices	with	interrupt	or	isochronous	endpoints,	the	host	uses	these	values	in
determining	whether	 the	 device	 can	 initiate	U1	 or	U2.	 If	 the	 corresponding
Latency	value	plus	one	bus	interval	is	greater	than	the	shortest	service	interval
on	the	device,	the	host	doesn’t	allow	the	device	to	initiate	the	low-power	state.
A	 link	 that	 is	 in	U0	 and	 is	 not	 transmitting	 data	 or	 other	 packets	 is	 in	 the
logical	idle	state.	A	SuperSpeed	port	in	logical	idle	transmits	encoded	bytes	of
0x00.	A	SuperSpeedPlus	port	in	logical	idle	transmits	encoded	bytes	of	0x5A.
A	link	in	U1,	U2,	or	U3	is	in	the	electrical	idle	state	and	carries	no	signaling.

Changing	states
Link-level	communications	control	the	state	of	a	link.	The	host	doesn’t	need	to
know	the	 state	of	every	 link	on	 the	bus.	To	conserve	power,	 if	 a	 link	has	no
pending	 upstream	 traffic,	 a	 hub	 transitions	 its	 upstream-facing	 port	 to	 the
lowest	link	state	possible.	In	other	words,	if	a	hub’s	downstream-facing	ports
are	in	U1	and	U2,	the	hub	can	place	its	upstream-facing	port	in	U1.	If	all	of	the
ports	 are	 in	U2,	 the	 hub	 can	 reduce	 power	 further	 by	 placing	 its	 upstream-
facing	port	in	U2.	Only	a	host	can	request	a	transition	to	U3.	When	a	host	or
hub	 wants	 to	 communicate	 with	 a	 device,	 any	 links	 in	 the	 communication
path	that	aren’t	in	U0	must	transition	to	U0.
The	mechanism	for	changing	a	power	state	varies	with	the	state,	who	initiated
the	change,	and	whether	the	change	applies	to	an	entire	link	or	a	function	in	a
device.	 Hubs	 implement	 host-programmable	 inactivity	 timers	 for	 each
downstream-facing	 port	 for	 use	 in	 determining	 when	 to	 enter	 U1	 and	 U2.
Isochronous	Timestamp	packets	don’t	prevent	a	device	 from	entering	a	 low-

power	 state.	 To	 exit	 a	 low-power	 state,	 a	 link	 uses	 a	 hardware	 handshake
implemented	 using	 low-frequency	 periodic	 signaling	 (LFPS),	 defined	 in
Chapter	19.

U1
A	host,	hub,	or	device	can	request	a	transition	to	U1.	The	host	can	send	a	hub-
specific	 Set	 Port	 Feature(PORT_LINK_STATE)	 request	 for	 a	 downstream-
facing	port	on	a	hub.	The	hub	then	uses	hardware-generated	link	commands
to	implement	the	state	change	on	the	link.	When	a	hub’s	downstream-facing
port	is	in	U0	and	an	inactivity	timer	detects	no	bus	activity	on	the	port	for	the
timer’s	specified	period,	the	hub	uses	link	commands	to	request	to	transition
the	 link	to	U1.	A	device	can	use	a	device-specific	policy	 in	deciding	when	to
request	U1	entry	via	link	commands.	In	all	cases,	the	link	partner	can	refuse	to
change	to	the	requested	state	for	example,	if	the	port	will	soon	have	traffic	to
send	or	doesn’t	support	U1.
When	a	host	or	device	has	a	packet	ready	to	transmit,	a	hardware	handshake
initiates	exit	from	U1	to	U0.

U2
When	 a	 link	 is	 in	 U1,	 if	 the	 downstream	 port	 supports	 U2	 and	 the	 link
partners’	 U2	 inactivity	 timers	 time	 out,	 the	 link	 silently	 transitions	 to	 U2.
When	a	host	or	device	has	a	packet	ready	to	transmit,	a	hardware	handshake
initiates	exit	from	U2	to	U0.

U3
Unlike	 USB	 2.0,	 Enhanced	 SuperSpeed	 buses	 don’t	 support	 global	 suspend,
where	 the	host	places	 the	entire	bus	 in	 the	Suspend	state	by	ceasing	 to	 send
timing	markers.	 Enhanced	 SuperSpeed	 supports	 only	 selective	 suspend	 and
function	suspend.
In	 selective	 suspend,	 a	 device	 enters	 the	 Suspend	 state	 on	detecting	 that	 the
device’s	link	is	in	U3.	Set	Port	Feature	(PORT_LINK_STATE,	U3)	requests	a
hub	 to	 place	 a	 downstream-facing	 port	 and	 its	 link	 in	 U3.	 The	 hub	 uses
hardware-generated	 link	 commands	 to	 implement	 the	 state	 change	 on	 the
link.	 The	 downstream	 device	 enters	 the	 Suspend	 state	 on	 detecting	 that	 the
link	is	in	U3.
To	suspend	the	entire	bus,	the	host	must	request	each	downstream	port	on	the
bus	to	enter	U3.	When	all	of	a	hub’s	downstream	ports	are	in	U3,	a	host	places

the	hub’s	upstream	link	in	U3.	Only	a	host	can	request	to	place	a	link	in	U3,
and	hubs	must	accept	requests	to	place	an	enabled	downstream	port	in	U3.
To	wake	a	device,	the	host	sends	a	Set	Port	Feature(PORT_LINK_STATE,	U0)
request	 to	 the	 downstream-facing	 hub	 port	 that	 is	 the	 device’s	 link	 partner.
The	hub	uses	hardware-generated	link	commands	to	transition	the	link	to	U0.
On	detecting	that	the	link	is	in	U0,	the	downstream	device	exits	the	Suspend
state.	A	device	 can	 initiate	 exit	 from	U3	via	LFPS	 as	 described	below	under
Function	Suspend.

Function	suspend
For	finer	power	control,	an	Enhanced	SuperSpeed	host	can	place	an	individual
function	 in	 the	 function	 suspend	 state	 while	 allowing	 other	 functions	 in	 a
device	 to	 continue	 to	 communicate	 on	 the	 bus.	 To	 suspend	 a	 function,	 the
host	 issues	 a	 Set	 Port	 Feature(FUNCTION_SUSPEND)	 request	 to	 an
interface.	 In	 the	 high	 byte	 of	 wIndex,	 bit	 0	 requests	 the	 suspend	 state	 or
normal	operation,	and	bit	1	enables	or	disables	function	remote	wakeup.
To	 resume	 communications	 with	 a	 suspended	 function,	 a	 host	 issues	 a	 Set
Port	 Feature(FUNCTION_SUSPEND)	 request	 for	 normal	 operation.	 Note
that	 exiting	 function	 suspend	 uses	 Set	 Port	 Feature	 rather	 than	 Clear	 Port
Feature.	If	the	device’s	link	isn’t	in	U0,	the	downstream-facing	hub	port	that	is
the	device’s	 link	partner	uses	LFPS	 to	 initiate	 the	 transition	 to	U0.	The	hub
then	resumes	communicating	with	the	function.
A	 function	 with	 remote	 wakeup	 enabled	 can	 request	 to	 wake	 by	 sending	 a
DEV_NOTIFICATION	TP	with	a	Function	Wake	notification.	If	the	device’s
link	 isn’t	 in	 U0,	 before	 sending	 the	 notification,	 the	 device	 uses	 LFPS	 to
transition	the	link	to	U0.	The	signaling	propagates	upstream	from	the	device
until	reaching	a	hub	that	isn’t	in	U3	and	then	propagates	back	downstream	to
the	device	requesting	the	wakeup.
If	the	host	places	a	device	in	the	Suspend	state	when	one	or	more	functions	are
suspended,	the	functions	remain	suspended	when	the	device	wakes.	The	host
or	 device	 must	 then	 initiate	 exiting	 function	 suspend	 for	 the	 individual
function(s).	 Both	 composite	 and	 non-composite	 devices	 can	 use	 function
suspend.

Informing	the	host	of	delays
Hubs	 help	 manage	 bus	 traffic	 by	 informing	 the	 host	 of	 delays	 caused	 by	 a

device’s	being	in	a	low-power	state.	On	receiving	a	header	packet	addressed	to
a	port	in	a	low-power	state,	the	hub	sends	a	deferred	header	packet	to	the	host,
which	 halts	 communication	 attempts	with	 the	 device.	When	 the	 target	 port
has	transitioned	to	U0,	the	hub	sends	the	header	packet	to	the	device	with	the
Deferred	bit	set	in	the	Link	Control	Word.	To	inform	the	host	that	the	device
is	ready	to	communicate,	the	device	sends	an	ERDY	TP.

Latency	tolerance	messages
Enhanced	 SuperSpeed	 hosts	 can	 save	 additional	 power	 by	 obtaining
information	 about	 the	 maximum	 delay	 each	 device	 can	 tolerate	 between
sending	an	ERDY	TP	and	receiving	a	response	from	the	host.	The	host	can	use
more	aggressive	power	management	with	devices	that	can	tolerate	long	delays.
The	 protocols	 for	 obtaining	 this	 information	 include	 the	 Set
Feature(LTM_ENABLE)	 and	 Set	 SEL	 requests	 and	 DEV_NOTIFICATION
TPs	 with	 Latency	 Tolerance	 Message	 Device	 notifications.	 The	 SuperSpeed
USB	device	capability	descriptor	indicates	whether	a	device	supports	Latency
Tolerance	Message	notifications.

Using	PING
If	 a	 host	 initiates	 an	 isochronous	 transaction	 with	 a	 device	 in	 a	 low-power
state,	the	device	might	be	unable	to	transition	to	U0	in	time	to	send	or	receive
data	in	the	scheduled	service	interval.	To	prevent	this	problem,	the	host	uses
PING	and	PING_RESPONSE	TPs.	Before	beginning	the	isochronous	transfer,
the	host	sends	a	PING	TP,	which	causes	all	links	between	the	device	and	host
to	 transition	 to	 U0.	 The	 device	 returns	 a	 PING_RESPONSE	 TP	 when	 the
device	 is	ready	to	 transfer	data.	The	host	must	send	the	PING	far	enough	 in
advance	of	a	scheduled	transfer	to	enable	the	transfer	to	take	place	on	time.
This	use	of	PING	is	unrelated	to	the	high-speed	PING	protocol	described	in
Chapter	2.

Advanced	power	delivery	capabilities
The	 USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0	 specification	 defines	 hardware	 and
protocols	 for	 bus	 currents	 as	 high	 as	 5	A,	VBUS	 voltages	 up	 to	 20	V,	more
precise	power	management,	and	even	the	ability	to	reverse	the	flow	of	current
so	 a	 device	 can	 provide	 power	 to	 a	 host.	 Revision	 2.0	 of	 the	 specification
expanded	the	capabilities	and	added	support	for	USB	Type-C	connectors.

Requirements
A	device	 that	 supports	USB	Power	Delivery	Rev.	 2.0,	 v1.0	 can	 be	 a	 Provider
that	 sources	 current,	 a	Consumer	 that	 sinks	 current,	 or	 both.	To	use	Power
Delivery	 (PD)	 capabilities,	 both	 the	 upstream-facing	 port	 (UFP)	 and
downstream-facing	 port	 (DFP)	 in	 a	 link	 must	 have	 PD-capable	 connectors
and	system	support	for	PD	protocols.
A	 host	 learns	 about	 a	 PD-capable	 device	 in	 the	 PD	 Capability	 descriptors
returned	in	the	device’s	BOS	descriptor	set.
A	 USB	 Power	 Delivery	 Capability	 descriptor	 informs	 the	 host	 if	 the	 device
supports	USB	Power	Delivery	 and	 battery	 charging	 and	 also	 indicates	 if	 the
device’s	upstream	and	downstream	ports	are	Providers,	Consumers,	or	both.
A	Battery	Info	Capability	descriptor	contains	information	relating	to	charging
such	 as	 a	 threshold	 value	 that	 defines	 when	 the	 battery	 is	 considered	 fully
charged.
Each	 Consumer	 port	 has	 a	 PD	 Consumer	 Port	 Capability	 descriptor	 that
specifies	operating	voltages	and	power	consumption.	When	a	device	 is	using
PD	protocols,	 the	values	 in	 this	descriptor	override	 the	bMaxPower	value	 in
the	configuration	descriptor.
Each	 Provider	 port	 has	 a	 Provider	 Port	 descriptor	 that	 indicates	 if	 the	 port
supports	 PD,	 battery	 charging,	 or	 both	 and	 provides	 information	 about	 the
capabilities	of	power	sources.
A	 series	 of	 PD-specific	 requests	 get	 and	 set	 PD-specific	 features,	 status,	 and
data.
The	device	descriptor	for	a	PD-capable	device	attached	to	a	PD-capable	port
reports	 that	 the	device	 is	 self-powered	even	 if	 the	device	 is	drawing	all	of	 its
power	 from	 the	 bus.	 The	 device	 instead	 reports	 its	 power	 needs	 in	 the	 PD
Consumer	Port	Capability	descriptor.
USB	Power	Delivery	ports	can	use	USB	Type-C	connectors	or	PD	versions	of
USB	2.0	and	USB	3.1	Series-A	and	Series-B	connectors.	Chapter	20	has	more
about	these	connectors.

Negotiating	power
On	power	up,	a	PD-capable	port	uses	the	voltage	and	current	limits	defined	in
the	 USB	 2.0	 or	 USB	 3.1	 specification.	 To	 negotiate	 a	 PD	 Contract	 for	 a

different	VBUS	voltage,	maximum	current,	or	direction	of	current	 flow,	 two
PD-capable	 ports	 in	 a	 cable	 segment	 communicate	 using	 either	 a	 Binary
Frequency	 Shift	 Keying	 (BFSK)	modulated	 carrier	 on	 the	VBUS	 line	 or	 the
Communications	Channel	(CC)	line	available	on	USB	Type-C	cables.
The	 communications	 use	 Start	 of	 Packet	 (SOP)	 communications	 that	 each
begin	with	an	encoded	symbol	called	a	K-code.
An	 SOP	 communication	 can	 contain	 a	 Control	 Message	 or	 Data	 Message.
Control	 Messages	 help	 manage	 data	 flow	 and	 are	 always	 16	 bits.	 Data
Messages	provide	 information	 in	a	Data	Object	and	vary	 in	 length.	A	Power
Data	Object	details	the	capabilities	of	a	power	source	or	the	needs	of	a	power
sink.	A	Request	Data	Object	 is	 used	 in	negotiating	 a	 contract.	A	BIST	Data
Object	 requests	 a	 test	 mode.	 A	 Vendor	 Defined	 Data	 Object	 contains	 a
Vendor	Defined	Message.
A	device	can	have	a	Device	Policy	Manager	that	monitors	and	controls	power
delivery	in	the	device.	A	USB	host	can	provide	a	System	Policy	Manager	that
coordinates	 power	 resources	 on	 attached	 devices	 that	 have	 Device	 Policy
Managers.	On	systems	that	don’t	have	a	System	Policy	Manager,	two	attached
PD-capable	ports	can	still	negotiate	power	on	their	local	link.	A	Policy	Engine
implements	power	policies	on	a	local	port.
In	 links	 that	 use	 USB	 Type-C	 connectors,	 even	 if	 the	 host	 or	 hub	 and	 the
device	 don’t	 support	USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0,	 a	 host	 or	 hub	 can
make	up	to	3	A	available	to	a	device

Role	swapping
PD	 links	 that	 use	 USB	 Type-C	 connectors	 can	 support	 three	 types	 of	 role
swapping:	Power	Role	(PR)	Swap,	Data	Role	(DR)	Swap,	and	VCONN	Swap.
As	the	name	suggests,	in	a	Power	Role	Swap,	the	power	consumer	becomes	the
provider	and	the	power	provider	becomes	the	consumer.	In	a	Data	Role	Swap,
the	 UFP	 becomes	 the	 DFP,	 and	 the	 DFP	 becomes	 the	 UFP.	 In	 a	 VCONN
swap,	 the	provider	of	 the	VCONN	supply	 in	 the	connector	 (see	Chapter	20)
switches	to	the	opposite	port.
To	request	a	role	swap,	a	port	sends	a	PR,	DR,	or	VCONN	swap	message.	The
DR	 swap	 protocol	 performs	 a	 similar	 function	 to	 OTG’s	 Host	 Negotiation
Protocol	but	the	devices	don’t	need	to	meet	OTG	requirements	such	as	using	a
Micro-AB	connector.

When	a	USB	host	doesn’t	have	power	due	to	a	dead	battery	or	other	reason,
the	USB	Power	Delivery	Rev.	2.0,	 v1.0	 and	USB	Type-C	specifications	define
protocols	 that	 enable	 an	 attached	 device	 to	 power	 VBUS	 if	 the	 device	 can
function	as	a	Provider.
For	links	with	Series-A	and	Series-B	connectors,	a	device	that	wants	to	provide
power	 begins	 by	 powering	 VBUS	 at	 a	 reduced	 current	 level.	 On	 detecting
VBUS,	a	host	port	that	wants	to	receive	power	sends	a	bitstream	of	alternating
zeros	and	ones.	On	detecting	the	bitstream,	after	a	delay	to	allow	the	host	to
stop	the	bitstream	and	get	ready	to	receive	power,	the	device	port	can	provide
full	power.	A	device	 that	doesn’t	detect	 the	bitstream	within	a	specified	time
removes	VBUS	but	may	delay,	reapply	the	voltage	and	try	again	for	a	response.

Vendor-defined	messages
USB	Power	Delivery	Rev.	2.0,	v1.0	defines	a	Vendor	Defined	Message	(VDM)
format	 that	supports	messages	with	vendor-defined	content.	A	VDM	resides
in	a	Vendor	Defined	Data	Object	sent	in	a	Data	Message.
A	VDM	must	contain	a	Standard	or	Vendor	ID	(SVID),	which	is	either	a	USB
Vendor	ID	or	a	Standard	ID	(SID).	A	SID	is	a	16-bit	value	the	USB-IF	assigns
to	 an	 industry	 standard.	 For	 example,	 the	 SID	 for	 USB	 Power	 Delivery	 is
0xFF00.
A	 Structured	 VDM	 contains	 a	 command.	 Structured	 VDMs	 enable	 Modal
Operation,	where	a	host	can	request	a	device	to	enter	one	or	more	Alternate
Modes	 defined	 by	 a	 vendor	 or	 standard.	 Alternate	 Modes	 are	 valid	 only
between	a	host	and	a	directly	connected	device.
An	Unstructured	VDM	uses	a	vendor-defined	message	format.

Power	management	under	Windows
Windows	PCs	manage	 power	 according	 to	 the	Advanced	 Configuration	 and
Power	 Interface	 Specification	 (ACPI)	 maintained	 by	 the	 UEFI	 Forum
(uefi.org).	A	system	that	implements	ACPI	power	management	enables	the	OS
to	conserve	power,	including	suspending	the	USB	bus,	when	the	computer	is
idle.

Computer	power	states
Various	 power	 states	 specify	 power	 usage	 by	 the	 computer	 and	 its	 devices.

http://uefi.org

Except	 for	 S0	 Low	 Power	 Idle,	 which	 is	 defined	 by	 Microsoft,	 the	 ACPI
Specification	defines	the	states	below.

Working
S0.	The	system	is	on.	USB	devices	that	aren’t	in	use	may	be	suspended.
S0	Low	Power	Idle	(InstantGo).	In	Microsoft’s	InstantGo	state,	the	computer
uses	 little	 power	 yet	 keeps	 needed	 applications	 and	 devices	 available.	 A
computer	enters	the	InstantGo	state	whenever	the	display	is	off.	Tasks	such	as
printing	and	playing	music	can	continue.	To	support	InstantGo,	a	computer
must	 have	 solid-state	 drives	 and	 other	 low-power	 components,	 and	 the	 OS
must	 support	 aggressive	 power	 saving.	 Computers	 that	 support	 InstantGo
don’t	use	the	S3	state.

Sleep
S1.	The	display	is	off	and	drives	are	powered	down.	USB	buses	are	suspended,
but	VBUS	remains	powered.	This	state	is	no	longer	in	use.
S2.	The	processor	loses	power	and	the	processor	context	and	contents	of	the
cache	are	lost.	This	state	is	not	implemented.
S3.	The	PCI	bus’s	main	power	 supply	 is	 off	 and	memory	 isn’t	 accessed,	 but
system	memory	continues	to	be	refreshed.	USB	buses	are	suspended.	The	PCI
bus’s	auxiliary	supply	(VAUX)	is	powered.	USB	devices	may	wake	the	system.

Hibernate
S4.	The	system	context	is	saved	to	disk.	USB	buses	are	powered	off.

Soft	Off
S5.	The	system	context	is	not	saved.	The	system	consumes	minimal	power	and
requires	a	restart	to	return	to	the	working	state.

Mechanical	Off
G3.	The	computer	is	switched	off	by	mechanical	means,	consumes	no	power
except	for	the	real-time	clock,	and	requires	a	restart	to	return	to	the	working
state.
You	can	view	and	change	a	system’s	power-management	options	 in	Control
Panel	 >	Power	Options.	 Click	Change	when	 a	 computer	 sleeps	 >	Change
advanced	power	settings	for	options	such	as	enabling	USB	selective	suspend
and	configuring	low-power	settings.

Utilities
Windows	 and	 the	WDK	 provide	 utilities	 for	 viewing	 and	 managing	 power
states.

Displaying	and	initiating	power	changes
The	Windows	command-line	utility	Powercfg	can	display	power-management
information	and	initiate	transitions	to	low-power	states.
This	command	lists	all	available	sleep	states	on	the	system:
powercfg	/a

This	 command	 lists	 the	 devicename	 of	 each	 device	 that	 can	 wake	 the
computer:
powercfg	/devicequery	wake_armed

To	enable	or	disable	a	device’s	ability	to	wake	the	system,	use	these	commands
with	a	devicename	returned	from	devicequery	wake_armed:
powercfg	/deviceneablewake	<devicename>

powercfg	/devicedisablewake	<devicename>

To	view	all	commands,	enter:
powercfg	/?

Testing	and	debugging	power	management
The	 command-line	 PwrTest	 utility	 can	 list	 all	 available	 power	 states	 and
initiate	 transitions	 to	 sleep,	 hibernate,	 InstantGo,	 and	 shutdown	 for	 USB
devices.	 PwrTest	 is	 in	 the	 free	 Microsoft	 USB	 Test	 Tool	 (MUTT)	 software
package.
To	run	PwrTest,	open	a	command	prompt	with	administrator	privileges.	One
way	 to	 do	 so	 is	 to	 search	 the	 computer	 for	 command,	 then	 right-click
Command	Prompt	and	select	Run	as	Administrator.	Or	create	a	shortcut	to
%SystemRoot%\System32\cmd.exe,	 right-click	the	shortcut,	and	select	Run	as
Administrator.
PwrTest	 supports	 a	 variety	 of	 scenarios	 for	 monitoring	 and	 testing	 power
management	including	sleep	states,	battery	usage,	and	power	usage	by	drives,
monitors,	and	other	devices.
This	 command	 places	 the	 system	 in	 the	 S4	 power	 state	 for	 60	 seconds	 and
resumes:
pwrtest	/scenario	/sleep	/p:60	/s:4

To	view	all	scenarios,	enter:
pwrtest

To	view	the	options	for	a	scenario,	enter:
pwrtest	/<scenario>	/?

Some	 scenarios	 require	 provisioning	 a	 test	 computer	 using	 Visual	 Studio.
Microsoft	provides	instructions	for	doing	so.

Figure	 17-2.	 The	USBLPM	 tool	 can	 test	 and	monitor	 power	 states	 of	USB	 3.0
devices	under	Windows	8	and	higher.

Monitoring	and	testing	power	states
Under	Windows	8	and	higher,	the	USBLPM	tool	can	monitor	the	power	states
of	 USB	 3.0	 ports,	 verify	 correct	 transitions	 between	 states,	 and	 enable	 and
disable	U1	and	U2	states	on	devices	(Figure	17-2).	USBLPM	is	included	in	the
MUTT	software	package.

Battery	charging
The	USB-IF’s	Battery	Charging	 Specification	 defines	 interfaces	 and	protocols
for	 USB	 host	 and	 hub	 ports	 and	 dedicated	 devices	 that	 operate	 as	 USB
chargers.	With	host	and	device	support	for	the	specification,	devices	can	draw
charging	currents	of	up	to	1.5	A	and	can	charge	batteries	that	are	too	weak	to
enable	 the	 device	 to	 enumerate.	 The	 ability	 to	 use	 a	 USB	 connector	 for
charging	 is	 convenient	 for	 users	 and	 lowers	 manufacturing	 cost	 because

devices	doesn’t	need	vendor-specific	connectors	or	cables	for	charging.
Any	device	can	receive	charging	current	from	a	standard	USB	port	on	a	host
or	hub,	but	a	USB	charging	port	contains	charger-detection	circuits	to	enable
a	device	 to	detect	a	connection	 to	a	USB	charger	 that	doesn’t	enumerate	 the
device.
The	 information	below	is	current	as	of	Revision	1.2	of	 the	specification.	The
specification	 was	 released	 before	 the	 USB	 3.1	 specification	 so	 there	 are	 no
references	to	SuperSpeedPlus.
The	 USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0	 specification	 also	 supports	 battery
charging	using	the	Battery	Info	Capability	descriptor	and	other	protocols.

Charger	types
The	Battery	Charging	specification	defines	five	types	of	chargers:

Term Meaning Comment

SDP Standard	Downstream	Port Standard	host	or	hub	port

CDP Charging	Downstream	Port Host	or	hub	port	with	expanded
charging	capabilities

DCP Dedicated	charging	port Doesn’t	enumerate	the	device

ACA Accessory	charging	adapter Can	charge	an	OTG	device	that	is
also	communicating	with	a	device

ACA-Dock ACA-Dock ACA	that	uses	a	vendor-specific
connection

Figure	17-3	illustrates.
A	 standard	 downstream	 port	 (SDP)	 is	 a	 downstream-facing	 port	 that
doesn’t	 have	 expanded	 abilities	 to	 support	 charging.	 An	 attached
downstream	 device	 in	 the	 Suspend	 state	 should	 draw	 no	 more	 than	 the
allowed	Suspend	current.
A	charging	downstream	port	(CDP)	is	a	downstream-facing	port	on	a	host
or	hub	that	supports	charger	detection	and	can	provide	1.5	A	at	any	time.	A
device	 that	 connects	 to	 a	 host	 charger	 by	 pulling	 up	D+	 or	D-	 can	 draw
charging	current	even	if	the	host	has	placed	the	device	in	the	Suspend	state.
A	CDP	must	have	a	Standard-A	receptacle.
A	dedicated	charging	port	(DCP)	resides	on	a	charging	device	that	provides
power	 but	 doesn’t	 enumerate	 the	 attached	 device.	 The	 charging	 port

connects	its	D+	and	D-	lines	together	via	a	resistor	of	200	Ω	maximum	and
must	limit	the	charging	current	to	less	than	1.5	A.	The	charging	port	has	a
Standard-A	receptacle	or	 a	 captive	 cable	with	a	Micro-B	plug.	Any	device
with	a	DCP	is	a	USB	charger.
An	Accessory	Charging	Adapter	 (ACA)	enables	 an	OTG	device	 to	 charge
from	a	CDP,	DCP,	or	other	charger	while	also	communicating	with	a	USB
device.	 The	 ACA	 attaches	 to	 an	 OTG	 device	 using	 a	 captive	 cable	 that
terminates	 in	a	Micro-A	plug.	The	ACA’s	charger	port	connects	to	a	CDP
or	DCP	 using	 a	Micro-B	 receptacle	 or	 a	 captive	 cable	 with	 a	 Standard-A
plug,	or	the	ACA	may	be	hard-wired	to	a	charger.	The	accessory	port	has	a
Micro-AB	or	Standard-A	receptacle	that	can	connect	to	a	device	supported
by	the	OTG	device.
An	ACA-Dock	has	 a	 similar	 function	 to	 an	ACA	but	must	use	 a	 vendor-
specific	charger	connection	and	may	have	zero	or	more	accessory	ports.	The
ACA-Dock	attaches	to	an	OTG	device	using	a	captive	cable	that	terminates
in	a	Micro-A	plug.	The	ACA’s	 charger	port	 connects	 to	a	vendor-defined
charger	 using	 a	 vendor-specific	 connection.	 If	 present,	 one	 or	 more
accessory	 ports	 each	 have	 a	Micro-AB	 or	 Standard-A	 receptacle	 that	 can
connect	to	a	device	supported	by	the	OTG	device.	Because	the	OTG	device
being	 charged	 has	 a	 single	 Micro-AB	 port,	 an	 ACA-Dock	 that	 contains
more	than	one	accessory	port	must	incorporate	a	hub.

Figure	17-3.	A	charging	port	can	be	on	a	charging	downstream	port	on	a	host	or
hub,	a	dedicated	charging	port	on	a	charger,	an	accessory	charging	adapter,	or	an
ACA-Dock.

A	 device	 uses	 the	 ID	 pin	 on	 the	 device’s	 Micro-AB	 receptacle	 in	 detecting
attachment	of	an	ACA	or	ACA-Dock.	Chapter	20	has	more	about	connector
types.

A	 charger	 that	 wants	 to	 provide	more	 than	 1.5	 A	 can	 use	 cables	 with	USB
Type-C	connectors	with	 currents	up	 to	3	A	or	use	USB	Power	Delivery	Rev.
2.0,	v1.0	protocols	with	USB	Type-C	cables	that	support	currents	up	to	5	A.
Battery	 Charging	 Specification	 Revision	 1.2	 precedes	 the	 On-The-Go	 and
Embedded	Host	Supplement	to	 the	USB	Revision	2.0	 specification,	which	 first
permitted	 embedded	 hosts	 to	 use	Micro-AB	 receptacles.	 Thus	 the	 charging
specification	doesn’t	mention	 embedded	hosts	 using	ACAs	 and	ACA-Docks
to	charge.

Charger	detection
After	detecting	the	presence	of	VBUS,	a	device	can	detect	attachment	to	a	USB
charger	by	driving	D+	to	the	VDAT_SRC	voltage	(0.5	V–0.7	V)	and	detecting
the	 voltage	 on	D-.	 If	D-	 is	 greater	 than	VDAT_REF	 (0.4	V	maximum),	 the
device	is	attached	to	a	USB	charger.
A	CDP	 that	 detects	 a	 voltage	 between	 0.4	V	 and	 0.8	V	 on	D+	 drives	D-	 to
VDAT_SRC,	 which	 exceeds	 VDAT_REF.	 On	 a	 DCP,	 D+	 and	 D-	 are
connected	 together	 and	 thus	 both	 exceed	VDAT_REF.	Hosts	 and	 hubs	 that
don’t	 function	 as	USB	 chargers	 pull	D-	 to	 ground	 via	 a	 15K	 resistor,	which
brings	D-	below	VDAT_REF.
A	 device	 attached	 to	 a	 USB	 charger	 can	 determine	 the	 charger	 type	 after
pulling	up	D+	(full	speed)	or	D-	(low	speed)	and	detecting	the	voltage	on	the
line	not	pulled	up:

Device	Speed Action Detected	Voltage Charger	Type

Full Pull	D+	high D-	is	low Host	or	hub

D-	is	high Dedicated

Low Pull	D-	high D+	is	low Host	or	hub

D+	is	high Dedicated

High-speed-capable	devices	attach	at	full	speed.	SuperSpeed	devices	use	these
charger-detect	protocols	on	the	D+	and	D-	lines	in	the	USB	3.0	cable.
To	ensure	valid	voltages	when	connecting,	a	low-speed	device	must	draw	less
than	 100	mA	 (USB	 2.0)	 or	 150	mA	 (SuperSpeed)	when	 pulling	 up	D-.	 The
specification	 provides	 timing	 requirements	 and	 other	 restrictions	 for
implementing	charger	detection.

Charging	dead	or	weak	batteries
A	dead-battery	provision	(DBP)	 in	the	Battery	Charging	Specification	allows
some	devices	with	dead	or	weak	batteries	to	draw	up	to	100	mA	of	bus	current
for	45	minutes	or	until	the	batteries	are	charged	to	a	weak-battery	threshold,
whichever	 occurs	 sooner.	 A	 device	 whose	 battery	 has	 charged	 to	 the	 weak
battery	 threshold	 is	 capable	 of	 powering	 up	 and	 enumerating.	 The	 device
vendor	defines	the	weak-battery	threshold	voltage.
Only	 devices	 that	 are	 capable	 of	 operating	 stand-alone	 from	 battery	 power
may	use	DBP	current,	and	the	only	allowed	use	of	DBP	current	is	to	bring	a
device	to	its	weak-battery	threshold.

18

Testing	and	Debugging
Along	 with	 the	 chip-specific	 development	 boards	 and	 debugging	 software
described	in	Chapter	6,	a	variety	of	other	hardware	and	software	tools	can	help
in	 testing	 and	 debugging	USB	devices	 and	 their	 host	 software.	 This	 chapter
introduces	 tools	 available	 from	 the	 USB-IF	 and	 other	 sources	 and	 explain
what’s	 involved	 in	 passing	 tests	 for	 the	 Certified	 USB	 logo	 and	 Windows
logos.

Tools
Without	a	doubt	the	most	useful	tool	for	USB	device	developers	is	a	protocol
analyzer	 for	 monitoring	 USB	 traffic	 and	 other	 bus	 events.	 The	 analyzer
captures,	decodes,	and	displays	data	and	events	on	the	bus.	You	can	see	what
happened	 during	 enumeration,	 detect	 and	 examine	 protocol	 and	 signaling
errors,	view	data	transferred	during	control,	interrupt,	bulk,	and	isochronous
transfers,	and	focus	on	specific	details	of	any	transfer.
A	 hardware	 analyzer	 uses	 a	 combination	 of	 hardware	 and	 software,	while	 a
software	 analyzer	 consists	 only	 of	 software	 that	 runs	 on	 the	 device’s	 host
computer.	The	capabilities	of	the	two	types	overlap,	but	each	can	also	record
and	display	information	that	isn’t	available	to	the	other	type.

Figure	 18-1.	 A	 hardware	 protocol	 analyzer	 monitors	 traffic	 between	 a	 device
under	test	and	the	device’s	host.	An	interface	to	a	PC	(or	logic	analyzer)	enables
viewing	the	captured	data.

Another	useful	tool	is	a	traffic	generator,	which	emulates	a	host	or	device	and
offers	precise	control	over	what	goes	out	on	the	bus.

Hardware	protocol	analyzers
A	hardware	protocol	analyzer	captures	the	signals	in	a	cable	segment	without
affecting	the	traffic	in	the	segment.	The	analyzer	connects	in	a	cable	segment
upstream	 from	 the	 device	 under	 test	 (Figure	 18-1).	 To	 enable	 viewing	 the
captured	 traffic,	 the	 analyzer	 also	 connects	 to	 a	 PC	 or	 logic	 analyzer.	 A
connection	 to	 a	 PC	 may	 use	 USB	 or	 another	 interface	 such	 as	 Ethernet.
Instead	of	a	PC	interface,	some	protocol	analyzers	connect	to	 logic	analyzers
from	Agilent	or	Tektronix.
With	 a	 hardware	 analyzer,	 you	 can	 see	 the	 data	 in	 the	 cable	 down	 to	 the
individual	bytes	that	make	up	each	packet.	There’s	no	question	about	what	the
host	or	device	did	or	didn’t	send.	For	example,	if	the	host	sends	an	IN	token
packet,	you	can	see	whether	the	device	returned	data	or	NAK.	You	can	view
the	packets	in	every	stage	of	a	control	request.	Time	stamps	enable	you	to	see
how	often	the	host	accesses	an	endpoint.

Analyzers	are	available	 from	multiple	vendors	and	 in	a	 range	of	prices.	As	a
rule,	 support	 for	 higher	 speeds	 increases	 the	 price,	 with	 low/full-speed
analyzers	having	the	lowest	cost.
In	 this	 chapter,	 I	 use	 an	 Ellisys	 analyzer	 and	 Ellisys	 Visual	 USB	 Analysis
software	to	illustrate	what	a	hardware	analyzer	can	do.

The	hardware
The	Ellisys	Explorer	260	USB	2.0	analyzer	requires	two	USB	host	controllers,
one	 that	 communicates	 with	 the	 analyzer	 and	 one	 that	 controls	 the	 bus
segment	being	monitored.	Both	host	controllers	can	be	in	the	same	PC,	but	for
high-bandwidth	traffic,	two	PCs	can	prevent	overflow	errors.
One	USB	 cable	 connects	 the	 analyzer	 to	 the	PC	 running	Ellisys	Visual	USB
Analysis	 software.	 The	 PC	 detects	 the	 analyzer	 as	 a	 USB	 device	 that	 uses	 a
driver	provided	by	Ellisys.
Two	additional	USB	cables	and	the	analyzer	replace	a	cable	segment	upstream
from	 the	 device	 being	 monitored.	 The	 combined	 length	 of	 the	 two	 cables
should	 total	 3	 m	 or	 less	 because	 the	 cables	 and	 the	 analyzer’s	 electronics
together	must	emulate	an	ordinary	cable	segment	of	5	m	or	less.

The	software
The	Ellisys	Visual	USB	Analysis	 Software	 enables	 you	 to	 start	 and	 stop	data
logging	 and	 to	 save,	 view,	 and	 print	 the	 results.	 Figure	 18-2	 shows	 data
captured	by	an	analyzer.	You	can	specify	the	amount,	type,	and	format	of	data
the	displayed.	For	less	detail,	you	can	elect	to	hide	individual	packets,	repeated
NAKs,	 and	 other	 information.	 You	 can	 specify	 criteria	 to	 display	 such	 as
specific	devices,	endpoints,	speeds,	status	codes,	and	control	requests.
A	 Details	 pane	 provides	 more	 information	 about	 a	 request,	 transaction,
packet,	or	other	item	in	a	row	in	the	application’s	main	window	(Figure	18-3).
A	Data	pane	displays	the	individual	bytes	in	hexadecimal	and	ASCII.	You	can
also	 search	 for	 specific	 items,	 including	events,	 token-packet	 types,	 traffic	 to
and	from	a	specific	device	or	endpoint,	and	data.
Additional	 software	modules	add	 support	 for	 triggering	on	events,	decoding
class-specific	 information,	 and	 exporting	 captured	 data	 in	 text,	 XML,	 and
other	formats.

Figure	 18-2.	 Ellisys	 provides	 the	 Visual	 USB	 application	 for	 use	 with	 the
company’s	 analyzers.	 This	 example	 shows	 transactions	 and	 other	 events	 that
occurred	when	a	device	was	attached	downstream	from	the	analyzer

Software	protocol	analyzers
A	 software-only	 protocol	 analyzer	 runs	 on	 the	 host	 computer	 of	 the	 device
being	tested.	You	can	view	traffic	to	and	from	any	device	that	connects	to	any
of	the	computer’s	host	controllers.
A	software	analyzer	can	display	driver	 information	 that	a	hardware	analyzer
can’t	 see.	As	Chapter	8	 explained,	Windows	drivers	 communicate	with	USB
devices	 using	 I/O	 Request	 Packets	 (IRPs)	 that	 contain	 USB	 Request	 Blocks
(URBs).	A	 software	 analyzer	 can	 show	 the	 IRPs	 and	URBs	 that	 a	driver	has
submitted	and	the	responses	received	from	a	device.

Figure	 18-3.	 The	 Details	 pane	 in	 Ellisys’	 Visual	 USB	 software	 has	 more
information	about	a	request,	transaction,	packet,	or	other	event.

However,	 software	 analyzers	 can’t	 show	anything	 the	host-controller	 or	hub
hardware	 handles	 without	 software	 intervention.	 For	 example,	 the	 analyzer
won’t	 show	 how	 many	 times	 an	 endpoint	 NAKed	 a	 transaction	 before
returning	an	ACK	or	the	precise	time	a	transaction	occurred	on	the	bus.
Some	 software	 analyzers	 use	 a	 filter	 driver	 that	 loads	 when	 the	 operating
system	 loads	 the	 driver	 for	 the	 device	 being	 monitored.	 Because	 the	 filter
driver	doesn’t	load	until	the	host	has	enumerated	the	device,	the	analyzer	can’t
show	 the	 enumeration	 requests	 and	 other	 events	 that	 occur	 at	 device
attachment.

Open-source	tools
One	 option	 for	 a	 software	 analyzer	 uses	 two	 open-source	 tools:	 USBPcap
(desowin.org)	to	capture	the	data	and	WireShark	(wireshark.org)	to	decode	and
display	the	captured	data.
The	first	step	in	using	these	tools	is	to	find	the	device’s	root	hub.	To	keep	the
capture	 free	 of	 clutter,	 attach	 the	 device	 to	 a	 host	 controller	 that	 has	 a
minimum	of	downstream	devices	that	are	generating	traffic.	With	the	device
attached,	run	USBPcap	from	a	command	prompt	to	view	a	numbered	 list	of
root	hubs	and	their	downstream	devices	(Figure	18-4).
To	start	the	capture,	find	your	target	device	in	the	list	and	enter	its	root-hub
number	and	a	filename	for	the	captured	data.
To	view	the	data,	run	WireShark	and	open	the	file	created	by	USBPcap	(Figure
18-5).	 Wireshark	 decodes	 the	 captured	 URBs	 including	 the	 contents	 of

http://www.desowin.org
http://www.wireshark.org

standard	 control	 transfers	 and	 class-specific	 data	 for	 the	 audio,	 smart	 card,
HID,	hub,	mass	storage,	and	video	classes.	You	can	also	view	raw	data	for	any
transaction.

Figure	18-4.	USBPcap	can	capture	data	at	a	root	hub.

If	 you	 attach	 a	 device	 while	 USBPcap	 is	 running,	 the	 capture	 includes
enumeration	data	beginning	with	the	first	Get	Descriptor	request.

Event	tracing	for	Windows
Another	 option	 for	 viewing	USB	 data	 uses	 the	 Event	 Tracing	 for	Windows
(ETW)	 capabilities	 supported	 by	 Windows	 7	 and	 later.	 Viewing	 USB	 data
requires	 two	 tools:	 Logman	 to	 capture	 the	 data	 and	Netmon	 to	 display	 the
data.

Capturing	data	with	Logman
The	Windows	command-line	utility	Logman	captures	USB	ETW	event	traces.
To	start	a	trace,	you	enter	commands	to	create	a	trace,	specify	what	to	include,
and	start	logging.	Another	series	of	commands	stops	the	trace	and	copies	it	to
a	file	for	viewing.	Logman.exe	is	in	%SystemRoot%\system32.
An	alternative	to	typing	or	pasting	the	commands	each	time	is	to	place	them
in	a	batch	 file.	Listing	18-1	 shows	 a	 batch	 file	 that	 captures	 all	USB	2.0	 and
USB	3.0	traffic	until	 the	user	presses	a	key,	 then	stops	and	saves	the	capture.
These	are	the	commands	In	the	batch	file:
logman	 create	 defines	 a	 trace	 with	 the	 collection	 name	 usbtrace	 and	 the

http://www.Logman.exe

destination	of	 the	path	and	 filename	 specified	by	 the	 -o	 parameter.	 The	 -nb
option	 specifies	 the	minimum	 and	maximum	 number	 of	 buffers	 to	 use	 for
trace	data.	The	-bs	option	specifies	the	buffer	size	in	KB.

Figure	18-5.	WireShark	displays	decoded	data	captured	by	USBPcap.

logman	 update	 names	 a	 provider	 to	 log.	 The	 example	 uses	 multiple
commands	 to	 capture	 all	 data	 downstream	 from	USB	 2.0	 and	USB	 3.0	 host
controllers.	To	capture	only	data	downstream	from	USB	2.0	controllers,	delete
or	 comment	 out	 (with	 rem)	 the	 lines	 that	 contain	 USBXHCI,	 UCX,	 and
USBHUB3.	To	capture	only	data	downstream	from	USB	3.0	controllers,	delete
or	comment	out	the	lines	that	contain	USBPORT	and	USBHUB.
You	can	find	all	named	providers	in	the	system	with	this	command:
logman	query	providers
logman	start	initiates	logging.

rem	@ECHO	OFF

logman	create	trace	usbtrace	-o	%SystemRoot%\Tracing\usbtrace.etl

	-nb	128	640	-bs	128

logman	update	trace	usbtrace	-p	Microsoft-Windows-USB-USBXHCI

	(Default,PartialDataBusTrace)

logman	update	trace	usbtrace	-p	Microsoft-Windows-USB-UCX

	Default,PartialDataBusTrace)

logman	update	trace	-n	usbtrace	-p	Microsoft-Windows-USB-USBHUB3

	(Default,PartialDataBusTrace)

logman	update	trace	usbtrace	-p	Microsoft-Windows-USB-USBPORT

logman	update	trace	usbtrace	-p	Microsoft-Windows-USB-USBHUB

logman	update	trace	usbtrace	-p	Microsoft-Windows-Kernel-IoTrace	0	2

logman	start	usbtrace

ECHO	“Logging	data.	To	stop	logging,	press	any	key.”

PAUSE

logman	stop	usbtrace

logman	delete	usbtrace

move	%SystemRoot%\Tracing\usbtrace.etl

	%SystemRoot%\Tracing\usbtrace_000001.etl

Listing	 18-1:	 This	 batch	 file	 logs	 all	 USB	 2.0	 and	 USB	 3.0	 data	 until	 the	 user
presses	a	key,	then	saves	the	result	in	a	file.

The	pause	 command	 stops	 execution	of	 the	batch	 file	until	 you	press	 a	key.
When	you	have	logged	the	events	you	want	to	view,	press	a	key	to	continue.
logman	stop	stops	the	logging.
logman	delete	deletes	the	data	collection	query.
The	move	command	copies	 the	 log	 file	 (the	 first	 file	specified)	 to	 the	named
location	(the	second	file	specified).
To	run	the	batch	 file	or	execute	other	 logman	commands,	open	a	command
prompt	with	administrator	privileges	as	described	in	Chapter	17.

Viewing	data	with	Netmon
The	 Netmon	 utility	 and	 USB	 parsers	 enable	 viewing	 data	 captured	 with
logman.	 Both	 are	 free	 from	 the	Microsoft	 Download	 Center.	 You	 will	 also
need	the	WDK.
A	Netmon	parser	is	a	text	file	that	contains	the	information	needed	to	display
events	 for	 a	 specific	 protocol.	 Netmon	 parsers	 have	 the	 extension	 .npl.	 The
WDK	provides	USB	parsers.
Before	using	Netmon	to	view	USB	events,	you	need	to	make	the	USB	parsers
available	 to	 Netmon.	 To	 do	 so	 requires	 using	 the	 Windows	 PowerShell
application	and	allowing	execution	of	PowerShell	scripts.

PowerShell	 provides	 a	 command-line	 interface	 and	 scripting	 language	 for
performing	 system	 administration	 tasks.	 To	 allow	 execution	 of	 PowerShell
scripts,	search	the	computer	for	powershell,	right-click	Windows	PowerShell,
and	 select	 Run	 as	 administrator.	 In	 the	 PowerShell	 window	 that	 appears,
enter	this	command:
Set-ExecutionPolicy	RemoteSigned	-Force

Close	 PowerShell	 and	 reopen	 it.	 This	 time	 it’s	 not	 necessary	 to	 run	 as
administrator.
A	user-defined	Parser	Profile	can	make	USB	parsers	available	to	Netmon.	The
provided	PowerShell	script	NplAutoProfile.ps1	adds	Netmon	parsers	from	the
current	 directory	 to	 a	 Parser	 Profile	 named	 AutoProfile.	 To	 add	 the	 USB
parsers	to	AutoProfile,	enter	these	commands	in	PowerShell,	editing	the	path
to	the	Network	Monitor	Parsers\usb	directory	to	match	your	system	as	needed:
cd	“C:\Program	Files	(x86)\Windows	Kits\8.0\Tools\x86\Network	Monitor	Parsers\usb”

..\NplAutoProfile.ps1

The	 commands	 switch	 to	 the	 USB	 parsers	 directory	 and	 execute	 the
NplAutoProfile	script.
Close	 PowerShell.	 Now	 you	 can	 run	 NetMon,	 select	 AutoProfile,	 and	 open
traces	captured	by	logman.
To	run	Netmon,	search	the	computer	for	netmon	and	click	netmon.exe.
In	Netmon,	 to	 select	 the	 AutoProfile	 you	 created,	 click	Tools	 >	Options	 >
Parser	Profiles,	select	AutoProfile,	and	click	Set	as	Active.
To	load	the	captured	data,	click	Open	Capture	and	select	the	 .etl	 file	created
by	logman.	Figure	18-6	shows	an	example.
You	will	likely	see	a	long	list	of	events.	With	filters,	you	can	narrow	the	display
to	items	of	interest.
For	example,	to	view	Get	Descriptor	requests,	in	the	Frame	Summary	window,
in	the	Description	column,	find	an	item	containing:
USBPort:Dispatch	URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE
Right-click	the	item	and	select	Add	‘Description’	to	Display	Filter

Figure	18-6.	Netmon	displays	USB	events	captured	by	logman.

Or	enter	this	text	in	the	Display	Filter	window:
Description==“USBPort:Dispatch	 URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE”	 In	 the	 Display

Filter	window,	click	Apply.

The	 Frame	 Summary	 window	 now	 displays	 only	 URBs	 for	 Get	 Descriptor
requests	(Figure	18-7).
The	 Frame	 Details	 windows	 shows	 information	 about	 the	 item	 currently
selected	in	the	Frame	Summary	window.
To	 view	 the	 Get	 Descriptor	 request,	 in	 the	 Frame	Details	 window,	 expand:
UsbPort:	 Dispatch
URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE	and	scroll	down.
Expand:
SetupPacket:	GET_DESCRIPTOR

to	view	the	requested	descriptor.

Figure	18-7.	With	Netmon’s	filtering,	you	can	home	in	on	a	specific	USB	request
such	as	Get	Descriptor.

Here	is	an	example:
-	SetupPacket:	GET_DESCRIPTOR

	+	bmRequestType:	(Standard	request)	0x80

			bRequest:	(6)	GET_DESCRIPTOR

			Value_DescriptorIndex:	0	(0x0)

			Value_DescriptorType:	(1)	DEVICE

			_wIndex:	0	(0x0)

			wLength:	18	(0x12)

If	you	see:
Value_DescriptorType:	(1)	DEVICE

you	have	a	request	for	the	device	descriptor.	If	not,	select	other	events	in	the
Frame	Details	window	until	you	find	the	request	for	the	device	descriptor.
When	you	find	the	request,	make	a	note	of	the	event’s	Frame	Number.
To	view	the	returned	descriptor,	follow	the	steps	below	to	clear	the	filters	and
look	for	the	response	in	a	frame	that	follows	the	request.
In	the	Display	Filter	window,	click	Clear	Text,	then	Apply.
Scroll	to	the	Frame	Number	you	noted	for	the	request.	In	a	frame	that	follows,
look	for	an	event	with	this	description:

USBPort:Complete	URB_FUNCTION_CONTROL_TRANSFER	with	Data

If	you	prefer	 to	narrow	the	possibilities	before	searching,	you	can	create	and
apply	a	filter:
Description==“USBPort:Complete	URB_FUNCTION_CONTROL_TRANSFER	with	Data”

To	view	the	decoded	contents	of	the	device	descriptor,	expand	the	items	in	the
Frame	Details	window.
Here	is	an	example	showing	the	fields	in	a	device	descriptor:

-	DeviceDescriptor:	VID_0925&PID_150C

bLength:	18	(0x12)

bDescriptorType:	1	(0x1)

bcdUSB:	512	(0x200)

bDeviceClass:	0	(0x0)

bDeviceSubClass:	0	(0x0)

bDeviceProtocol:	0	(0x0)

bMaxPacketSize0:	8	(0x8)

idVendor:	2341	(0x925)

idProduct:	5388	(0x150C)

bcdDevice:	256	(0x100)

iManufacturer:	1	(0x1)

iProduct:	2	(0x2)

iSerialNumber:	0	(0x0)

bNumConfigurations:	1	(0x1)

In	a	similar	way,	you	can	find	and	examine	requests	for	other	descriptors.	You
can	also	view	URBs	that	request	and	send	USB	data	for	any	purpose.
To	add	a	filter	from	a	value	in	the	Frame	Details	window,	right-click	the	item
and	select	Add	Selected	Value	to	Display	Filter.	For	example,	to	display	only
events	 for	 a	 specific	 device,	 you	 can	 filter	 on	 the	 idVendor	 and	 idProduct
values.
The	WDK’s	USB	parsers	don’t	decode	class-specific	data	such	as	mass-storage
commands,	but	you	can	view	the	hexadecimal	data.

Traffic	generators
Sometimes	 it’s	 useful	 to	 be	 able	 to	 control	 bus	 traffic	 and	 signaling	 beyond
what	 you	 can	 do	 from	 host	 software	 and	 device	 firmware.	 Some	 hardware
protocol	analyzers	can	also	function	as	traffic	generators	that	emulate	a	host	or
device	and	give	you	precise	control	over	the	traffic	that	the	emulated	host	or
device	 places	 on	 the	 bus.	 In	 addition	 to	 generating	 valid	 traffic,	 a	 traffic
generator	can	introduce	errors	such	as	bit-stuff	and	CRC	errors.	Some	vendors
of	protocol	analyzers	also	offer	stand-alone	traffic	generators	or	analyzers	with
traffic-generator	capabilities

Compliance	testing

The	 USB-IF	 offers	 testing	 opportunities	 for	 developers	 of	 USB	 products.
Passing	 the	 tests	 is	 a	 requirement	 for	a	product’s	displaying	a	Certified	USB
logo.	Compliance	tools,	checklists,	and	documentation	are	available	at	usb.org.
The	USB-IF’s	 compliance	program	provides	 tests	 for	 peripherals,	 hubs,	 host
systems,	 OTG	 devices,	 silicon	 building	 blocks,	 cable	 assemblies,	 and
connectors.
Compliance	testing	checks	to	see	if	a	product	meets	requirements	of	relevant
USB	 specifications.	No	 test	 suite	 can	 check	 for	 every	 possible	 violation	 of	 a
specification,	but	 the	goal	of	 the	USB-IF’s	 tests	 are	 to	make	a	good	effort	 to
verify	that	a	device	operates	without	problems	at	every	supported	speed,	with
every	 supported	host	 controller	 type,	 under	hubs,	 and	on	buses	 loaded	with
other	 devices.	 The	 tests	 check	 for	 valid	 values	 in	 descriptors,	 issue	 requests
that	 a	device	might	not	be	 expecting,	 verify	proper	operation	when	entering
and	 leaving	 low-power	 states,	 and	 look	 for	other	violations	 that	 are	 likely	 to
cause	problems	in	the	field.
An	 important	 requirement	of	compliance	 testing	 is	adhering	 to	 the	no	silent
failure	rule.	A	device	may	be	unable	to	function	in	a	situation	such	as	needing
more	bandwidth	or	power	than	is	available.	When	a	device	can’t	function,	the
host	computer	must	not	 leave	the	user	wondering	what	 is	wrong	but	 instead
should	display	a	message	that	informs	the	user	why	the	device	isn’t	working.
When	a	product	passes	its	required	compliance	tests,	the	USB-IF	asserts	that
the	product	has	“reasonable	measures	of	acceptability”	and	adds	the	product
to	 its	 Integrators	 List	 of	 compliant	 devices.	 On	 receiving	 a	 signed	 license
agreement,	the	USB-IF	authorizes	the	product	to	display	a	Certified	USB	logo.
Even	 if	 you	don’t	 submit	 your	device	 to	 formal	 compliance	 testing,	 you	 can
use	the	tests	to	verify	your	device’s	performance.
You	 can	 submit	 a	 device	 for	 compliance	 testing	 at	 a	 USB-IF	 compliance
workshop	 or	 an	 independent	 lab	 authorized	 by	 the	 USB-IF.	 The	 USB-IF’s
compliance	workshops	are	open	only	to	USB-IF	members,	are	free	of	charge,
and	 include	 demonstrated	 operation	 tests	 where	 the	 device	 performs	 its
intended	 purpose	 when	 attached	 downstream	 from	 hubs	 and	 with	 other
attached	 devices.	 Testing	 by	 independent	 labs	 doesn’t	 require	 demonstrated
operation	testing	because	it’s	impractical	for	the	labs	to	set	up	these	tests.	To
save	 time	 and	 expense,	 before	 submitting	 a	 product	 for	 compliance	 testing,
you	should	perform	the	tests	as	fully	as	possible	on	your	own.

http://www.usb.org

Checklists
The	 USB-IF’s	 compliance	 checklists	 contain	 a	 series	 of	 questions	 about	 a
product’s	 specifications	 and	 behavior.	 There	 are	 checklists	 for	 peripherals,
hubs,	 hub	 and	 peripheral	 silicon,	 and	 host	 systems.	 The	 USB	 2.0	 USB
Compliance	Checklist	 for	peripherals	covers	mechanical	design,	device	states
and	signals,	operating	voltages,	and	power	consumption.	Accompanying	each
question	 is	 a	 reference	 to	 a	 section	 in	 the	 USB	 specification	 with	 more
information.	You	should	be	able	to	answer	yes	to	each	relevant	question	on	a
checklist	that	applies	to	your	device.	The	USB	3.0	checklist	for	peripherals	asks
only	if	the	silicon,	connectors,	and	cables	are	on	the	USB	Integrators	List	and
whether	any	USB	pins	are	used	for	anything	other	than	USB.

USB	Command	Verifier	software
The	 USB-IF’s	 Command	 Verifier	 software	 performs	 tests	 of	 the	 device
framework	 protocols,	 current	 measurement,	 and	 interoperability.	 The
USB20CV	 version	 tests	 USB	 2.0	 protocols	 and	 requirements	 under	 EHCI,
OHCI,	and	UHCI	host	controllers.	The	USB30CV	version	tests	USB	2.0	and
USB	3.0	protocols	and	requirements	under	xHCI	host	controllers.
Each	 version	 replaces	 the	 system’s	 host-controller	 driver	 with	 a	 test-stack
driver	 and	 on	 exiting,	 restores	 the	 original	 driver.	 Before	 installing	 and
running	the	software,	review	the	readme	file	and	release	notes.	It	doesn’t	hurt
to	 create	 a	 Windows	 restore	 point	 before	 running	 the	 software	 in	 case
something	goes	wrong	and	you	need	to	recover	your	system’s	original	state.

Running	USB30CV
USB30CV	 requires	 a	 PC	with	 a	 recent	Windows	 version	 and	 an	 xHCI	 host
controller.
When	 you	 run	 USB30CV,	 after	 the	 stack	 switch,	 Device	 Manager	 lists	 the
xHCI	host	controller	as	xhci	compliance	test	host	controller.
If	the	PC	has	multiple	xHCI	host	controllers,	the	software	will	ask	you	to	select
the	host	controller	to	use	for	the	stack	switch.	To	find	which	host	controller	is
upstream	from	your	device,	start	Device	Manager	and	select	View	>	Devices
by	Connection.	(See	Chapter	9.)	Look	for	the	host	controllers	under	these	or
similar	headings:	ACPI	x64-based	PC	>	Microsoft	ACPI-Compliant	System
>	PCI	 Express	 Root	 Complex.	 Look	 for	 one	 or	 more	 items	 with	 USB	 3.0
eXtensible	 Host	 Controller	 in	 the	 name.	 Expand	 these	 items	 and	 their

subordinate	 hubs	 and	 search	 for	 your	 device.	 When	 you	 find	 the	 device,
double-click	its	host	controller’s	entry.	In	the	General	tab,	note	the	displayed
Location.
The	 USB-IF	 recommends	 running	 USB30CV	 only	 on	 hosts	 that	 are	 using
Microsoft’s	USB	drivers.	The	system	mouse	and	keyboard	must	attach	either
directly	to	the	root	hub	of	the	host	controller	whose	driver	is	being	switched	or
under	a	host	controller	that	isn’t	having	its	driver	switched.
To	 enable	 performing	 the	 stack	 switch,	 you	 must	 turn	 off	 User	 Account
Control	(UAC)	and	reboot.	The	setup	instructions	for	the	software	detail	the
steps	to	do	so	on	different	Windows	versions.
If	you	have	non-functioning	USB	ports	after	exiting	USB30CV,	it’s	likely	that
the	software	didn’t	complete	 the	 stack	switch	 for	 some	reason.	Running	and
exiting	USB30CV	again	may	fix	the	problem,	or	you	can	try	rolling	back	the
test	driver	in	Device	Manager	or	powering	down	the	system	and	rebooting.

Running	USB20CV
USB20CV	 functions	 much	 like	 USB30CV	 but	 tests	 devices	 attached	 under
ECHI,	OHCI,	and	UHCI	host	controllers.
To	 enable	 performing	 the	 stack	 switch,	 you	 must	 turn	 off	 User	 Account
Control	 (UAC)	 and	 also	 disable	 driver	 signature	 enforcement.	 The	 setup
instructions	for	the	software	detail	 the	steps	needed	to	perform	these	actions
on	different	Windows	versions.

Device	Framework	tests
USB20CV	 and	 USB30CV	 each	 include	 USB	 2.0	 Device	 Framework	 tests	 to
verify	that	a	USB	2.0	device	or	a	USB	3.0	device	operating	at	a	USB	2.0	speed
responds	 correctly	 to	 standard	 control	 requests.	 USB30CV	 also	 includes
Device	 Framework	 tests	 for	 USB	 3.0	 devices	 operating	 at	 SuperSpeed	 (and
presumably	will	be	updated	to	include	SuperSpeedPlus).
A	USB	2.0	device	must	pass	the	Device	Framework	tests	under	EHCI,	UHCI,
and	 OHCI	 hosts	 using	 USB20CV	 and	 also	 under	 an	 xHCI	 host	 using
USB30CV.

About	the	tests
In	 the	 USB	 2.0	 Device	 Framework	 tests,	 the	 host	 issues	 standard	 control
requests	 defined	 in	 Chapter	 9	 of	 the	 USB	 2.0	 specification	 and	 performs

additional	checks	on	the	information	returned	by	a	device	(Figure	18-8).	For
example,	on	retrieving	a	device	descriptor,	the	software	checks	to	see	that	the
bMaxPacketSize0	 value	 is	 valid	 for	 the	 device’s	 speed	 and	 that	 the
bDeviceClass	 value	 is	 either	 a	 value	 for	 a	 defined	 class	 or	 0xFF	 (vendor-
defined).	The	software	resets	and	enumerates	the	device	when	the	device	is	in
the	 default,	 address,	 and	 configured	 states	 and	 in	 every	 supported
configuration.

Figure	18-8.	USBCV’s	Chapter	9	tests	check	the	device’s	responses	to	the	control
requests	defined	in	Chapter	9	of	the	USB	specification.

The	Chapter	9	tests	also	include	these:
Enumerate	the	device	multiple	times	with	different	addresses.
Verify	that	all	bulk	and	interrupt	endpoints	can	be	halted	and	unhalted	with
Set	Feature	and	Clear	Feature	requests.
Ensure	that	the	device	returns	STALL	in	response	to	receiving	a	request	for
an	unsupported	descriptor	type.

Ensure	that	the	device	returns	STALL	in	response	to	receiving	a	Set	Feature
request	for	an	unsupported	feature.
Suspend	and	resume	the	device.
If	 the	device	supports	remote	wakeup,	suspend	the	device	and	request	 the
user	to	perform	an	action	to	wake	the	device.

The	software	has	two	modes.	Compliance	Test	mode	runs	the	entire	test	suite.
Debug	mode	enables	selecting	and	running	a	single	 test	within	the	suite	and
offers	more	control,	 such	as	selecting	a	configuration	to	use	when	running	a
test.
Additional	 test	 suites	 in	 both	 USB20CV	 and	 USB30CV	 provide	 tests	 for
devices	in	the	HID,	USB	2.0	hub,	mass-storage,	personal-healthcare,	and	video
classes	and	devices	 that	return	OTG	descriptors.	USB30CV	also	has	 tests	 for
USB	3.0	link-layer	and	UASP	protocols.	USB	3.0	hubs	have	their	own	testing
tool,	HUB30CV.

Interoperability	tests
Interoperability	(interop	for	short)	tests	emulate	a	user’s	experience	by	testing
a	device	with	different	host	controllers	and	with	a	variety	of	other	USB	devices
in	use	at	 the	same	time.	Using	USB20CV,	a	A	USB	2.0	device	must	pass	 the
interop	tests	under	EHCI,	UHCI,	and	OHCI	hosts,	 including	testing	under	a
tier	 of	 five	 external	 hubs	 using	 maximum-length	 cables	 and	 under	 hubs
operating	at	full	and	high	speeds.	Using	USB30CV,	a	USB	2.0	device	must	pass
the	interop	tests	when	attached	to	the	root	port	of	an	xHCI	host.
The	USB	2.0	interop	tests	are	documented	in	the	USB-IF’s	Full	and	Low	Speed
Electrical	 and	 Interoperability	 Compliance	 Test	 Procedure.	 (The	 document,
though	not	its	title,	was	updated	to	include	high	speed.)	The	USB	3.0	interop
tests	 are	 documented	 in	 the	USB-IF’s	 xHCI	 Interoperability	 Test	 Procedures
For	Peripherals,	Hubs,	Hosts.

USB	2.0	Gold	Tree
The	USB	2.0	tests	use	a	Gold	Tree	configuration	that	contains	a	variety	of	hubs
and	 other	 devices	 on	 the	 bus	with	 the	 device	 under	 test.	Check	 the	USB-IF
Compliance	 Updates	 page	 for	 any	 updates	 to	 the	 configuration.	 All	 of	 the
Gold	Tree	components	are	 for	use	with	USB20CV	except	 the	xHCI	adapter,
which	USB30CV	uses.	These	are	the	components	of	the	USB	2.0	Gold	Tree:

Host	system
USB	host	system	with	a	multicore	processor,	EHCI	with	embedded	UHCI
and	 PCI	 Express	 slots	 with	 compliant	 downspread	 spread-spectrum
clocking	(SSC).
PCI	Host	Adapter,	EHCI	with	embedded	OHCI.
PCI	Host	Adapter,	xHCI.

Hubs
Six	 self-powered	hubs,	high	 speed,	with	at	 least	 four	exposed	downstream
ports	each.
One	 bus-powered	 hub	 operating	 at	 full	 speed,	 with	 at	 least	 two	 exposed
downstream	ports.	(May	be	a	compound	device.)

Other	devices
One	mouse,	low	speed,	using	interrupt	transfers.
Two	mass-storage	devices,	high	speed,	using	bulk	transfers.
One	camera,	high	speed,	using	isochronous	transfers.

The	devices	attach	to	the	host	in	the	configuration	shown	in	Figure	18-9.	Test
labs	can	provide	Gold	Tree	hardware	setups	for	testing.
On	attachment,	the	host	must	enumerate	and	install	the	driver	for	the	device.
If	needed,	the	user	may	specify	the	driver’s	location.	The	device	must	operate
properly	 while	 the	 other	 devices	 in	 the	 Gold	 Tree	 are	 also	 operating.	 The
device	must	also	continue	to	operate	properly	after	each	of	these	actions	under
the	EHCI	host:

Detach	the	device’s	cable	at	the	downstream-facing	port	and	reattach	to	the
same	port.
Unless	 the	 device	 has	 a	 hard-wired	 cable,	 detach	 the	 device’s	 cable	 at	 the
upstream-facing	port	and	reattach	to	the	same	port.
Do	a	warm	boot.	(Start	>	Shutdown	>	Restart.)
Enter	the	S3	system	power	state	and	resume.
Enter	the	S4	system	power	state	and	turn	on.
For	devices	 that	 support	 remote	wakeup,	 enter	 the	 S3	 system	power	 state
and	have	the	device	wake	the	system.
Stop	operation	of	the	device	and	attach	the	device	to	a	root	port.

Additional	 device	 tests	 under	 UHCI	 and	 OHCI	 hosts	 include	 device
operation,	Suspend	and	resume,	and	warm	boot.
A	high-speed	device	must	also	be	fully	functional	at	full	speed	unless	the	USB-
IF	grants	a	waiver.	The	test	specification	has	more	details	about	the	tests.
A	 device	 should	 demonstrate	 device	 operation	 and	 pass	 the	 appropriate
Chapter	9	tests	at	each	bus	speed	the	device	supports.

SuperSpeed	Interop	Tree
USB30CV	 uses	 a	 SuperSpeed	 Interop	 Tree	 defined	 in	 USB	 Implementers
Forum	xHCI	Interoperability	Test	Procedures	For	Peripherals,	Hubs,	Hosts.	The
document	specifies	a	tree	similar	to	the	USB	2.0	Gold	Tree	but	using	only	an
XHCI	host,	using	USB	3.0	hubs,	and	adding	SuperSpeed	peripherals.

Current	measurement
The	Current	Measurement	tests	measure	the	bus	current	a	device	draws	when
in	 the	 unconfigured,	 configured,	 and	 Suspend	 states.	 In	 the	 unconfigured
state,	 the	 device	 should	 draw	 no	more	 than	 100	mA	 (USB	 2.0)	 or	 150	mA
(SuperSpeed).	When	 configured,	 the	 device	 should	 draw	 no	more	 than	 the
amount	 specified	 in	 the	bMaxPower	 field	of	 the	configuration	descriptor	 for
the	 currently	 active	 configuration.	 In	 the	 Suspend	 state,	 the	 device	 should
draw	no	more	than	2.5	mA.

Figure	18-9.	Devices	use	this	Gold	Tree	configuration	for	USB	2.0	interopability
testing.

Electrical	tests
Devices	 must	 also	 pass	 tests	 of	 signal	 quality,	 receiver	 sensitivity,	 timing,
inrush	current,	and	other	aspects	of	electrical	performance.

Documentation	of	the	tests	for	full-	and	low-speed	devices	are	in	the	Full	and
Low	 Speed	 Electrical	 and	 Interoperability	 Compliance	 Test	 Procedure.
Documentation	 and	 tools	 for	 high	 speed	 and	 SuperSpeed	 tests	 are	 in
additional	documents	and	files	on	the	USB-IF’s	website.

Certified	USB	Logo
A	device	that	passes	compliance	testing	is	eligible	to	display	the	Certified	USB
logo.	The	logo	indicates	if	a	device	supports	SuperSpeed,	SuperSpeedPlus,	high
speed,	Certified	Wireless	USB,	and	USB	OTG	(Figure	18-10).	To	use	the	logo,
you	 must	 sign	 the	 USB-IF	 Trademark	 License	 Agreement.	 If	 you’re	 not	 a
member	of	the	USB-IF,	you	must	pay	a	logo	administration	fee	($3500	at	this
writing).	The	logo	is	different	from	the	USB	icon	described	in	Chapter	19.
A	device	can	earn	a	USB	logo	without	passing	every	test.	At	its	discretion,	the
USB-IF	 may	 grant	 a	 waiver	 of	 a	 requirement.	 For	 example,	 before	 the
specification	increased	the	limit	for	all	devices,	the	USB-IF	granted	waivers	to
devices	that	drew	up	to	2.5	mA	in	the	Suspend	state.	In	considering	whether	to
grant	a	waiver,	 the	USB-IF	considers	 the	effect	of	 the	violation	on	 the	user’s
experience	 and	 other	 USB	 products,	 the	 product’s	 market	 size,	 and	 the
vendor’s	cost	to	correct	the	violation.

Windows	hardware	certification
The	Windows	 Hardware	 Certification	 Program	 licenses	Windows	 logos	 for
display	 by	 products	 that	 meet	 Microsoft’s	 standards	 for	 compatibility,
reliability,	and	security.	To	earn	the	right	to	display	a	logo	on	a	product	and	its
marketing	materials,	 the	vendor	must	 submit	 test	 logs	 that	demonstrate	 that
the	product	meets	Microsoft’s	requirements.
Benefits	 of	 a	 Windows	 logo	 include	 increased	 customer	 confidence	 in	 the
product,	the	ability	to	distribute	drivers	via	Windows	Update,	and	inclusion	in
the	Windows	Certified	Products	List.

Figure	18-10.	Devices	 that	pass	compliance	 testing	can	display	a	Certified	USB
logo.	 The	 logo	 indicates	 if	 the	 device	 supports	 high	 speed,	 SuperSpeed,
SuperSpeedPlus,	OTG,	or	Wireless	USB	as	appropriate.	(Images	courtesy	of	the
USB	Implementers	Forum.)

Figure	 18-11.	 Windows	 Hardware	 Certification	 tests	 require	 at	 least	 two
networked	computers.

Participating	 in	 the	 Hardware	 Certification	 program	 requires	 establishing	 a
Windows	 Certification	 account	 and	 signing	 a	 Logo	 License	 Agreement	 and
Windows	Certification	Program	Testing	Agreement.
Microsoft	charges	no	fee	for	hardware	certification,	but	each	vendor	must	pay
a	 fee	 to	 obtain	 a	 Microsoft	 Authenticode	 certificate	 that	 identifies	 the
company	 and	 provides	 a	 code-signing	 ID	 for	 submitting	 files.	 Multiple
vendors	 offer	 certificates.	At	 this	writing,	 the	 per-year	 fees	 are	 in	 the	 $200–
$500	range.
The	 description	 that	 follows	 is	 an	 overview	 of	 the	 Hardware	 Certification
process.	Check	 the	Windows	hardware	certification	web	page	and	 the	WDK
for	full	details	and	updates.

Windows	hardware	certification
The	Windows	Hardware	Certification	Kit	(HCK)	is	a	free	test	framework	for
certifying	hardware	devices	and	their	drivers.	Certification	is	limited	to	devices
whose	 function	 matches	 one	 of	 the	 Microsoft-defined	 product	 types	 (for
example,	 keyboard,	 storage,	 camera,	 USB	 hub).	 A	 device	 that	 doesn’t	 fit	 a
defined	function	can’t	display	a	Windows	logo	but	can	use	a	signed	driver,	and
Windows	Update	can	distribute	the	driver.
An	 HCK	 test	 environment	 requires	 a	 minimum	 of	 two	 computers	 with	 a

network	connection.	The	environment	has	these	components	(Figure	18-11):
The	HCK	 test	 server,	 or	 controller,	 runs	 the	Windows	HCK	Controller	 and
Windows	HCK	Studio	software.	Windows	HCK	Controller	manages	the	tests,
and	Windows	HCK	Studio	 selects	 and	 schedules	 tests.	The	HCK	 test	 server
must	 be	 running	 a	 recent	 version	 of	Windows	 Server.	 The	HCK	Controller
and	 HCK	 Studio	 software	 can	 run	 on	 the	 same	 computer	 or	 on	 different
computers.	 Beginning	with	Windows	 8.1,	 the	HCK	 test	 server	 can	 also	 run
HCK	test	suites	from	a	command-prompt	window	or	from	Visual	Studio.
The	 HCK	 test	 computer,	 or	 client	 computer,	 is	 the	 host	 computer	 for	 the
target	 device	 under	 test.	 The	 HCK	 test	 computer	 must	 be	 running	 the
Windows	version	under	test	for	certification.	For	testing	USB	devices,	the	test
computer	must	have	an	xHCI	controller	 and	either	an	EHCI	controller	or	 a
high-speed	 hub.	 A	 single	 HCK	 test	 server	 can	 have	 multiple	 HCK	 test
computers.
The	HCK	 test	 server	 and	 test	 computer	may	 be	 two	 computers	 in	 the	 same
workgroup,	 or	 you	 can	 join	 the	 computers	 using	 a	 third	 computer	 that
functions	 as	 a	 domain	 controller.	 The	 domain	 controller	 must	 be	 running
Windows	Server	with	Active	Directory	Domain	Services	installed.
To	test	a	device,	 from	HCK	Studio,	you	add	the	 test	computer	 to	a	machine
pool,	 create	 a	 project,	 and	 select	 the	 target	 device.	 The	 software	 detects	 the
device	features	that	interact	with	Windows	and	generates	a	set	of	tests.	When	a
device	 has	 passed	 all	 required	 tests,	 HCK	 Studio	 can	 create	 a	 submission
package	to	complete	the	certification	process.
The	 HCK	 test	 categories	 include	 device	 fundamentals,	 connectivity,	 and
function.
Device	fundamentals	includes	PnP,	driver,	and	power	tests.
For	USB	 devices,	 the	 connectivity	 tests	 relate	 to	USB	 communications.	 The
vendor	 must	 submit	 the	 test	 ID	 that	 the	 USB-IF	 provides	 on	 passing
compliance	tests.	Additional	tests	verify	that	the	device:

Responds	only	to	its	assigned	bus	address.
Responds	properly	to	standard	descriptor	requests.
Is	available	within	500	ms	after	the	system	exits	the	S3	or	S4	power	state.
Is	configured	within	100	ms	after	host	software	enables	the	device.
Responds	properly	to	repeated	enumeration	requests.

Responds	properly	to	suspend	and	resume	requests.
Resumes	properly	after	the	system	exits	the	S3	power	state	(repeated	tests).
Enumerates	under	ECHI	and	xHCI	host	 controllers	 and	under	 full-speed,
high-speed,	and	SuperSpeed	hubs.
Handles	 simulated	 failures	 initiated	 by	 the	 Windows	 USB	 client	 driver
feature	of	the	USB	3.0	driver	stack.
For	devices	with	serial	numbers,	returns	a	unique	serial	number	(tests	two
devices	with	the	same	Vendor	ID	and	Product	ID).
Has	no	default	interface	that	consumes	isochronous	bandwidth.
Responds	properly	to	a	request	for	a	Microsoft	ContainerID	descriptor.

A	USB	3.0	device	must:
Always	connect	at	SuperSpeed	when	SuperSpeed	is	available.
Respond	properly	to	Function	Suspend	and	Selective	Suspend.

Hubs	have	additional	tests.
The	 function	 category	 tests	 device	 functions	 such	 as	 audio,	 storage,	 input,
imaging,	and	streaming.
Windows	7	and	Windows	8	each	have	their	own	logo.	A	single	logo	indicates
compatibility	with	Windows	8	and	Windows	RT.
For	 developers	 of	 device	 drivers,	 the	 USB	 client	 driver	 verifier	 included	 in
Windows	 8	 and	 higher	 can	 help	 in	 creating	 robust	 drivers	 by	 simulating
various	 failures.	The	HCK	 includes	 a	USB	Verifier	Test	 that	 runs	 simulated
test	cases.

Driver	signatures
A	Windows	 software	 driver	 for	 a	 USB	 device	must	 have	 a	 digital	 signature
provided	by	a	catalog	(.cat)	file	associated	with	the	driver	or	embedded	in	the
driver	 itself.	 Windows	 uses	 digital	 signatures	 to	 identify	 the	 source,	 or
publisher,	of	a	driver	and	to	verify	that	driver	files	haven’t	been	modified	since
the	driver	was	signed.
When	 a	 driver	 package	 passes	HCK	 testing,	 the	 vendor	 can	 submit	 the	 test
logs	to	obtain	a	Windows	Hardware	Quality	Labs	(WHQL)	release	signature
for	 the	 driver	 package.	Microsoft	 distributes	 drivers	with	WHQL	 signatures
through	the	Windows	Update	program.

During	 testing	 and	debugging,	 a	developer	 can	 test-sign	 a	driver	using	 tools
provided	with	Visual	Studio	and	the	WDK.
An	 INF	 file	 can	name	 a	 catalog	 file	 that	 contains	 cryptographic	 hash	 values
that	identify	the	driver’s	files.	A	digitally	signed	catalog	file	serves	as	a	digital
signature	 that	 the	 OS	 uses	 to	 determine	 whether	 the	 driver	 files	 have	 been
altered	since	the	signature	was	created.	Each	INF	file	has	a	single	catalog	file,
but	 one	 INF	 file	 can	 support	 multiple	 devices.	 Any	 change	 in	 an	 INF	 file,
including	 adding	 or	 editing	 a	 Product	 ID,	 device	 release	 number,	 or	 string,
requires	a	new	digital	signature.

Figure	 18-12.	 The	 Certificate	Manager	 shows	 a	 system’s	 certificate	 stores	 and
their	contents.

Windows	keeps	 information	 relating	 to	digital	 signatures	 in	databases	 called
certificate	 stores.	To	view	 the	 certificate	 stores,	 open	 the	Certificate	Manager
snap-in,	 certmgr.msc	 (Figure	 18-12),	 typically	 in	 \%SystemRoot%\system32.
The	default	view	displays	certificates	organized	by	logical	stores.
The	 Trusted	 Publishers	 store	 lists	 Certificates	 from	 certification	 authorities
that	 are	 trusted	 by	 the	 system’s	 Software	 Restriction	 policies.	 Users	 with
administrator	 privileges	 can	 add	 publishers	 to	 this	 store.	 The	 Trusted	 Root
Certification	Authorities	certificate	store	contains	information	about	CAs	that
have	met	Microsoft’s	 requirements.	 Users	 with	 administrator	 privileges	 can
add	private	CAs	to	this	store.
PrivateCertStore	can	contain	certificates	used	to	test-sign	drivers.

Whether	 Windows	 allows	 a	 driver	 to	 be	 installed	 varies	 depending	 on	 the
Windows	edition,	 the	security	settings,	whether	 the	user	 installing	the	driver
has	administrator	privileges,	and	whether	the	driver	is	signed.	If	the	driver	is
signed,	 successful	 installation	 can	 depend	 on	 the	 source	 of	 the	 signature,
whether	the	driver	publisher’s	certificate	is	in	the	system’s	Trusted	Publishers
certificate	store,	and	whether	the	CA	that	issued	the	publisher’s	certificate	is	in
the	Trusted	Root	Certification	Authorities	certificate	store.
The	 64-bit	 Windows	 editions	 require	 signed	 drivers.	 The	 32-bit	 Windows
editions	will	install	unsigned	drivers	but	may	display	warnings	depending	on
system	settings.
A	 driver	 signed	 by	 the	 Windows	 hardware	 certification	 program	 installs
without	 triggering	 security	 warnings.	 For	 other	 signed	 drivers,	 a	 dialog	 box
with	a	security	warning	may	appear	if	the	driver	publisher’s	certificate	isn’t	in
the	computer’s	Trusted	Publishers	certificate	store.	In	the	dialog	box,	selecting
the	option	to	always	trust	software	from	the	publisher	adds	that	publisher	to
the	system’s	Trusted	Publishers	certificate	store.

Test-signing	a	driver
As	 mentioned	 in	 Chapter	 9,	 you	 can	 test-sign	 a	 driver	 for	 use	 on	 a	 single
machine	at	no	charge.	To	enable	test-signing	of	drivers,	you	first	create	a	test
certificate	 on	 the	 system.	Then	 to	 test-sign	 a	 driver,	 you	 add	 an	 entry	 for	 a
catalog	file	in	the	INF	file	and	create	and	test-sign	the	catalog	file.

Create	a	test	certificate
To	 test-sign	drivers,	 the	development	PC	must	have	 a	digital	 certificate	 that
verifies	the	system’s	identity.	A	PC	needs	only	one	certificate	to	support	test-
signing	of	multiple	drivers.
Visual	Studio	includes	the	MakeCert	tool,	which	can	create	a	digital	certificate
for	use	in	test-signing	drivers.	You	can	run	MakeCert	from	the	Visual	Studio
Command	Prompt.	From	the	Programs	menu,	select	Microsoft	Visual	Studio
<version>	>	Visual	Studio	Tools.	Right-click	Developer	Command	Prompt
for	<version>	and	select	Run	as	Administrator.
Here	is	an	example	command	to	enter	in	the	Visual	Studio	Command	Prompt
window	(as	one	line):
MakeCert	-r	-pe	-ss	PrivateCertStore	-n	CN=janaxelson.com(Test)	janaxelsonTest.cer

where

http://www.janaxelson.com

-r	specifies	that	the	certificate	is	self-signed	(not	signed	by	a	CA).
-pe	 specifies	 that	 the	 private	 key	 associated	 with	 the	 certificate	 can	 be
exported,	for	example	to	removable	media	or	another	computer.
-ss	PrivateCertStore	supplies	the	name	of	the	certificate	store	that	contains	the
test	 certificate.	 Microsoft’s	 documentation	 recommends	 using
PrivateCertStore	as	the	certificate	store	for	a	test	certificate	to	keep	it	separate
from	other	certificates	in	the	computer.
CN=janaxelson.com(Test)	identifies	the	certificate.
janaxelsonTest.cer	is	the	file	that	will	contain	the	test	certificate.
After	 executing	 the	 command,	 the	 CertMgr	 snap-in	 should	 show	 the
certificate	 janaxelson.com(Test)	 in	 the	 example)	 in	 PrivateCertStore	 >
Certificates.

Install	the	test	certificate
To	 enable	 verifying	 a	 test	 signature,	 the	 test	 certificate	must	 be	 installed	 in
both	 the	 Trusted	 Root	 Certification	 Authorities	 certificate	 store	 and	 the
Trusted	Publishers	certificate	store	in	the	PC	that	will	verify	the	test	signature.
Visual	Studio’s	CrtMgr	tool	(certmgr.exe),	typically	in	the	WDK’s	\bin\x86	or
\bin\x64	directory,	can	 install	a	certificate.	Note	 that	CrtMgr	(certmgr.exe)	 is
different	from	Certificate	Manager	(certmgr.msc).
Run	certmgr.exe	from	the	Visual	Studio	Command	Prompt.
This	 command	 adds	 the	 certificate	 janaxelsonTest.cer	 to	 the	 Trusted	 Root
Certification	Authorities	certificate	store	on	the	test	computer:
certmgr.exe	/add	janaxelsonTest.cer	/s	/r	localMachine	root

where
/add	janaxelsonTest.cer	specifies	the	certificate	to	add	to	the	store.	Be	sure	to
include	the	.cer	extension.
/s	specifies	that	the	certificate	store	is	a	system	store.
/r	 localMachine	 specifies	 that	 the	 certificate	 store	 is	 under	 the
HKEY_LOCAL_MACHINE	registry	key.
root	is	the	certificate	store	name	for	trusted	root	CAs.	Supported	store	names
are	members	of	.NET’s	StoreName	enumeration.
In	 a	 similar	 way,	 this	 command	 adds	 janaxelsonTest.cer	 to	 the	 Trusted
Publishers	certificate	store	on	the	test	computer:

http://www.janaxelson.com
http://www.janaxelson.com

certmgr.exe	/add	janaxelsonTest.cer	/s	/r	localMachine	trustedpublisher

Enable	test-signing
By	default,	Windows	disables	the	ability	to	load	test-signed	kernel-mode	code.
To	enable	loading	test-signed	code,	open	a	command	prompt	as	administrator
and	enter:
Bcdedit.exe	-set	TESTSIGNING	ON

and	reboot.
To	turn	test-signing	off,	enter:
Bcdedit.exe	-set	TESTSIGNING	OFF

To	enable	turning	test-signing	on,	you	may	need	to	disable	Secure	Boot	in	the
PC’s	UEFI	Firmware	Settings.

Reference	a	catalog	file	in	the	INF	file
Chapter	9	introduced	the	syntax	of	INF	files.	To	reference	a	catalog	file	in	an
INF	file,	add	an	entry	in	the	Version	section	of	the	INF	file:
CatalogFile=Filename.Cat

where
Filename.Cat	is	the	name	of	the	catalog	file	to	be	created.	For	example:

CatalogFile=Cdclvr.Cat

If	needed,	the	entry	can	specify	a	platform:
CatalogFile.ntamd64=Cdclvramd64.Cat

CatalogFile.ntx86=Cdclvrx86.Cat

Each	catalog	file	referenced	in	the	INF	file	must	have	a	unique	name.

Create	the	catalog	file
To	create	a	catalog	file	for	an	INF	file,	use	Visual	Studio’s	Inf2Cat	tool.	At	the
Visual	Studio	command	prompt,	enter:
Inf2Cat	/driver:DriverPath	/os:WindowsVersionList

where
/driver:DriverPath	 is	 the	 directory	 that	 contains	 the	 INF	 file.	 Inf2Cat	 will
attempt	to	create	a	catalog	file	for	every	INF	file	in	the	directory	so	if	you	want
to	 create	 a	 catalog	 file	 for	 a	 single	 INF	 file,	 be	 sure	 it’s	 the	 only	 one	 in	 the
directory.
/os:WindowsVersionList	 specifies	 the	 Windows	 versions	 that	 Inf2Cat	 will
verify	signing	requirements	for.
For	example,	this	command:
Inf2Cat	 /driver:c:\Users\jan\Documents\lvrcdc	 /os:7_X86,7_X64,8_X86,8_X64	 creates	 a	 catalog	 file

for	the	INF	file	in	c:\Users\jan\Documents\lvrcdc	and	verifies	the	signing	requirements	for	Windows
7	and	Windows	8,	32-bit	and	64-bit	versions.

Do	 include	a	 space	before	 each	parameter	 list.	 (A	parameter	 list	begins	with
“/”.)
Do	not	add	spaces	within	the	parameter	 lists.	For	example,	don’t	use	a	space
between	 /os:	 and	 the	 first	OS	 specifier	 or	 between	 the	 comma-separated	OS
specifiers.	 If	 the	 filename	 or	 path	 contains	 spaces,	 enclose	 the	 filename	 and
path	in	quotes.
To	copy	a	path,	in	Windows	Explorer,	click	to	the	right	of	the	displayed	path
in	the	address	bar.	The	path	will	change	to	a	full	path,	highlighted	for	copying.
For	example,	this:
Libraries	>	Documents	>	lvrcdc

changes	to:
c:\Users\jan\Documents\lvrcdc

To	 paste	 a	 copied	 path	 and	 filename	 in	 the	 command	 line,	 right-click	 and
select	Paste.	If	pasting	quotes,	be	sure	to	paste	straight,	not	curly,	quotes.
To	 view	 the	 supported	Windows	 version	 identifiers	 and	 other	 help	 for	 the
tool,	at	the	command	prompt,	enter	Inf2Cat	with	no	options.

Test-sign	the	catalog	file
To	 test-sign	a	 catalog	 file,	use	Visual	Studio’s	SignTool	utility.	At	 the	Visual
Studio	Command	prompt,	enter	(as	one	line):
SignTool	 sign	 /v	 /s	 TestCertStoreName	 /n	 TestCertName	 /t

http://timestamp.verisign.com/scripts/timstamp.dll	CatalogFileName.cat

where
sign	configures	SignTool	to	sign	a	catalog	file.
/v	configures	SignTool	to	display	messages.
/s	TestCertStoreName	supplies	the	name	of	a	test	certificate	store
/n	 TestCertName	 supplies	 the	 name	 of	 the	 test	 certificate	 installed	 in
TestCertStore-Name.
/t	http://timestamp.verisign.com/scripts/timstamp.dll	supplies	the	URL	to	a
publicly-available	time-stamp	server.
CatalogFileName.cat	 is	 the	 name	 of	 the	 catalog	 file	 to	 be	 signed.	 If	 the
command	 says	 the	 catalog	 file	 can’t	 be	 found,	 include	 the	 file’s	 path	 in	 the
command.

http://www.timestamp.verisign.com/scripts/timstamp.dll
http://www.timestamp.verisign.com/scripts/timstamp.dll

For	example	(as	one	line):
SignTool	 sign	 /v	 /s	 PrivateCertStore	 /n	 janaxelson.com(Test)	 /t

http://timestamp.verisign.com/scripts/timstamp.dll	c:\Users\jan\Documents\lvrcdc\lvrcdc.cat

Note	there	is	no	“e”	in	timstamp.dll.

Assign	the	driver	to	a	device
On	attaching	 a	 device	with	 a	 test-signed	driver,	Windows	 should	 assign	 the
driver	 without	 complaint.	 If	 necessary,	 on	 first	 attachment,	 point	 to	 the
location	of	the	device’s	INF	file.
Another	 option	 for	 installing	 unsigned	 drivers	 is	 to	 disable	 driver	 signature
enforcement	 in	 the	 startup	 setting	 on	 boot	 up.	 Select	 the	 Advanced	 Boot
Option	Disable	Driver	 Signature	 Enforcement.	 On	 the	 next	 reboot,	 driver
signature	enforcement	will	be	re-enabled.

Microsoft	USB	Test	Tool	(MUTT)
The	Microsoft	USB	Test	Tool	(MUTT)	software	package	and	MUTT	devices
can	help	in	testing	host	controllers,	drivers,	and	devices.

MUTT	devices
A	MUTT	device	is	a	circuit	board	that	emulates	a	USB	2.0	or	USB	3.0	device
or	 a	 hub.	 MUTT	 devices	 are	 designed	 by	 Microsoft	 and	 available	 from
hardware	vendors	listed	on	the	Microsoft	Hardware	Dev	Center	website.
The	MUTT	 Pack	 is	 a	MUTT	 device	 that	 contains	 a	 USB	 2.0	 hub	with	 two
downstream	 ports.	 One	 port	 connects	 on-board	 to	 a	 Cypress	 FX2	 device
controller	 that	 can	 control	 hub	 operations.	 The	 second,	 exposed	 port	 is
available	 for	 attaching	 a	 device	 under	 test.	 The	 SuperMUTT	Pack	 is	 similar
but	contains	a	USB	3.0	hub.
For	 testing	host-controller	hardware	 and	hubs,	 the	MUTT	and	SuperMUTT
devices	 contain	 an	 FX2	 or	 FX3	 device	 that	 simulates	 USB	 2.0	 or	 USB	 3.0
traffic.	These	devices	have	no	hub	or	downstream	port.

MUTT	Software	Package
The	 MUTT	 Software	 Package	 contains	 a	 variety	 of	 tools	 for	 testing.	 The
software	is	a	free	download	from	the	Hardware	Dev	Center.
MUTTUtil	 tests	host	controllers,	hubs,	and	other	devices	with	 the	Microsoft
USB	 driver	 stack.	 Tests	 for	 devices	 include	 turning	 VBUS	 on	 and	 off	 and

http://www.janaxelson.com
http://www.timestamp.verisign.com/scripts/timstamp.dll

setting	and	clearing	an	overcurrent	condition.	You	can	run	USB-IF	and	HCK
tests	with	a	device	connected	to	a	MUTT	Pack	or	SuperMUTT	Pack.
The	USB3HWVerifierAnalyzer	command-line	tool	logs	hardware	events.	The
software	 flags	 errors	 including	 bad	 responses	 to	 standard	 requests	 and	 bad
data	 returned	 in	 response	 to	 standard	 requests.	The	device	being	monitored
must	 connect	under	 a	USB	3.0	host.	You	 can	 log	 events	 for	 all	 hardware	or
specify	a	Vendor	ID	and/or	Product	ID.	You	can	view	the	logged	events	in	real
time	 or	 after	 logging	 is	 completed,	 you	 can	 view	 the	 .etl	 log	 in	 Netmon	 or
convert	the	log	to	a	text	file	for	viewing.
USBStress	performs	a	variety	of	tests	in	random	order	on	a	MUTT	device.
USBTCD	 initiates	 control,	 bulk,	 and	 isochronous	 data	 transfers	 for
performance	measurements.
Chapter	17	introduced	these	additional	MUTT	utilities:
USBLPM	monitors	USB	 3.0	 link	 states	 and	 can	 test	 transitions	 between	 the
U0,	U1,	and	U2	states.
PwrTest	 can	 list	 available	 power	 states	 and	 initiate	 transitions	 to	 different
states.

19

Packets	on	the	Bus
Understanding	how	data	is	encoded	on	the	bus	can	help	in	understanding	the
capabilities	 and	 limits	 of	 devices.	 This	 chapter	 presents	 the	 essentials	 of	 the
USB’s	encoding	and	data	formats	for	USB	2.0	and	USB	3.1.

USB	2.0
The	USB	2.0	specification	defines	bus	states	that	correspond	to	signal	voltages
on	 the	 bus	 or	 conditions	 that	 the	 voltages	 signify.	 Different	 cable	 segments
may	be	in	different	bus	states.	For	example,	in	response	to	a	request	from	the
host,	a	hub	might	place	one	of	its	downstream	ports	in	the	Reset	state	while	its
other	 ports	 are	 in	 the	 Idle	 state.	 Low/full	 speed	 and	 high	 speed	 each	 have
different	defined	bus	states.

Low	speed	and	full	speed	bus	states
Low	and	full	speed	use	the	same	bus	states	though	some	are	defined	differently
depending	 on	 the	 speed	 of	 the	 cable	 segment.	 A	 low-speed	 segment	 is	 a
segment	between	a	low-speed	device	and	its	nearest	hub.	A	full-speed	segment
is	any	other	segment	that	carries	data	at	low-	or	full-speed	bit	rates.

Differential	0	and	Differential	1
When	 transferring	 data,	 the	 two	 states	 on	 the	 bus	 are	 Differential	 0	 and
Differential	1.	A	Differential	0	exists	when	D+	is	a	logic	low	and	D-	is	a	logic
high.	A	Differential	 1	 exists	when	D+	 is	 a	 logic	 high	 and	D-	 is	 a	 logic	 low.
Chapter	19	describes	the	voltage	levels.
The	Differential	0s	and	1s	don’t	translate	directly	into	zero	and	one	data	states
but	instead	indicate	either	a	change	in	logic	level,	no	change	in	logic	level,	or	a
bit	stuff,	as	explained	later	in	this	chapter.

Single-ended	0

The	Single-ended	0	(SE0)	state	occurs	when	both	D+	and	D-	are	logic	low.	The
bus	uses	the	SE0	state	when	entering	the	EOP,	Disconnect,	and	Reset	states.

Single-ended	1
The	complement	of	SE0	 is	 the	Single-ended	1	 (SE1).	This	 state	occurs	when
both	D+	and	D-	are	 logic	high.	SE1	 is	an	 invalid	bus	state	and	should	never
occur.

Data	J	and	Data	K
In	addition	to	the	Differential	0	and	Differential	1	states,	which	are	defined	by
voltages,	USB	also	defines	two	Data	bus	states,	J	and	K.	These	are	defined	by
whether	 the	bus	 state	 is	Differential	 0	or	Differential	 1	 and	 the	 speed	of	 the
cable	segment:

Bus	State Data	State
Low	Speed Full	Speed

Differential	0 Data	J Data	K

Differential	1 Data	K Data	J

Defining	 the	 J	 and	 K	 states	 in	 this	 way	 makes	 it	 possible	 to	 use	 one
terminology	 to	 describe	 an	 event	 or	 logic	 state	 even	 though	 the	 voltages	 on
low-	 and	 full-speed	 lines	 differ.	 For	 example,	 a	 Start-of-Packet	 state	 exists
when	the	bus	changes	 from	Idle	 to	 the	K	state.	On	a	 full-speed	segment,	 the
state	occurs	when	D-	becomes	more	positive	 than	D+,	while	on	a	 low-speed
segment,	the	state	occurs	when	D+	becomes	more	positive	than	D-.

Idle
In	 the	 Idle	 state,	no	drivers	 are	 active.	On	a	 full-speed	 segment,	D+	 is	more
positive	than	D-,	while	on	a	low-speed	segment,	D-	is	more	positive	than	D+.
Shortly	after	device	attachment,	a	hub	determines	whether	a	device	is	 low	or
full	speed	by	checking	the	voltages	on	the	Idle	bus	at	the	device’s	port.

Resume
When	 a	 device	 is	 in	 the	 Suspend	 state,	 a	 Data	 K	 state	 at	 the	 device’s	 port
signifies	a	resume	from	Suspend.

Start-of-Packet

The	Start-of-Packet	(SOP)	bus	state	exists	when	the	lines	change	from	the	Idle
state	 to	 the	K	data	 state.	 Every	 transmitted	 low-	 or	 full-speed	 packet	 begins
with	an	SOP.

End-of-Packet
The	End-of-Packet	(EOP)	state	exists	when	a	receiver	has	been	in	the	SE0	state
for	at	least	one	bit	time	followed	by	a	Data	J	state	for	at	least	one	bit	time.	A
receiver	may	optionally	 accept	 a	 shorter	minimum	time	 for	 the	Data	 J	 state.
Every	transmitted	low-or	full-speed	packet	ends	with	an	EOP.

Disconnect
A	downstream	port	is	in	the	Disconnect	state	when	an	SE0	has	persisted	for	at
least	2.5	μs.

Connect
A	downstream	port	enters	the	Connect	state	when	the	bus	has	been	in	the	Idle
state	for	at	least	2.5	μs	and	no	more	than	2.0	ms.

Reset
When	an	SE0	has	 lasted	 for	 10	ms,	 the	device	must	be	 in	 the	Reset	 state.	A
device	may	 enter	 the	Reset	 state	 after	 an	 SE0	of	 at	 least	 2.5	 μs.	A	 full-speed
device	that	is	capable	of	high-speed	communications	performs	the	high-speed
handshake	during	the	Reset	state.
On	exiting	the	Reset	state,	a	device	must	be	operating	at	its	correct	speed	and
must	respond	to	communications	directed	to	the	default	address	(0x00).

High	speed	bus	states
Many	of	the	high-speed	bus	states	correspond	to	states	for	low	and	full	speed,
but	 a	 few	 are	 unique	 to	 high	 speed,	 and	 some	 low/full-speed	 states	 have	no
equivalents	at	high	speed.

High-speed	Differential	0	and	Differential	1
The	 two	 bus	 states	 that	 exist	 when	 transferring	 high-speed	 data	 are	 High-
speed	 Differential	 0	 and	 High-speed	 Differential	 1.	 As	 with	 low	 and	 full
speeds,	a	High-speed	Differential	0	exists	when	D+	is	a	logic	low	and	D-	is	a
logic	high,	and	a	High-speed	Differential	1	exists	when	D+	is	a	logic	high	and
D-	is	a	logic	low.	The	voltage	requirements	differ	at	high	speed,	however,	and

high	speed	has	additional	requirements	for	AC	differential	levels.

High-speed	Data	J	and	Data	K
The	 definitions	 for	High-speed	Data	 J	 and	Data	 K	 states	 correspond	 to	 the
definitions	for	full-speed	J	and	K.

Bus	State Data	State	(high	speed)

Differential	0 High-speed	Data	K

Differential	1 High-speed	Data	J

Chirp	J	and	Chirp	K
The	Chirp	 J	 and	Chirp	K	 bus	 states	 are	 present	 only	 during	 the	 high-speed
detection	handshake.	The	handshake	occurs	when	a	USB	2.0	hub	has	placed	a
downstream	bus	segment	in	the	Reset	state.	In	a	Chirp	J,	D+	is	more	positive
than	D-,	and	in	a	Chirp	K,	D-	is	more	positive	than	D+.
A	high-speed	 device	must	 use	 full	 speed	 on	 attaching	 to	 the	 bus.	 The	 high-
speed	detection	handshake	enables	a	high-speed	device	to	tell	a	USB	2.0	hub
that	 the	 device	 supports	 high	 speed	 and	 to	 transition	 to	 high-speed
communications.
As	Chapter	4	 explained,	 shortly	 after	detecting	device	 attachment,	 a	device’s
hub	places	a	device’s	port	and	bus	segment	 in	 the	Reset	 state.	When	a	high-
speed-capable	device	detects	the	Reset,	the	device	places	its	line	in	the	Chirp	K
state	for	1–7	ms.	A	hub	that	communicates	upstream	at	high	speed	detects	the
Chirp	K	and	in	response,	sends	an	alternating	sequence	of	Chirp	K	and	Chirp
J.	 The	 sequence	 continues	 until	 shortly	 before	 the	 Reset	 state	 ends.	 On
detecting	 the	Chirp	K	 and	Chirp	 J	 sequence,	 the	 device	 disconnects	 its	 full-
speed	 pull-up,	 enables	 its	 high-speed	 terminations,	 and	 enters	 the	 Default
state.	A	hub	that	communicates	upstream	at	low/full	speed	ignores	the	device’s
Chirp	 K.	 The	 device	 doesn’t	 see	 the	 answering	 sequence	 and	 knows	 that
communications	must	take	place	at	full	speed.

High-speed	Squelch
The	High-speed	Squelch	state	indicates	an	invalid	signal.	High-speed	receivers
must	 include	circuits	 that	detect	 the	Squelch	state,	 indicated	by	a	differential
bus	voltage	of	100	mV	or	less.

High-speed	Idle

In	the	High-speed	Idle	state,	no	high-speed	drivers	are	active	and	the	low/full-
speed	drivers	assert	SE0.	Both	D+	and	D-	are	between	-10	mV	and	+10	mV.

Figure	19-1.	In	NRZI	encoding,	a	zero	causes	a	change	and	a	1	causes	no	change.
Bit	stuffing	adds	a	zero	after	six	consecutive	1s.

Start	of	High-speed	Packet
A	Start-of-High-speed	Packet	 (HSSOP)	exists	when	a	 segment	changes	 from
the	High-speed	 Idle	 state	 to	 the	High-speed	Data	K	 state.	 Every	 high-speed
packet	begins	with	a	Start	of	High-speed	Packet.

End	of	High-speed	Packet
An	End	of	High-speed	Packet	(HSEOP)	exists	when	the	bus	changes	from	the
High-speed	Data	K	or	Data	 J	 state	 to	 the	High-speed	 Idle	 state.	Every	high-
speed	packet	ends	with	an	End	of	High-speed	Packet.

High-speed	Disconnect
Removing	a	high-speed	device	from	the	bus	also	removes	the	high-speed	line
terminations	at	the	device.	Removing	the	terminations	causes	the	differential
voltage	at	the	hub’s	port	to	double.	A	differential	voltage	of	at	least	625	mV	on
the	data	lines	indicates	the	High-speed	Disconnect	state.	USB	2.0	hubs	contain
circuits	that	detect	this	voltage.

Data	encoding
All	data	on	a	USB	2.0	bus	is	encoded	using	a	format	called	non-return	to	zero
inverted	 (NRZI)	 with	 bit	 stuffing.	 The	 encoding	 ensures	 that	 the	 receiver
remains	synchronized	with	the	transmitter	without	the	overhead	of	sending	a
separate	clock	signal	or	Start	and	Stop	bits	with	each	byte.
If	you	use	an	oscilloscope	or	logic	analyzer	to	view	USB	data	on	the	bus,	you’ll
find	that	reading	the	bits	isn’t	as	easy	as	matching	voltage	levels	to	logic	levels.

Instead	of	 defining	 logic	 zeros	 and	ones	 as	 voltages,	NRZI	 encoding	defines
logic	 zero	 as	 a	 voltage	 change,	 and	 logic	 one	 as	 a	 voltage	 that	 remains	 the
same.	Figure	19-1	shows	an	example.	Each	logic	zero	results	in	a	change	from
the	previous	state.	Each	logic	one	results	in	no	change	in	the	voltages.	The	bits
transmit	least-significant-bit	first.
Fortunately,	 USB	 hardware	 performs	 the	 encoding	 and	 decoding
automatically	 so	device	developers	and	programmers	don’t	have	 to	do	 it.	As
Chapter	18	showed,	a	protocol	analyzer	decodes	the	data	for	you.

Staying	synchronized
Unlike	other	interfaces,	USB	requires	no	Start	and	Stop	bits	or	clock	line	in	the
cable.	 Instead,	 USB	 2.0	 synchronizes	 the	 sender	 and	 receiver	 by	 using	 bit
stuffing	and	SYNC	fields.	These	extra	bits	add	some	overhead,	but	the	amount
is	minimal,	especially	with	large	packets.

Bit	stuffing
The	 encoding	 uses	 bit	 stuffing	 because	 the	 receiver	 synchronizes	 on
transitions.	Data	 that	 is	 all	 zeros	 has	 plenty	 of	 transitions.	 But	 for	 data	 that
contains	a	long	string	of	1s,	the	lack	of	transitions	could	cause	the	receiver	to
get	out	of	sync.
After	six	consecutive	1s,	the	transmitter	stuffs,	or	inserts,	a	zero	(represented
by	a	transition).	The	bit	stuffing	ensures	at	least	one	transition	for	every	seven
bit	 widths.	 The	 receiver	 detects	 and	 discards	 any	 bit	 that	 follows	 six
consecutive	1s.	The	overhead	 for	bit-stuffing	 in	random	data	 is	 just	0.8%,	or
one	stuff	bit	per	125	data	bits.

SYNC	field
Because	devices	and	 the	host	don’t	 share	a	clock,	 the	 receiver	has	no	way	of
knowing	 exactly	 when	 a	 transmitter	 will	 send	 a	 transition	 that	 marks	 the
beginning	 of	 a	 new	 packet.	 Thus,	 each	 packet	 begins	 with	 a	 SYNC	 field	 to
enable	 the	 receiving	 device	 to	 align,	 or	 synchronize,	 its	 clock	 to	 the
transmitted	 data.	 For	 low	 and	 full	 speeds,	 the	 SYNC	 pattern	 is	 eight	 bits:
KJKJKJKK.	The	transition	from	Idle	to	the	first	K	serves	as	a	sort	of	Start	bit
that	indicates	the	arrival	of	a	new	packet.
For	high	speed,	the	SYNC	pattern	is	32	bits:	fifteen	KJ	repetitions,	followed	by
KK.	A	high-speed	hub	 repeating	a	packet	 can	drop	up	 to	 four	bits	 from	 the

beginning	of	the	sync	field,	so	a	SYNC	field	repeated	by	the	fifth	external	hub
in	series	can	be	as	short	as	12	bits.
The	alternating	Ks	and	Js	provide	transitions	for	synchronizing,	and	the	final
two	 Ks	 mark	 the	 end	 of	 the	 field.	 After	 receiving	 the	 SYNC	 pattern,	 the
receiving	device	can	accurately	clock	in	the	remaining	bits	in	the	packet.	The
price	for	synchronizing	 is	adding	between	8	and	32	bit	 times	to	each	packet.
Large	packets	are	thus	more	efficient	than	smaller	ones.

End	of	packet
An	EOP	 returns	 the	 bus	 to	 the	 Idle	 state	 in	 preparation	 for	 the	 next	 SYNC
field.	The	EOP	signal	is	different	for	low/full	and	high	speed.
The	low-	or	full-speed	EOP	is	an	SE0	that	lasts	for	two	bit	widths.
At	high	speed,	the	signal	is	more	complicated.	High-speed	receivers	treat	any
bit-stuff	error	as	an	end	of	packet,	so	an	HSEOP	must	cause	a	bit-stuff	error.
For	 all	 high-speed	 packets	 except	 SOFs,	 the	 HSEOP	 is	 an	 encoded	 byte	 of
01111111b	 without	 bit	 stuffing.	 If	 the	 preceding	 bit	 was	 a	 J,	 the	 HSEOP	 is
KKKKKKKK.	The	initial	zero	causes	the	first	bit	to	be	a	change	of	state	from	J
to	K,	and	the	 following	1s	mean	that	 the	rest	of	 the	bits	don’t	change.	 If	 the
preceding	bit	was	a	K,	the	HSEOP	is	JJJJJJJJ.	The	initial	zero	causes	the	first	bit
to	be	a	change	of	state	from	K	to	J,	and	the	following	1s	mean	that	the	rest	of
the	bits	don’t	change.	In	either	case,	the	sequence	of	seven	1s	causes	a	bit	stuff
error.
In	 high-speed	 SOFs,	 the	HSEOP	 is	 40	 bits.	 This	 larger	 packet	 allows	 a	 hub
time	to	detect	the	doubled	differential	voltage	that	indicates	that	a	device	has
been	removed	from	the	bus.	The	encoded	byte	begins	with	a	zero,	followed	by
39	ones,	which	results	in	an	HSEOP	consisting	of	40	Js	or	40	Ks.	As	with	low
and	full	speeds,	this	sequence	results	in	a	bit-stuff	error	that	the	receiver	treats
as	an	EOP.

Timing	accuracy
One	 tradeoff	 of	 increased	 speed	 is	 stricter	 timing	 requirements.	High	 speed
has	 the	 strictest	 timing,	while	 low	 speed	 is	 the	most	 tolerant.	 These	 are	 the
tolerances	for	the	clock	at	each	speed:

Speed Tolerance	(percent)

Low 1.5

Full 0.25

High 0.05

Devices	typically	derive	their	timing	from	a	crystal.	Many	factors	can	affect	a
crystal’s	frequency,	including	initial	accuracy,	capacitive	loading,	aging	of	the
crystal,	 supply	 voltage,	 and	 temperature.	 Because	 of	 its	wider	 tolerance,	 low
speed	can	use	inexpensive	ceramic	resonators	instead	of	quartz	crystals
The	 signaling	 rate	 at	 a	 host	 or	 USB	 2.0	 hub	 must	 be	 within	 0.05%,	 of	 the
specified	rate	at	all	speeds.	The	frame	intervals	must	be	accurate	as	well,	at	1
ms	±500	ns	per	frame	or	125.0	±62.5	μs	per	microframe.	Each	hub	has	its	own
timing	source	and	synchronizes	its	transmissions	to	the	host’s	SOF	signals	in
each	frame	or	microframe.
The	 USB	 specification	 also	 defines	 limits	 for	 data	 jitter,	 which	 is	 small
variations	 in	 the	 timing	 of	 the	 individual	 bit	 transitions.	 Factors	 that	 affect
data	 jitter	are	differences	 in	the	rise	and	fall	 times	of	 the	drivers,	clock	 jitter,
and	random	noise.

Packet	format
As	Chapter	 2	 explained,	 all	 USB	 2.0	 data	 travels	 in	 packets,	 which	 contain
information	in	defined	fields.	Table	19-1	shows	the	fields	that	USB	2.0	packets
contain.

SYNC
Each	packet	begins	with	an	8-bit	SYNC	field,	defined	earlier.	The	SYNC	Field
serves	as	the	Start-of-Packet	delimiter.

Packet	identifier
The	packet	identifier	field	(PID)	is	8	bits.	Bits	3..0	identify	the	packet	type	and
bits	7..4	are	the	complement	of	these	bits	for	use	in	error	checking.
Chapter	2	 introduced	 the	 PID	 codes	 for	 token,	 data,	 handshake	 and	 special
packets.	 The	 lower	 two	 bits	 identify	 the	 PID	 type,	 and	 the	 upper	 two	 bits
identify	the	specific	PID.

Address
The	 address	 field	 is	 seven	 bits	 that	 identify	 the	 device	 the	 host	 is
communicating	with.

Endpoint
The	 endpoint	 field	 is	 four	 bits	 that	 identify	 an	 endpoint	 number	 within	 a
device.

Frame	number
The	frame-number	field	is	eleven	bits	that	identify	the	frame.	The	host	sends
this	data	in	the	SOF	packet	that	begins	each	frame	or	microframe.	Following
0x7FF,	 the	number	 rolls	 over	 to	 zero.	A	 full-speed	host	maintains	 an	 11-bit
counter	that	increments	once	per	frame.	A	high-speed	host	maintains	a	14-bit
counter	 that	 increments	 once	 per	 microframe.	 Only	 bits	 3–13	 of	 the
microframe	counter	transmit	in	the	frame	number	field,	so	the	frame	number
increments	 once	 per	 frame,	 with	 eight	microframes	 in	 sequence	 having	 the
same	frame	number.

Data
The	Data	 field	may	 range	 from	0–1024	 bytes	 for	USB	 2.0	 and	 from	0–1023
bytes	for	USB	1.1.	The	transfer	type	may	limit	the	maximum	size.

Table	19-1:	USB	2.0	packets	contain	fields	with	defined	contents.
Field	Name SIze	(bits) Packet	Types Purpose

SYNC 8 all Start	of	packet	and
synchronization

PID 8 all Identify	the	packet	type

Address 7 IN,	OUT,	Setup Identify	the	function
address

Endpoint 4 IN,	OUT,	Setup Identify	the	endpoint

Frame	Number 11 SOF Identify	the	frame

Data USB	2.0:	0	to	8192	(1024
bytes)	USB	1.1:	0	to	8184
(1023	bytes)

Data0,	Data1 Data

Token	CRC 5 IN,	OUT,	Setup Detect	errors

Data	CRC 16 Data0,	Data1 Detect	errors

CRC
The	CRC	 field	 is	 5	 bits	 for	 address	 and	 endpoint	 fields	 and	 16	 bits	 for	 data
fields.	 The	 transmitting	 hardware	 normally	 inserts	 the	 CRC	 bits	 and	 the
receiving	hardware	does	the	required	error	checking.

Inter-packet	delay
USB	2.0	carries	data	from	multiple	sources,	in	both	directions,	on	one	pair	of
wires.	 Data	 can	 travel	 in	 just	 one	 direction	 at	 a	 time.	 To	 ensure	 that	 the
previous	 transmitting	 device	 has	 had	 time	 to	 switch	 off	 its	 driver,	 the	 bus
requires	a	brief	delay	between	the	end	of	one	packet	and	the	beginning	of	the
next	 packet	 in	 a	 transaction.	This	 delay	 is	 short,	 however,	 and	devices	must
switch	directions	quickly.
The	 USB	 specification	 defines	 the	 delays	 differently	 for	 low/full	 and	 high
speed.	The	delays	are	handled	by	hardware	and	require	no	support	in	code.

Test	modes
For	use	in	compliance	testing,	the	USB	2.0	specification	added	five	test	modes
that	all	host	controllers,	hubs,	and	high-speed-capable	devices	must	support.
An	 upstream-facing	 port	 enters	 a	 test	 mode	 in	 response	 to	 a	 Set	 Feature
request	 with	 TEST_MODE	 in	 the	 wValue	 field.	 A	 downstream-facing	 port
enters	a	test	mode	in	response	to	the	hub-class	request	Set	Port	Feature	with
PORT_TEST	in	the	wValue	field.	In	both	cases,	the	wIndex	field	contains	the
port	number	and	the	test	number.	All	downstream	ports	on	a	hub	with	a	port
to	be	tested	must	be	in	the	suspended,	disabled,	or	disconnected	state.
An	 upstream-facing	 port	 exits	 the	 test	mode	when	 the	 device	 powers	 down
and	back	up.	A	downstream-facing	port	exits	 the	 test	mode	when	the	hub	 is
reset.
The	test	modes	enable	testing	characteristics	such	as	output	drive	level	on	D+
and	D-,	 output	 impedance,	 low-level	 output	 voltage,	 loading	 characteristics,
device	 squelch-level	 circuits,	 rise	 and	 fall	 times,	 eye	 pattern,	 jitter,	 and	 the
disconnect-detection	threshold.

USB	3.1
The	 signaling	 rates,	 dual-simplex	 interface,	 and	 new	 power-management
capabilities	 of	 Enhanced	 SuperSpeed	 require	 different	 encoding,	 packet
formats,	and	low-level	protocols.	The	transmitter	scrambles	and	encodes	data
to	be	sent	on	the	bus,	and	the	receiver	decodes	and	de-scrambles	the	received
data.

Data	scrambling
Data	 scrambling	 eliminates	 repetitive	 patterns	 in	 the	 data,	 spreading	 the
radiated	 EMI	 over	 a	 wider	 frequency	 spectrum	 and	 helping	 meeting	 FCC
requirements.	 To	 scramble	 data	 to	 be	 transmitted,	 a	 free-running	 linear
feedback	 shift	 register	 implements	 a	 polynomial	 defined	 in	 the	 USB	 3.1
specification.	The	 transmitter	XORs	 the	output	of	 the	 shift	 register	with	 the
data	 bits.	 Descrambling	 uses	 a	 complementary	 mechanism	 to	 recover	 the
unscrambled	data.
SuperSpeed	scrambles	all	transmitted	data.	SuperSpeedPlus	scrambles	symbols
in	data	blocks	and	may	scramble	symbols	in	control	blocks	depending	on	the
symbol	type.	Scrambling	can	be	disabled	for	debugging.

Encoding
SuperSpeed	uses	8b/10b	data	encoding	as	specified	in	ANSI	INCITS	230-1994.
Other	interfaces	that	use	this	encoding	include	PCI	Express,	Gigabit	Ethernet
and	 IEEE-1394b.	 The	 encoding	 converts	 each	 byte	 value	 to	 a	 10-bit	 Data
Symbol	 for	 transmitting.	 The	 encoded	 data	 has	 no	 more	 than	 five	 ones	 or
zeros	in	series	and	contains	equal	numbers	of	ones	and	zeros	over	time.
As	with	USB	2.0	data,	frequent	transitions	enable	the	receiver	to	synchronize
with	the	transmitted	data	without	requiring	a	separate	clock	line.	The	roughly
equal	 numbers	 of	 transmitted	 ones	 and	 zeros	 provide	 DC	 balance,	 which
prevents	errors	due	to	a	DC	component,	or	offset,	in	the	signal.	The	encoding
also	enables	error	detecting	by	monitoring	 the	number	of	 received	ones	and
zeros	over	time.
Because	 the	 encoded	 data	 has	more	 bits	 than	 the	 data	 being	 encoded,	 extra
symbols	 are	 available	 to	 perform	 special	 functions.	 Data	 Symbols	 represent
values	 from	 0x00	 to	 0xFF	 and	 Special	 Symbols	 perform	 functions	 used	 in
framing	data	and	managing	link-level	communications.
The	 SuperSpeed	 signaling	 rate,	 or	 speed	 of	 the	 bits	 on	 the	 wires	 in	 each
direction,	 is	 5	 Gbps.	 The	USB	 3.1	 specification	 refers	 to	 the	 rate	 as	 5	 GT/s
(GigaTransfers	 /	 s).	The	8b/10b	encoding	 increases	 the	number	of	bits	 to	be
transmitted	by	25%,	so	5	Gbps	on	the	bus	translates	to	4	Gbps,	or	500	MB/s,	of
unencoded	 data.	 Framing,	 error	 detecting,	 and	 other	 protocols	 reduce	 the
theoretical	maximum	data	throughput	to	around	460	MB/s	in	each	direction.
SuperSpeedPlus	has	less	overhead	due	to	its	use	of	128b/132b	encoding,	where

a	132-byte	payload	contains	128	bytes	of	data.	The	transmitter	prepends	a	4-
bit	Block	Header	to	a	128-bit	payload	made	up	of	sixteen	8-bit	symbols.	The
header	indicates	whether	the	payload	contains	a	data	block	or	a	control	block.
The	SuperSpeedPlus	signaling	rate	is	10	Gbps.	The	USB	3.1	specification	refers
to	the	rate	as	10	GT/s	(GigaTransfers	/	s).	The	128b/132b	encoding	increases
the	number	of	 bits	 to	be	 transmitted	by	 about	 3.1%,	 so	 10	Gbps	on	 the	bus
translates	 to	 9.69	 Gbps,	 or	 1.21	 GB/s,	 of	 unencoded	 data.	 Other	 overhead
reduces	the	theoretical	maximum	data	throughput	to	around	1.1	GB/s	in	each
direction.

Link	layer
An	Enhanced	SuperSpeed	link	is	the	physical	and	logical	connection	between
two	ports.	The	physical	 connection	 consists	 of	 a	 cable	 segment	 and	 the	 two
ports,	or	link	partners,	that	the	cable	connects.	The	link	partners	manage	the
link	 by	 communicating	 using	 link	 commands	 and	 other	 signaling	when	 the
wires	aren’t	carrying	other	traffic.
Each	port	provides	state	machines	and	buffers	to	manage	the	connection	and
data	transfers	with	the	link	partner.	State	machines	generate	link	commands	to
acknowledge	 received	 header	 packets,	 recover	 from	 errors,	 implement	 flow
control,	and	manage	power	on	the	link.	An	upstream-facing	port	must	detect
when	 its	 link	 has	 been	 idle	 for	 10	 μs	 and	 send	 a	 special	 link	 command	 to
indicate	that	the	port	is	present.
Link	 commands	 transmit	 when	 the	 link	 isn’t	 carrying	 TPs.	 Downstream-
facing	 ports	 detect	 device	 connection	 and	 removal	 and	 wakeup	 signaling.
Link-layer	protocols	define	how	the	link	manages	buffers,	frames	packets,	and
detects	 received	 packets.	 The	 link	 layer	 also	 handles	 training	 and
synchronizing	 to	 establish	 connectivity	 between	 a	 device	 (which	 may	 be	 a
hub)	and	 its	upstream	link	partner.	To	synchronize,	a	 link	partner	 transmits
defined	 series	 of	 bytes	 called	Ordered	 Sets,	which	 the	 receiving	 link	 partner
detects.	SuperSpeed	and	SuperSpeedPlus	use	different	Ordered	Sets	and	have
other	differences	in	synchronizing	protocols.

Reset
Enhanced	SuperSpeed	uses	two	categories	of	reset.	A	PowerOn	Reset	restores
memory,	 registers,	 and	other	 storage	 in	 the	device	 to	 their	default	power-on
states.	An	InBand	Reset	resets	port	settings	and	places	the	link	in	the	U0	state

while	remaining	powered.	Two	types	of	InBand	Reset	are	the	Warm	Reset	and
Hot	 Reset.	 A	 Warm	 Reset	 uses	 low-frequency	 periodic	 signaling	 (defined
below)	 and	 takes	 around	 100	 ms.	 A	 Hot	 Reset	 uses	 link-level	 training
sequences	of	Ordered	Sets,	is	much	faster,	and	leaves	more	settings	unchanged
in	the	device.
The	 host	 requests	 an	 in	 InBand	 reset	 by	 issuing	 a	 hub-class	 Set	 Port
Feature(Port_Reset)	 or	 SetPortFeature(BH_Port_Reset)	 request	 to	 the	 hub
that	 is	 the	 target	 device’s	 link	 partner.	 On	 receiving	 a	 request	 for	 a
BH_Port_Reset,	 the	 hub	 issues	 a	Warm	Reset	 to	 the	 device.	On	 receiving	 a
request	for	a	Port_Reset,	if	the	link	is	in	U3,	the	hub	uses	a	Warm	Reset,	and	if
the	 link	 is	 in	 U0,	 the	 hub	 uses	 a	 Hot	 Reset.	 For	 other	 states,	 the	 USB	 3.1
specification	defines	how	a	hub	decides	which	reset	to	use.

Signaling
USB	 3.1	 links	 use	 low-frequency	 periodic	 signaling	 (LFPS)	 to	 implement
functions	such	as	exiting	low-power	states,	performing	Warm	Resets,	and	link
training.	 The	 signaling	 consists	 of	 bursts	 of	 a	 frequency	 in	 the	 range	 10–50
MHz.	 This	 type	 of	 signaling	 is	 easy	 to	 generate	 and	 uses	 little	 power.	 Each
defined	LFPS	signal	has	a	specified	burst	length	and,	for	some	signals,	a	repeat
rate.	For	example,	 the	Polling.LFPS	signal	 is	a	1.0-μs	burst	that	repeats	every
6–14	μs.
Link	partners	operating	at	SuperSpeedPlus	use	a	signaling	method	called	LFPS
Based	PWM	Signaling	(LBPS)	to	find	their	highest	shared	capabilities.

Negotiating	speed
The	 Polling	 state	 handles	 negotiating	 port	 capability	 and	 link	 training.	 On
entering	 the	Polling.LFPS	 substate,	Enhanced	SuperSpeed	ports	 transmit	 the
Polling.LFPS	 signal.	 A	 SuperSpeedPlus-capable	 port	 uses	 this	 signal	 to
negotiate	the	highest	data	rate	supported	by	both	link	partners.
To	 announce	 SuperSpeedPlus	 capability,	 a	 port	 transmits	 a	 SuperSpeedPlus
Capability	Declaration	 that	 consists	of	 a	Polling.LFPS	 signal	using	 the	SCD1
pattern.	 In	 this	 pattern,	 the	 port	 transmits	 the	 code	 0010b	 with	 the	 binary
values	encoded	as	different	repeat	rates.
A	 SuperSpeedPlus	 link	 partner	 continually	 transmits	 the	 SCD1	 pattern.	 If	 a
link	partner	doesn’t	 receive	an	SCD1	pattern	 in	16	consecutive	Polling.LFPS
signals,	the	port	switches	to	SuperSpeed	operation	and	stops	transmitting	the

SCD1	pattern	in	the	Polling.LFPS	signal.
On	 receiving	 two	 SCD1	 patterns,	 a	 SuperSpeedPlus	 link	 partner	 enters	 the
Polling.	 LFPSPlus	 substate	 and	 begins	 transmitting	 a	 second	 pattern	 called
SCD2.	 On	 receiving	 two	 SCD2	 patterns,	 the	 port	 transitions	 to	 the
Polling.PortMatch	substate	where	the	link	partners	use	LBPM	to	discover	the
highest	capabilities	shared	by	the	SuperSpeedPlus	link	partners.

For	a	more	in-depth	discussion	of	low-level	USB	3.0	protocols	than	presented
here,	 see	 the	 book	 USB	 3.0	 Technology	 by	 Donovan	 Anderson	 and	 Jay
Trodden.

20

Electrical	and	Mechanical	Interface
All	of	 the	protocols	and	program	code	 in	 the	world	are	no	use	 if	 the	 signals
don’t	make	 it	 down	 the	wires	 in	 good	 shape.	 The	 electrical	 and	mechanical
interface	 play	 an	 important	 part	 in	 making	 USB	 a	 reliable	 way	 to	 transfer
information.
This	chapter	presents	the	essentials	about	drivers	and	receivers	and	options	for
cables	and	connectors	 for	USB	2.0	and	USB	3.1	plus	a	discussion	of	ways	 to
connect	other	than	with	conventional	cables,	including	wireless	options.

USB	2.0
A	USB	2.0	cable	connects	to	transceivers	that	send	and	receive	data	on	the	bus.
The	device	can	use	any	of	a	number	of	different	connectors.

Transceivers
The	electrical	signals	on	a	USB	2.0	cable	vary	depending	on	the	speed	of	 the
cable	segment.	Low-,	full-,	and	high-speed	signaling	each	use	a	different	edge
rate,	which	is	a	measure	of	the	rise	and	fall	times	of	the	voltages	on	the	lines
and	thus	the	amount	of	time	required	for	an	output	to	switch.	The	transceivers
and	 supporting	 circuits	 that	 produce	 and	 detect	 the	 bus	 signals	 also	 vary
depending	on	speed.
At	any	USB	2.0	speed,	a	transceiver	must	withstand	the	shorting	of	D+,	D-,	or
both	 to	 GND,	 the	 other	 data	 line,	 or	 the	 cable	 shield	 at	 the	 connector.	 A
requirement	 to	 withstand	 shorting	 to	 VBUS	 was	 reduced	 to	 a
recommendation	 with	 the	 5V	 Short	 Circuit	Withstand	 Requirement	 Change
ECN	to	 the	USB	2.0	specification.	Research	showed	that	shorts	 to	VBUS	are
extremely	unlikely	 and	 that	 removing	 the	 requirement	would	 allow	 reduced
silicon	area	and	power	savings	on	chips.

Cable	segments

A	cable	segment	connects	a	device	(which	may	be	a	hub)	to	an	upstream	hub
(which	may	 be	 a	 root	 hub	 at	 the	 host).	 A	 segment’s	 speed	 depends	 on	 the
speed	 of	 the	 final	 downstream	device	 and	 the	 speeds	 supported	 by	 the	 host
and	any	upstream	hubs.	Figure	20-1	illustrates.
A	 low-speed	 segment	 exists	 only	 between	 a	 low-speed	 device	 and	 its
immediate	 upstream	hub.	A	 low-speed	 segment	 carries	 only	 low-speed	 data
and	 uses	 low-speed’s	 edge	 rate	 and	 an	 inverted	 polarity	 compared	 to	 full
speed.
A	 full-speed	 segment	 exists	 between	 a	 full-speed	 device	 and	 its	 immediate
upstream	hub.	Full-speed	devices	include	USB	1.1	hubs,	which	may	carry	data
to	and	from	low-speed	devices	that	connect	to	downstream	ports	on	the	hub.
In	 this	 situation,	 the	 low-speed	 data	 on	 the	 full-speed	 segment	 uses	 low-
speed’s	bit	rate	but	full	speed’s	polarity	and	edge	rate.	The	hub	that	connects
to	 the	 low-speed	 device	 converts	 between	 low	 and	 full	 speed’s	 polarity	 and
edge	rates.	Full-speed	segments	never	carry	data	at	high	speed.	A	high-speed-
capable	device	that	connects	to	a	USB	1.1	hub	communicates	at	full	speed.
When	a	device	communicates	at	a	USB	2.0	 speed	and	all	upstream	hubs	are
USB	2.0	or	USB	3.1,	all	segments	are	high	speed	with	one	exception.	As	noted
above,	if	the	device	is	low	or	full	speed,	the	segment	between	the	device	and	its
nearest	upstream	hub	 is	 low	or	 full	 speed.	All	 data	 in	 a	high-speed	 segment
travels	at	high	speed.	The	transaction	translator	in	a	downstream	hub	converts
between	 low	or	 full	 speed	and	high	speed	as	needed.	A	USB	3.1	hub	uses	 its
USB	2.0	hub	controller	for	USB	2.0	traffic.
On	attachment,	 all	USB	2.0	devices	must	 communicate	 at	 low	or	 full	 speed.
When	possible,	a	high-speed-capable	device	transitions	from	full	to	high	speed
during	 the	 high-speed	 detection	 handshake	 shortly	 after	 the	 host	 detects
device	attachment.

Figure	20-1.	The	 speed	of	data	 in	a	 segment	depends	on	 the	capabilities	of	 the
device	and	its	upstream	hub.

Low-speed	and	full-speed	transceivers
Transceivers	 for	 low	and	 full	 speeds	 can	have	 a	 simpler	design	compared	 to
transceivers	for	high	speed.

Differences
Low-speed	data	differs	electrically	from	full-speed	data	in	three	ways.	The	bit
rate	is	slower,	at	1.5	Mbps	compared	to	12	Mbps	for	full	speed.	The	polarity	of
low-speed	 traffic	 is	 inverted	 compared	 to	 full	 speed.	 And	 low	 speed	 has	 a
slower	 edge	 rate	 compared	 to	 full	 speed.	 Figure	 20-2	 illustrates.	 The	 slower
edge	rate	reduces	the	high-frequency	energy	and	reflected	voltages	on	the	line
and	 makes	 it	 possible	 to	 use	 cables	 that	 have	 less	 shielding	 and	 are	 thus
cheaper	to	make	and	physically	more	flexible.

The	transceiver’s	hardware	doesn’t	care	about	signal	polarity.	The	transceiver
just	 retransmits	 the	 logic	 levels	 at	 its	 inputs.	 A	 driver	 that	 supports	 both
speeds,	such	as	a	driver	for	a	hub’s	downstream	port,	must	switch	between	the
two	edge	rates	as	needed.

Figure	20-2.	a	USB	1.1	hub	converts	between	low-	and	full-speed’s	polarities	and
edge	rates.	(Not	drawn	to	scale.)

Circuits
Figure	 20-3	 shows	 port	 circuits	 for	 low-	 and	 full-speed	 devices.	 Each
transceiver	 contains	 a	 differential	 driver	 and	 receiver	 for	 sending	 and
receiving	data	on	the	bus’s	twisted	pair.
When	transmitting	data,	the	driver	has	two	outputs	that	are	180	degrees	out	of
phase:	when	one	output	is	high,	the	other	is	low.	A	single	driver	can	support
both	low	and	full	speeds	with	an	input	that	selects	the	edge	rate.
The	 differential	 receiver	 detects	 the	 voltage	 difference	 between	 the	 lines.	 A
differential	 receiver	 has	 two	 inputs	 and	 defines	 logic	 levels	 in	 terms	 of	 the
voltage	difference	between	the	inputs.	The	output	of	the	differential	receiver	is
also	specified	as	a	logic-high	or	logic-low	voltage	referenced	to	ground.
Each	port	has	 two	single-ended	receivers	 that	detect	 the	voltages	on	D+	and
D-	with	reference	 to	 signal	ground.	The	 logic	 states	of	 the	receivers’	outputs
indicate	whether	the	bus	is	low	or	full	speed	or	if	the	bus	is	in	the	SE0	state.
The	drivers’	 output	 impedances	plus	 a	 series	 resistor	 at	 each	driver’s	 output
act	 as	 source	 terminations	 that	 reduce	 reflected	 voltages	 when	 the	 outputs
switch.	The	series	resistors	may	be	on-chip	or	external	to	the	chip.

Figure	20-3.	A	 low-speed	device	has	a	pull-up	on	D-,	while	 a	 full-speed	device
has	 a	 pull-up	 on	 D+.	 Information	 source:	 Universal	 Serial	 Bus	 Specification
Revision	2.0.

Pull-up	and	pull-down	values
The	pull-up	 resistor	on	D+	or	D-	at	 a	device’s	upstream-facing	port	 enables
the	 hub	 to	 detect	 whether	 the	 device	 is	 low	 speed	 or	 full	 speed.	 The	 hub’s
downstream-facing	port	has	pull-down	resistors	on	D+	and	D-.
On	 devices	 with	 detachable	 cables,	 the	 pull-up	 resistors	 must	 connect	 to	 a
positive	voltage	of	 3.0–3.6	V.	Devices	with	 captive	 cables	 can	 instead	use	 an
alternate	means	 of	 termination,	 including	 connecting	 the	 resistor	 directly	 to
VBUS.	 In	 selecting	 an	 alternate	 means	 of	 termination,	 the	 designer	 must

ensure	that	all	signal	levels	meet	USB	2.0	requirements.
The	USB	2.0	Engineering	Change	Notice	Pull-up/pull-down	resistors	 loosens
the	 tolerances	 for	 pull-up	 and	 pull-down	 resistors	 that	 connect	 to	 a	 voltage
source	of	3.0–3.6	V.	The	original	values	were	1.5	kΩ	±5%	for	the	pull-ups	and
15	kΩ	±5%	for	the	pull-downs.	The	new	values	for	the	pull-ups	are	900–1575
Ω	 when	 the	 bus	 is	 idle	 and	 1425–3090	 Ω	 when	 the	 upstream	 device	 is
transmitting.	A	 1.5	 kΩ	±5%	 resistor	meets	 both	 requirements.	 For	 the	 pull-
downs,	 the	 resistance	 can	 be	 anywhere	 in	 the	 range	 14.25	 k–24.80	 kΩ.	 The
tolerances	 were	 loosened	 to	 make	 it	 easier	 to	 include	 the	 resistors	 on	 chip
without	requiring	laser	trimming	of	the	values.

High-speed	transceivers
A	high-speed	device	must	support	control	transfers	at	full	speed,	so	the	device
must	 contain	 transceivers	 to	 support	 both	 full	 and	high	 speeds	 and	 logic	 to
switch	 between	 them.	 A	 high-speed-capable	 device’s	 upstream-facing
transceivers	aren’t	allowed	to	support	low	speed.	In	an	external	USB	2.0	hub,
the	 downstream	 transceivers	 at	 ports	 with	 user-accessible	 connectors	 must
support	all	three	speeds.

Why	480	Megabits?
The	 developers	 of	 the	 USB	 2.0	 specification	 chose	 high	 speed’s	 rate	 of	 480
Mbps	 for	 several	 reasons.	 The	 frequency	 is	 slow	 enough	 to	 allow	 using	 the
same	 cables	 and	 connectors	 as	 full	 speed.	 Components	 can	 use	 CMOS
processes	 and	 don’t	 require	 the	 advanced	 compensation	 used	 in	 high-speed
digital	signal	processors.	Tests	of	high-speed	drivers	showed	20–30%	jitter	at
480	Mbps.	Because	receivers	can	be	designed	to	tolerate	40%	jitter,	this	bit	rate
allows	a	good	margin	of	error.	And	480	is	an	even	multiple	of	12,	so	a	single
crystal	can	support	both	full	and	high	speeds.
The	use	of	separate	drivers	for	high	speed	makes	it	easy	to	add	high	speed	to
an	existing	full-speed	design.	Current-mode	drivers	were	chosen	because	they
can	handle	high	speeds.

Circuits
Figure	 20-4	 shows	 upstream-facing	 transceiver	 circuits	 in	 a	 high-speed-
capable	device,	and	Figure	20-5	shows	downstream-facing	transceiver	circuits
in	 a	 USB	 2.0	 hub.	 The	 USB	 2.0	 specification	 requires	 downstream-facing
transceivers,	and	thus	all	hosts	and	hubs	(except	hosts	in	embedded	systems),

to	support	all	three	speeds.

Figure	20-4.	The	upstream-facing	port	on	a	high-speed	device	must	also	support
full-speed	 communications.	 Information	 source:	 Universal	 Serial	 Bus
Specification	Revision	2.0.

High	speed	requires	its	own	drivers,	so	a	high-speed	device	must	contain	two
sets	of	drivers.	For	receiving,	a	transceiver	may	use	a	single	receiver	to	handle
all	speeds	or	separate	receivers	for	full	speed	and	high	speed.
When	a	high-speed	driver	transmits	data,	a	current	source	drives	one	line	with
the	 other	 line	 at	 ground.	 The	 current	 source	 may	 be	 active	 all	 the	 time	 or
active	only	when	 transmitting.	A	 current	 source	 that	 is	 active	 all	 the	 time	 is
easier	to	design	but	consumes	more	power.	USB	2.0	requires	devices	to	meet
signal-amplitude	and	timing	requirements	beginning	with	the	first	symbol	in	a
packet,	and	this	requirement	complicates	the	design	of	a	current	source	that	is

active	only	when	transmitting.	If	the	driver	keeps	its	current	source	active	all
the	time,	the	driver	can	direct	the	current	to	ground	when	not	transmitting	on
the	bus.

Figure	 20-5.	 The	 downstream-facing	 ports	 on	 USB	 2.0	 hubs	must	 support	 all
three	 speeds	 (except	 ports	 with	 embedded	 or	 permanently	 attached	 devices).
Information	source:	Universal	Serial	Bus	Specification	Revision	2.0.

In	 a	 high-speed-capable	 transceiver,	 the	 output	 impedance	 of	 the	 full-speed
drivers	has	a	tighter	tolerance	compared	to	full-speed-only	drivers	(45Ω	±10%,
compared	 to	 36Ω	 ±22%).	 The	 high-speed	 bus	 uses	 the	 full-speed	 drivers	 as
electrical	 terminations	 and	 requires	 higher	 values	 for	 impedance	 matching.
Full-speed	drivers	that	aren’t	part	of	a	high-speed	transceiver	don’t	require	a
change	in	output	impedance.

When	the	high-speed	drivers	are	active,	the	full-speed	drivers	bring	both	data
lines	low	(SE0	state).	Each	driver	and	its	series	resistor	then	function	as	a	45-Ω
termination	to	ground.	Because	each	end	of	the	cable	segment	has	a	driver,	the
line	has	a	termination	at	both	the	source	and	the	load.	The	double	termination
quiets	 the	 line	 more	 effectively	 than	 the	 source-only	 series	 terminations	 in
full-speed	segments.	Using	the	 full-speed	drivers	as	 terminations	reduces	 the
number	of	components.
The	USB	2.0	specification	provides	eye-pattern	templates	 that	show	required
high-speed	 transmitter	outputs	and	receiver	 sensitivity.	High-speed	receivers
must	also	meet	new	specifications	 that	 require	 the	use	of	a	differential	 time-
domain	reflectometer	(TDR)	to	measure	impedance	characteristics.
All	high-speed	receivers	must	include	a	differential	envelope	detector	to	detect
the	Squelch	(invalid	signal)	state	indicated	by	a	differential	bus	voltage	of	100
mV	or	less.	The	downstream-facing	ports	on	USB	2.0	hubs	must	also	include	a
high-speed-disconnect	detector	that	detects	when	a	device	has	been	removed
from	the	bus.
Other	 new	 responsibilities	 for	 high-speed-capable	 devices	 include	managing
the	 switch	 from	 full	 to	 high	 speed	 and	 handling	 new	protocols	 for	 entering
and	exiting	the	Suspend	and	Reset	states.

Switching	to	high	speed
In	 a	 low-	 or	 full-speed	device,	 a	 pull-up	on	one	of	 the	 signal	 lines	 indicates
device	speed.	When	a	low-	or	full-speed	device	attaches	to	or	is	removed	from
the	 bus,	 the	 voltage	 change	 due	 to	 the	 arrival	 or	 removal	 of	 the	 pull-up
informs	 the	 hub	 of	 the	 change.	High-speed-capable	 devices	 always	 attach	 at
full	 speed,	 so	 hubs	 detect	 attachment	 of	 high-speed-capable	 devices	 in	 the
same	way	as	for	full-speed	devices.
As	Chapter	19	explained,	the	switch	to	high	speed	occurs	after	the	device	has
been	 detected	 during	 the	 Reset	 initiated	 by	 the	 hub’s	 downstream	 port.	 A
high-speed-capable	 device	 must	 support	 the	 high-speed	 handshake	 that
informs	the	hub	that	 the	device	 is	capable	of	high	speed.	When	switching	to
high	speed,	the	device	removes	its	pull-up	from	the	bus.

Detecting	removal	of	a	high-speed	device
Because	a	device	has	no	pull-up	at	high	speed,	the	hub	has	to	use	a	different
method	to	detect	removal	of	high-speed	devices.	Removing	a	device	from	the

bus	 also	 removes	 the	 differential	 terminations,	 and	 the	 removal	 causes	 the
differential	 voltage	 at	 the	 hub’s	 port	 to	 double.	 On	 detecting	 the	 doubled
voltage,	the	hub	knows	the	device	is	no	longer	attached.
The	hub	detects	 the	voltage	by	measuring	 the	differential	bus	voltage	during
the	extended	End	of	High-speed	Packet	(HSEOP)	in	each	high-speed	Start-of-
Frame	Packet	 (HSSOP).	A	differential	 voltage	of	 at	 least	625	mV	 indicates	 a
disconnect.

Suspending	and	resuming	at	high	speed
As	Chapter	17	explained,	USB	2.0	devices	must	enter	the	low-power	Suspend
state	when	the	bus	has	been	in	the	Idle	state	for	at	least	3	ms	and	no	more	than
10	ms.	When	the	bus	has	been	idle	for	3	ms,	a	high-speed	device	switches	to
full	speed.	The	device	then	checks	the	state	of	the	full-speed	bus	to	determine
whether	the	host	is	requesting	a	Suspend	or	Reset.	If	the	bus	state	is	SE0,	the
host	 is	 requesting	a	Reset,	 and	 the	device	prepares	 for	 the	high-speed-detect
handshake.	 If	 the	 bus	 state	 is	 Idle,	 the	 device	 enters	 the	 Suspend	 state.	 On
exiting	the	Suspend	state,	the	device	resumes	at	high	speed.

Signal	voltages
Chapter	 19	 introduced	 USB’s	 bus	 states.	 The	 voltage	 that	 corresponds	 to	 a
state	varies	depending	on	the	speed	of	the	cable	segment.	The	difference	in	the
specified	voltages	at	the	transmitter	and	receiver	mean	that	a	signal	can	have
some	noise	or	attenuation	and	the	receiver	will	still	see	the	correct	logic	level.

Low	and	full	speeds
Table	20-1	shows	 the	driver	output	voltages	 for	 low/full	and	high	speeds.	At
low	and	full	speeds,	a	Differential	1	exists	at	the	driver	when	the	D+	output	is
at	 least	 2.8	V	 and	 the	D-	 output	 is	 no	 greater	 than	 0.3	V	 referenced	 to	 the
driver’s	signal	ground.	A	Differential	0	exists	at	the	driver	when	D-	is	at	least
2.8	V	and	D+	is	no	greater	than	0.3	V	referenced	to	the	driver’s	signal	ground.
At	a	low-	or	full-speed	receiver,	a	Differential	1	exists	when	D+	is	at	least	2V
referenced	to	the	receiver’s	signal	ground,	and	the	difference	between	D+	and
D-	 is	 greater	 than	 200	mV.	 A	 Differential	 0	 exists	 when	 D-	 is	 at	 least	 2	 V
referenced	to	the	receiver’s	signal	ground,	and	the	difference	between	D-	and
D+	 is	 greater	 than	 200	 mV.	 However,	 a	 receiver	 may	 optionally	 have	 less
stringent	definitions	 that	 require	 only	 a	differential	 voltage	 greater	 than	200
mV,	ignoring	the	requirement	for	one	line	to	be	at	least	2	V.

High	speed
At	high	speed,	a	Differential	1	exists	at	the	driver	when	both	the	D+	output	is
at	 least	0.36	V	and	the	D-	output	is	no	greater	than	0.01	V	referenced	to	the
driver’s	signal	ground.	A	Differential	0	exists	at	the	driver	when	D-	is	at	least
0.36	 V	 and	 D+	 is	 no	 greater	 than	 0.01	 V	 referenced	 to	 the	 driver’s	 signal
ground.
At	a	high-speed	receiver,	the	input	must	meet	the	requirements	shown	in	the
eye-pattern	 templates	 in	 the	USB	 2.0	 specification.	 The	 eye	 patterns	 specify
maximum	 and	minimum	 voltages,	 rise	 and	 fall	 times,	 maximum	 jitter	 in	 a
transmitted	signal,	and	the	maximum	jitter	a	receiver	must	tolerate.	The	USB
2.0	specification	explains	how	to	make	the	measurements.

Table	 20-1:	High	 speed	 has	 different	 driver	 and	 receiver	 voltage	 specifications
compared	to	low	and	full	speed.
Parameter Low/Full	Speed	(V) High	Speed	(V)

VOUT	low	minimum 0 -0.010

VOUT	low	maximum 0.3 0.010

VOUT	high	minimum 2.8 0.360

VOUT	high	maximum 3.6 0.440

VIN	low	maximum 0.8 Limits	defined	by	the

VIN	high	minimum 2.0 eye-pattern	templates	in	the	USB	2.0	specification

Cables	and	connectors
The	 USB	 2.0	 specification	 includes	 cable	 and	 connector	 requirements	 that
help	ensure	that	signals	will	make	it	to	their	destinations	without	errors	due	to
noise.	The	cable	specifications	also	limit	noise	that	radiates	from	the	cable.	To
reduce	problems,	use	cables	and	connectors	that	are	certified,	 indicating	that
they	have	passed	USB-IF	compliance	tests.	This	section	describes	cables	with
Standard-A	and	Series-B	connectors.	USB	2.0	devices	and	hosts	can	also	use
USB	Type-C	connectors	and	cables	as	described	later	in	this	chapter.

Conductors
USB	 2.0	 cables	 provide	 conductors	 for	 power,	 ground,	 and	 USB	 2.0
communications.	The	cables	contain	wires	for	VBUS,	ground,	the	D+	and	D-
signal	wires,	 and	a	drain	wire	 that	connects	 to	 the	cable	 shield	 (Table	 20-2).

Chapter	17	detailed	the	voltage	and	current	limits	for	VBUS.	The	signal	wires
carry	the	data.	Unlike	the	RS-232	interface,	which	has	a	TX	line	to	carry	data
in	one	direction	and	an	RX	line	for	the	other	direction,	USB	2.0’s	pair	of	wires
carries	a	single	differential	signal,	and	data	travels	in	one	direction	at	a	time.
In	a	full/high-speed	USB	cable,	the	signal	wires	must	be	a	twisted	pair	of	two
insulated	 conductors	 that	 spiral	 around	 each	 other	 with	 a	 twist	 every	 few
inches.	Twisting	is	effective	for	reducing	low-frequency,	magnetically	coupled
signals	such	as	60-Hz	power-line	noise.
In	 a	 full/high-speed	 cable,	 the	 signal	 wires	 must	 have	 a	 differential
characteristic	 impedance	 of	 90	 Ω.	 This	 value	 is	 a	 measure	 of	 the	 input
impedance	of	an	infinite,	open	line	and	determines	the	initial	current	on	the
lines	when	the	outputs	switch.	The	characteristic	 impedance	 for	a	 low-speed
cable	isn’t	defined	because	the	slower	edge	rates	mean	that	the	initial	current
doesn’t	affect	the	logic	states	at	the	receiver.

Table	20-2:	A	USB	2.0	cable	has	four	wires	plus	a	drain	wire.
Wire Name Use Color

1 VBUS +5V Red

2 D- Signal	pair	negative White

3 D+ Signal	pair	positive Green

4 GND Ground	reference Black

Shell Shield Drain	wire –

The	 USB	 2.0	 specification	 lists	 requirements	 for	 the	 cable’s	 conductors,
shielding,	and	 insulation	(Table	20-3).	These	are	 the	major	 requirements	 for
full/high-speed	cables:

Signal	wires:	twisted	pair,	28	AWG	minimum	diameter.
Power	and	ground:	non-twisted,	28	AWG	minimum	diameter.
Inner	 shield:	 aluminum	metalized	polyester	 surrounding	 the	 two	 twisted
pairs.
Outer	shield:	braided,	tinned	copper	or	equivalent	braided	material.
Drain	 wire:	 stranded,	 tinned	 copper	 wire,	 28	 AWG	minimum	 diameter
between	the	inner	and	outer	shields.

The	 specification	 also	 lists	 requirements	 for	 a	 cable’s	 durability	 and
performance.

A	low-speed	cable	must	have	the	same	inner	shield	and	drain	wire	required	for
full	speed.	The	USB	2.0	specification	also	recommends,	but	doesn’t	require,	a
braided	 outer	 shield	 and	 a	 twisted	 pair	 for	 data,	 as	 on	 full-	 and	 high-speed
cables.
The	USB	1.1	 specification	did	not	 require	 shielding	 for	 low-speed	 cables	 on
the	 premise	 that	 the	 slower	 rise	 and	 fall	 times	made	 shielding	 unnecessary.
The	 shielding	 requirement	 was	 added	 in	 USB	 2.0	 not	 because	 the	 USB
interface	 is	 noisy	 in	 itself,	 but	 because	 the	 cables	 are	 likely	 to	 attach	 to
computers	 that	 are	 noisy	 internally.	 Shielding	 helps	 keep	 the	 cable	 from
radiating	this	noise	and	thus	helps	in	passing	FCC	tests.	The	downside	is	that
USB	 2.0’s	 low-speed	 cables	 are	more	 expensive	 to	make	 and	 physically	 less
flexible.
A	low-speed	device	can	use	a	full-speed	cable	if	the	cable	meets	all	of	the	low-
speed	cable	 requirements	 including	 the	 typical	maximum	 length	of	3	m	and
not	using	a	standard	USB	connector	type	at	the	device	end.

Connectors
The	USB	 2.0	 specification	 allows	 these	 options	 for	 the	USB	 receptacle	 on	 a
device:	 Standard	 B	 (also	 called	 Std	 B	 or	 just	 “B”),	 Mini	 B,	 and	 Micro	 B.
Collectively,	these	are	the	Series-B	connectors.	Figure	20-6	shows	cable	plugs
that	mate	with	 the	receptacles.	Another	option	 for	devices	 is	a	captive	cable,
which	 uses	 a	 vendor-specific	 connector	 or	 is	 permanently	 attached	 to	 the
device.

Table	 20-3:	 The	 requirements	 for	 cables	 and	 related	 components	 differ	 for
full/high-speed	cables	and	cables	that	attach	to	low-speed	devices.
Specification Low	Speed Full/High	Speed

Maximum	length	(typical)	(m) 3 5

Inner	shield	and	drain	wire	required? yes

Braided	outer	shield recommended required

Twisted	pair recommended required

Common-mode	impedance	(Ω) not	specified 30	±30%

Differential	Characteristic	impedance	(Ω) not	specified 90

Cable	skew	(picoseconds) <	100

Wire	gauge	(AWG) 28	minimum	diameter

DC	resistance,	plug	shell	to	plug	shell	(Ω) 0.6

Cable	delay 18	ns	(one	way) 5.2	ns/m

pull-up	location	at	the	device D- D+

Detachable	cable	OK? no yes

Captive	cable	OK? yes

Conventional	 USB	 2.0	 hosts	 use	 the	 Standard	 A	 (also	 called	 Std	 A	 or	 “A”)
receptacle.	USB	OTG	devices	use	the	Micro-AB	receptacle,	which	can	accept	a
Micro-A	or	Micro-B	plug.	Embedded	Hosts	as	defined	in	the	On-The-Go	and
Embedded	Host	Supplement	to	the	USB	Revision	2.0	Specification	may	also	use
the	Micro-AB	 receptacle.	 (See	 Chapter	 21.)	 “Series-A”	 refers	 to	 Standard-A
and	Micro-A	connectors.

Figure	20-6.	Approved	cable	plugs	include	(from	left)	Standard-A	for	hosts	and
Standard-B,	Mini-B,	and	Micro-B	for	devices.

Figure	20-7.	A	USB	icon	identifies	USB	plugs	(left)	and	receptacles	(right).	A	“+”
at	a	receptacle	indicates	support	for	high	speed.

The	USB	2.0	specification	defines	the	Standard	series	connectors.	ECNs	to	the
USB	2.0	specification	define	the	Mini	and	Micro	series	connectors.
Mini	and	Micro	plugs	have	an	additional	ID	pin.	OTG	devices	use	the	ID	pin
to	 identify	 the	 type	 of	 plug	 inserted.	 Table	 20-4	 shows	 the	 pinout	 for	 the

connectors.
All	of	the	connectors	are	keyed	so	you	can’t	insert	a	plug	the	wrong	way.	The
connections	 for	D+	 and	D-	 are	 recessed	 so	 the	power	 lines	 connect	 first	 on
attachment.
USB	plugs	 and	 some	 receptacles	 have	 a	USB	 icon	 (Figure	20-7).	 A	USB	 2.0
receptacle	 that	 supports	 high	 speed	 may	 have	 a	 “+”	 to	 indicate	 high-speed
support.	Receptacles	should	 install	 so	 the	USB	icon	on	the	 top	of	 the	plug	 is
visible	 to	 users	 inserting	 a	 plug.	 Only	 cable	 assemblies	 that	 have	 passed
compliance	tests	may	display	the	USB	3.1	icon	(Figure	20-8).
As	 Chapter	 17	 explained,	 Standard-A	 and	 Series-B	 PD	 connectors	 support
capabilities	defined	in	the	USB	Power	Delivery	Rev.	2.0,	v1.0	specification.	USB
2.0	 devices	 can	 also	 use	 USB	 Type-C	 connectors,	 described	 later	 in	 this
chapter.

Detachable	and	captive	cables
USB	2.0	defines	cables	as	being	either	detachable	or	captive.	From	the	names,
you	might	think	that	a	detachable	cable	is	one	you	can	remove	while	a	captive
cable	 is	permanently	 attached	 to	 its	device.	 In	 reality,	 a	 captive	 cable	 can	be
removable	as	long	as	its	downstream	connector	is	not	one	of	the	standard	USB
connector	types.

Figure	 20-8.	 USB	 3.1	 cable	 assemblies	must	 pass	 compliance	 tests	 to	 earn	 the
right	 to	 display	 the	 SuperSpeedPlus	 icon.	 (Image	 courtesy	 of	 the	 USB
Implementers	Forum.)

Table	20-4:	The	Mini-B	and	Micro-B	plugs	have	an	additional	ID	pin	to	enable
OTG	devices	to	detect	the	plug	type.
Pin Standard	A,	Standard	B Mini-B,	Micro-B

1 VBUS VBUS

2 D- D-

3 D+ D+

4 GND ID:	open	or	>	1MΩ

5 Not	present GND

Shell Shield Shield

A	detachable	USB	2.0	cable	must	be	 full/high	speed,	with	a	Standard-A	plug
for	 the	 upstream	 connection	 and	 a	 Series-B	 plug	 for	 the	 downstream
connection.	A	captive	cable	may	be	low	or	full/high	speed.	The	upstream	end
has	a	Standard-A	plug.	For	the	downstream	connection,	a	captive	cable	can	be
permanently	attached	or	use	a	removable,	non-standard	connector	type.	The
non-standard	connection	doesn’t	have	to	be	hot	pluggable,	but	the	Standard-A
connection	must	 be	hot	pluggable.	Requiring	 low-speed	 cables	 to	 be	 captive
eliminates	the	possibility	of	trying	to	use	a	low-speed	cable	in	a	full-	or	high-
speed	segment.
OTG	products	have	other	cable	options	described	in	Chapter	21.

Cable	length
USB	1.0	specified	maximum	lengths	for	cable	segments.	A	full-speed	segment
could	be	up	to	5	m	and	a	low-speed	segment	could	be	up	to	3	m.	USB	1.1	and
later	dropped	 the	 length	 limits	 in	 favor	of	 a	discussion	of	 the	 characteristics
that	 limit	a	cable’s	ability	 to	meet	 timing	and	voltage	specifications.	On	 full-
and	 high-speed	 cables,	 the	 limits	 are	 due	 to	 signal	 attenuation,	 cable
propagation	 delay	 (the	 amount	 of	 time	 it	 takes	 for	 a	 signal	 to	 travel	 from
driver	to	receiver),	and	voltage	drops	on	the	VBUS	and	GND	wires.	Except	for
cables	with	Micro-B	plugs,	 the	maximum	cable	delay	 is	26	ns.	On	low-speed
cables,	 the	 length	 is	 limited	 by	 the	 rise	 and	 fall	 times	 of	 the	 signals,	 the
capacitive	load	presented	by	the	segment,	and	voltage	drops	on	the	VBUS	and
GND	wires.	The	maximum	cable	delay	is	18	ns.
USB	1.0’s	limits	are	still	good	general	guidelines	for	all	USB	2.0	cables	except
those	with	Micro-B	plugs.	Cables	with	Micro-B	plugs	have	a	shorter	defined
maximum	cable	delay	(10	ns)	and	a	specified	maximum	length	of	2	m.

Bus	length
A	bus	can	have	up	to	5	external	hubs	in	a	tier	so	using	5-m	cables,	a	device	can
be	up	to	30	m	from	its	host.	If	the	device	is	low	speed,	the	limit	is	28	m	because
the	cable	the	connects	to	the	low-speed	device	can	be	no	more	than	3	m.	Using
cables	with
Micro-B	connectors	also	reduce	the	maximum	distance	due	to	 the	2-m	limit
for	 these	 cables.	 The	 limit	 on	 the	 number	 of	 hubs	 is	 due	 to	 the	 electrical

properties	 of	 the	 hubs	 and	 cables	 and	 the	 resulting	 delays	 in	 propagating
signals	along	the	cable	and	through	a	hub.

USB	3.1
USB	 3.1	 cables	 have	 additional	 wires	 and	 other	 requirements	 to	 enable
carrying	Enhanced	SuperSpeed	data.

Transmitters	and	receivers
For	Enhanced	SuperSpeed	data,	 each	direction	has	 a	dedicated	pair	of	wires
with	 a	 differential	 transmitter	 at	 one	 end	 and	 a	 differential	 receiver	 at	 the
opposite	end.	The	hardware	interface	is	based	on	the	PCI	Express	(PCIe)	Gen
2	interface	used	in	expansion	buses	in	PCs.	In	a	PC,	the	bus	uses	multiple	lanes
to	transfer	multiple	bits	in	the	same	direction	at	once.	Enhanced	SuperSpeed
use	a	single	lane	with	one	signal	pair	for	each	direction.	The	SuperSpeedPlus
interface	doubles	the	interface’s	signaling	rate.
An	Enhanced	 SuperSpeed	 transmitter	must	 contain	 a	 circuit	 that	 detects	 an
attached	receiver’s	load	of	18–30	Ω.	An	RC	charging	circuit	can	perform	this
function.	As	Chapter	19	explained,	a	SuperSpeedPlus-capable	port	uses	LFPS
polling	 messages	 to	 determine	 whether	 to	 communicate	 at	 SuperSpeed	 or
SuperSpeedPlus.

Cables	and	connectors
The	USB	3.1	specification	defines	cables	and	Series-A	and	Series-B	connectors
that	 carry	 USB	 2.0	 signals,	 Enhanced	 SuperSpeed	 signals,	 and	 power.
Compared	 to	USB	 3.0,	USB	 3.1	 adds	 requirements	 to	 reduce	 EMI	 and	RFI,
especially	 at	 SuperSpeedPlus.	 All	 new	 cable	 designs	 intended	 for	 use	 with
SuperSpeed	or	SuperSpeedPlus	should	meet	USB	3.1’s	requirements.
This	 section	describes	USB	3.1	 Series-A	and	Series-B	 connectors	 and	 cables.
USB	 3.1	 devices	 and	 hosts	 can	 also	 use	 Type-C	 connectors	 and	 cables	 as
described	later	in	this	chapter.

Compatibility
Figure	20-9	shows	connectors	on	a	USB	3.0	cable.	USB	3.1	connectors	have	the
same	form	factor	but	have	additional	requirements	as	detailed	below.
USB	3.1	cables	and	connectors	are	backwards	compatible	with	USB	2.0.	Plugs

on	USB	2.0	cables	fit	USB	3.1	receptacles.	A	USB	2.0	cable	attached	to	a	USB
3.1	host	or	hub	can	carry	low-,	full-,	and	high-speed	data.

Figure	20-9.	A	USB	3.0/3.1	Standard-A	plug	(left)	fits	a	USB	2.0	receptacle,	but	a
USB	3.0/3.1	 Standard-B	plug	 (right)	 requires	 a	USB	3.0	 or	USB	3.1	 receptacle.
The	plugs	shown	are	USB	3.0	plugs.

A	USB	3.1	Standard-A	plug	 fits	a	USB	2.0	Standard-A	receptacle	so	you	can
use	a	USB	3.1	cable	to	attach	a	USB	3.1	device	to	a	USB	2.0	host	or	hub	and
communicate	 at	 a	USB	 2.0	 speed.	USB	 3.1	 Series-B	 plugs	 don’t	 fit	 USB	 2.0
Series-B	receptacles	so	you	need	a	USB	2.0	cable	to	attach	a	USB	2.0	device	to	a
USB	3.1	host	or	hub.
To	 communicate	 at	 Enhanced	 SuperSpeed,	 all	 cables	 and	 receptacles	 in	 the
links	 between	 the	 device	 and	 host	 must	 be	 USB	 3.1.	 (USB	 3.0	 hosts	 can
optionally	use	USB	3.0	cables	and	receptacles.).

Conductors
A	USB	3.1	cable	has	 ten	wires	 (Table	20-5),	which	 include	USB	2.0’s	power,
ground,	and	unshielded	pair	plus	 two	shielded	pairs,	each	with	a	drain	wire,
for	 Enhanced	 SuperSpeed.	 The	 Enhanced	 SuperSpeed	 interface	 is	 dual
simplex:	each	direction	has	its	own	pair	of	wires,	each	pair	has	its	own	ground,
or	drain,	wire,	and	data	can	travel	 in	both	directions	at	once.	 (Full	duplex	 is
also	has	dedicated	wires	for	each	direction	but	uses	a	single,	common	ground
wire.)
The	Enhanced	SuperSpeed	wires	can	be	shielded	twisted	pairs,	twinaxial	cable
(twinax),	or	coaxial	cable	(coax).	Twinax	is	similar	to	coax	but	has	two	inner
conductors	 instead	 of	 one.	The	 characteristic	 impedance	 of	 shielded	 twisted

pairs	should	be	90Ω.
USB	 3.1	 doesn’t	 specify	 wire	 gauges	 but	 provides	 electrical	 data	 for	 typical
values	 (26–34	 AWG	 for	 signal	 pairs)	 and	 recommends	 using	 the	 smallest-
diameter	 gauges	 that	meet	 the	 electrical	 requirements	of	 the	 cable	 assembly.
Cable	flexibility,	which	generally	decreases	with	 the	AWG	number,	may	also
be	a	consideration.	The	cable’s	outer	diameter	must	be	in	the	range	3–6	mm.

Table	 20-5:	 A	 USB	 3.1	 cable	 has	 additional	 wires	 to	 support	 Enhanced
SuperSpeed.	 Information	 source:	Universal	Serial	Bus	3.1	Specification	Revision
1.0.
Wire Signal	Name Description

1 PWR VBUS	power

2 D- Unshielded	differential	pair,	negative
(USB	2.0)

3 D+ Unshielded	twisted	pair,	positive	(USB
2.0)

4 GND_PWRrt Ground	for	power	return

5 P1- Shielded	differential	pair,1,	negative
(SuperSpeed/SuperSpeedPlus)

6 P1+ Shielded	differential	pair	1,	positive
(SuperSpeed/SuperSpeedPlus)

7 P1_Drain Drain	wire	for	SDP1.

8 P2- Shielded	differential	pair	2,	negative
(SuperSpeed/SuperSpeedPlus)

9 P2+ Shielded	differential	pair	2,	positive
(SuperSpeed/SuperSpeedPlus)

10 P2_Drain Drain	wire	for	SDP2.	Connects	to	pin	7
on	the	connectors.

Braid Shield External	braid	terminated	onto	metal
shell	of	plug

USB	 3.1	 cables	 must	 have	 metal	 braid	 surrounding	 all	 of	 the	 wires	 and
terminating	at	the	metal	shell.
For	 the	 Enhanced	 SuperSpeed	 signal	 pairs,	 USB	 3.1	 tightens	 USB	 3.0’s
specifications	 for	 differential	 characteristic	 impedance,	 insertion	 loss
(attenuation),	 and	 crosstalk.	 USB	 3.1	 removed	USB	 3.0’s	 specified	 color	 for
each	wire.

Cable	length
The	USB	 3.1	 specification	 doesn’t	 provide	maximum	 cable	 lengths	 and	 just
says	 that	 cables	 must	 meet	 the	 requirements	 for	 voltage	 drop	 and	 cable
assembly	 loss.	 The	 USB	 Type-C	 cable	 specification	 does	 provide	 practical
maximum	lengths	for	Enhanced	SuperSpeed	(presented	later	in	this	chapter).

Connectors
USB	3.1	Series-A	and	Series-B	connectors	have	five	additional	pins	for	the	two
Enhanced	SuperSpeed	signal	pairs	and	the	two	drain	wires,	which	terminate	at
the	same	pin.	Figure	20-10	shows	the	connectors.
Table	20-6	 shows	 the	 pin	 assignments	 for	USB	 3.1	 Standard-A,	 Standard-B,
and	Micro-B	connectors.	Table	20-7	shows	which	plugs	can	attach	to	different
receptacle	types.	A	USB	3.1	device	can	have	a	USB	3.1	Standard-B	or	USB	3.1
Micro-B	receptacle	or	a	captive	cable	with	a	USB	3.1	Standard-A	plug.	A	USB
3.1	host	has	a	USB	3.1	Standard-A	receptacle.
Except	for	the	Mini-B,	all	USB	2.0	plugs	can	mate	with	a	USB	3.1	receptacle	of
the	 same	 series.	 A	 USB	 2.0	 Standard-A	 plug	 fits	 a	 USB	 3.1	 Standard-A
receptacle,	 a	USB	 2.0	 Standard-B	 plug	 fits	 a	USB	 3.1	 Standard-B	 receptacle,
and	 a	USB	 2.0	Micro-B	plug	 fits	 a	USB	 3.1	Micro-B	 receptacle.	There	 is	 no
USB	3.1	Mini-B	 receptacle.	Of	 course,	 cables	with	USB	2.0	plugs	 can’t	 carry
Enhanced	SuperSpeed	traffic.
The	USB	3.1	Standard-A	plug	and	receptacle	have	the	same	form	factors	as	the
USB	2.0	Standard-A	plug	and	receptacle.	Thus	a	USB	3.1	Standard-A	plug	will
mate	 with	 a	 USB	 2.0	 Standard-A	 receptacle.	 To	 support	 Enhanced
SuperSpeed,	USB	3.1	Standard-A	connectors	use	a	2-tier	contact	system	with
five	additional	pins	behind	the	four	USB	2.0	pins	on	the	plug.
For	 the	Enhanced	SuperSpeed	 signal	pairs,	 the	 cable	 connects	 each	 transmit
pin	 to	 its	 corresponding	 receive	pin.	 For	 example,	 StdA_SSTX+	connects	 to
StdB_SSRX+	or	MicB_SSRX+,	 and	 StdA_SSTX-	 connects	 to	 StdB_SSRX-	 or
MicB_SSRX-.	 In	 other	 words,	RX	 and	TX	 in	 the	 signal	 names	 refer	 to	 the
direction	 of	 data	 flow	 at	 the	 connector.	Also	 note	 that	 becaues	 the	Micro-B
connector	has	an	ID	pin,	the	Standard-B	and	Micro-B	connectors	use	different
pins	for	some	signals.

Figure	20-10.	USB	3.1	connectors	have	additional	pins	for	the	SuperSpeed	wires.
(Not	drawn	to	scale.)

Table	20-6:	The	signals	on	a	USB	3.1	connector	vary	according	to	the	connector
type.	Information	source:	Universal	Serial	Bus	3.1	Specification	Revision	1.0.
Pin Signal

Standard-A Standard-B Micro-B

1 VBUS VBUS VBUS

2 D– D- D-

3 D+ D+ D+

4 GND GND ID

5 StdA_SSRX+ StdB_SSTX+ GND

6 StdA_SSRX- StdB_SSTX- MicB_SSTX-

7 GND_DRAIN GND_DRAIN MicB_SSTX+

8 StdA_SSTX- StdB_SSRX- GND_DRAIN

9 StdA_SSTX+ StdB_SSRX+ MicB_SSRX-

10 — — MicB_SSRX+

12 INSERTION	DETECT
(USB	Power	Delivery,
receptacle	only)

— —

13 — —

To	 ensure	 signal	 quality	 at	 SuperSpeedPlus,	 USB	 3.1	 adds	 requirements	 for
connectors	 including	 a	 back-shield,	 ground	 tabs,	 and	 additional	 grounding
spring	tabs	for	receptacles.
As	Chapter	17	explained,	USB	3.1	Standard-A	PD	and	Series-B	PD	connectors

support	 capabilities	 defined	 in	 USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0.	 USB	 3.1
devices	can	also	use	USB	Type-C	connectors,	described	 later	 in	 this	chapter.
The	USB	3.1	specification	deprecated	the	Powered-B	connector	defined	in	the
USB	3.0	specification

Host-to-host	cables
USB	 2.0	 forbids	 cables	 that	 connect	 two	 hosts	 except	 for	 bridge	 cables	 that
contain	 device	 controllers	 with	 a	 shared	 buffer.	 USB	 3.1	 defines	 a	 USB	 3.1
Standard-A	to	USB	3.1	Standard-A	cable	for	debugging	and	other	specialized
host-to-host	applications	with	driver	support.	In	the	cable,	VBUS,	D-,	and	D+
have	no	connection.

USB	Type-C	cables
Following	many	 years	 of	 incremental	 additions	 to	 the	 Series-A	 and	Series-B
connectors,	in	2014,	the	USB	3.0	Promoter	Group	started	fresh	with	the	USB
Type-C	 connectors	 and	 cables	 defined	 in	 the	 Universal	 Serial	 Bus	 Type-C
Cable	and	Connector	Specification.

Table	 20-7:	 USB	 3.1	 connectors	 are	 backwards	 compatible	 with	 USB	 2.0
connectors.	 Information	 source:	Universal	 Serial	 Bus	 3.1	 Specification	 Revision
1.0.
Unit Connector Mates	with

USB	2.0	host USB	2.0	Standard-A	receptacle USB	2.0	Standard-A	plug

USB	3.1	host USB	3.1	Standard-A	receptacle USB	3.1	Standard-A	plug

USB	2.0	device USB	2.0	Standard-B	receptacle USB	2.0	Standard-B	plug

USB	2.0	Mini-B	receptacle USB	2.0	Mini-B	plug

USB	2.0	Micro-B	receptacle USB	2.0	Micro-B	plug

Captive	cable	with	USB	2.0
Standard-A	plug

USB	2.0	Standard-A	receptacle	USB	3.1
Standard-A	receptacle

USB	3.1	device USB	3.1	Standard-B	receptacle USB	2.0	Standard-B	plug	USB	3.1
Standard-B	plug

USB	3.0	Micro-B	receptacle USB	2.0	Micro-B	plug
USB	3.1	Micro-B	plug

Captive	cable	with	USB	3.1
Standard-A	plug

USB	2.0	Standard-A	receptacle	USB	3.1
Standard-A	receptacle

USB	Type-C	connectors	are	not	backwards	compatible	with	Standard-A	and
Series-B	 connectors.	A	USB	Type-C	 receptacle	 requires	 a	USB	Type-C	plug,
and	 a	 USB	 Type-C	 plug	 doesn’t	 fit	 a	 Standard-A	 or	 Series-B	 receptacle.
However,	hosts	and	devices	with	USB	Type-C	connectors	can	use	 the	cables
described	 below	 to	 attach	 to	 ports	 that	 have	 Standard-A	 or	 Series-B
receptacles.

Benefits
USB	Type-C	connectors	and	cables	have	many	benefits:

No	need	 to	determine	which	 side	 is	 up	when	 attaching	 a	 plug.	The	plugs
work	either	way.
No	need	to	determine	which	end	of	the	cable	goes	where.	The	same	plug	fits
both	host	and	device	receptacles.
Small	form	factor,	with	receptacle	height	of	just	3	mm.
Enhanced	 support	 for	 USB	 Power	 Delivery	 Rev.	 2.0,	 v1.0,	 including
communication	over	a	new	Configuration	Channel.
New	 Sideband	 Use	 wires	 and	 the	 ability	 to	 re-assign	 pin	 functions	 to
support	protocols	other	than	USB.
Secure	connectors	with	side	latches	that	“click”	on	attachment	and	hold	the
plug	in	the	receptacle.
Lower	EMI	and	RFI	emissions.
Support	for	USB	2.0	and	USB	3.1	communications.

Due	 to	 their	many	 benefits,	 the	USB	Type-C	 connectors	will	 likely	 come	 to
dominate	the	market	as	manufacturers	release	new	products.

Cables	and	connectors
Compared	 to	 cables	 that	use	Series-A	and	Series-B	connectors,	USB	Type-C
cables	have	additional	wires	to	support	new	abilities.

Conductors
The	USB	Type-C	specification	defines	two	cable	types	for	links	that	have	USB
Type-C	connectors	at	both	ends.
A	USB	Full-Featured	Type-C	cable	has	a	USB	2.0	signal	pair,	two	complete	sets
of	 Enhanced	 SuperSpeed	 shielded	 pairs	 (8	 wires),	 two	 Sideband	 Use	 (SBU)

wires,	 a	 Configuration	 Channel	 (CC)	 wire,	 VBUS,	 ground,	 and	 optional
duplicate	VBUS	and	ground	wires.	All	USB	Full-Featured	Type-C	cables	are
electronically	 marked	 cables	 as	 defined	 below	 and	 support	 a	 VCONN
connection	that	can	power	circuits	in	the	plug.
A	USB	 2.0	 Type-C	 cable	 lacks	 the	 Enhanced	 SuperSpeed	 shielded	 pairs	 and
SBU	wires.	If	 the	cable	 is	an	electronically	marked	cable,	 the	plugs	support	a
VCONN	connection	that	can	power	circuits	in	the	plug.
Cables	that	use	shielded	twisted	pairs	or	twinax	for	the	differential	pairs	also
have	 a	 ground	 return	 wire	 for	 each	 pair.	 In	 coax,	 the	 shield	 is	 the	 ground
return.	A	braided	shield	must	enclose	all	of	the	wires	in	the	cable.	The	shield
terminates	at	the	metal	shells	on	the	plugs.

Cable	length
The	USB	Type-C	specification	provides	practical	maximum	lengths	for	cables
(Table	20-8).	Note	 that	 the	maximum	 length	 decreases	 as	 the	 signaling	 rate
increases:	2	m	for	SuperSpeed	and	1	m	for	SuperSpeedPlus.	USB	2.0	Type-C
cables	also	have	shorter	maximum	lengths	compared	to	cables	with	Standard-
A	and	Series-B	connectors.

Connectors
Table	 20-9	 shows	 the	 pin	 connections	 in	 USB	 Type-C	 connectors.	 The
specification	 defines	 two	 types	 of	 plugs.	 A	 USB	 Full-Featured	 Type-C	 plug
supports	Enhanced	SuperSpeed	and	USB	2.0.	A	USB	2.0	Type-C	plug	supports
only	USB	2.0	communications	and	has	no	connections	to	USB	3.1	signals	or
Sideband	Use	 pins.	 A	 single	USB	Type-C	 receptacle	 is	 defined	 for	 use	with
both	USB	2.0	and	USB	3.1	ports.
To	support	attaching	the	plugs	in	either	orientation,	USB	Type-C	receptacles
have	duplicate	sets	of	pins	for	both	USB	2.0	data	and	USB	3.1	data.

Table	 20-8:	 The	 USB	 Type-C	 cable	 specification	 gives	 these	 practical	 length
limits	for	cables	that	have	one	or	more	USB	Type-C	connectors.
Speed Connector	Type,	Second	Plug Maximum	Length	(m)

USB	3.1	Gen	2 USB	Type-C,	USB	3.1	Standard-A,	USB
3.1	Standard-B,	USB	3.1	Micro-B

1

USB	3.1	Gen	1 USB	Type-C 2

USB	2.0 Micro-B 2

USB	Type-C,	Standard-A,	Standard-B,
Mini-B

4

Table	 20-10	 shows	 the	 connections	 at	 the	 cable	 plugs.	 As	 in	 other	USB	 3.1
cables,	in	cables	that	have	USB	Full-Featured	Type-C	connectors,	the	pins	for
each	 Enhanced	 SuperSpeed	 transmit	 pair	 connect	 to	 corresponding	 receive
pins	at	the	opposite	end.	For	example,	each	SSTXp1	pin	connects	to	SSRXp1
at	the	opposite	end,	and	each	SSTXn1	pin	connects	to	SSRXn1	at	the	opposite
end.	 The	 two	 SBU	 wires	 also	 cross-connect,	 with	 SBU1	 on	 each	 connector
wired	to	SBU2	on	the	opposite	connector.
Figure	20-11	shows	the	options	for	a	mating	receptacle	and	plug.	Depending
on	 the	 plug’s	 orientation	 when	 it	 attaches,	 SSTXp2	 (B2)	 on	 the	 receptacle
might	 connect	 to	 SSTXp2	 (B2)	 or	 SSTXp1	 (A2)	 on	 the	 plug,	 SSTXn2	 (B3)
might	connect	to	SSTXn2	(B3)	or	SSTXn1	(A3),	and	so	on	down	the	line.
All	 USB	 Type-C	 connectors	 can	 support	 currents	 of	 5	 A.	 All	 USB	 Type-C
cables	can	support	currents	of	3	A,	while	electronically	marked	USB	Type-C
cables	may	support	currents	up	to	5A.
In	addition	to	new	side	latches	to	hold	the	plug	securely	in	the	receptacle,	the
rated	number	 of	 insertion/extraction	 cycles	 is	 10,000,	much	higher	 than	 the
ratings	for	other	USB	plugs	except	USB	3.1	Micro-series	connectors.
Because	 there	 is	 only	 one	 receptacle	 design,	 hubs	 must	 clearly	 mark	 their
upstream-facing	port	and	downstream-facing	ports.

New	cable	connections
USB	Type-C	connectors	provide	 several	new	pins	 to	 support	detecting	cable
attachment	and	orientation,	powering	circuits	in	the	plug,	and	a	new	data	path
to	support	communications	that	use	other	than	USB	protocols.

Table	20-9:	USB	Type-C	connectors	provide	access	to	power,	USB	2.0	and	USB
3.1	data,	and	a	Configuration	Channel.	Information	source:	Universal	Serial	Bus
Type-C	Cable	and	Connector	Specification	Revision	1.0
Pin Signal Description

A1 GND Cable	return	current	path

A2 SSTXp1 Transmit	signal	pair	1,	positive
(SuperSpeed/SuperSpeedPlus)1

A3 SSTXn1 Transmit	signal	pair	1,	negative

(SuperSpeed/SuperSpeedPlus)1

A4 VBUS Bus	power

A5 CC1	(receptacle)/CC	(plug) Configuration	Channel

A6 Dp1 USB	2.0	differential	pair	1,	positive	(USB
2.0)

A7 Dn1 USB	2.0	differential	pair	1,	negative	(USB
2.0)

A8 SBU1 Sideband	Use2

A9 VBUS Bus	power

A10 SSRXn2 Receive	signal	pair	2,	negative
(SuperSpeed/SuperSpeedPlus)1

A11 SSRXp2 Receive	signal	pair	2,	positive
(SuperSpeed/SuperSpeedPlus)1

A12 GND Cable	return	current	path

B1 GND Cable	return	current	path

B2 SSTXp2 Transmit	signal	pair	2,	positive
(SuperSpeed/SuperSpeedPlus)1

B3 SSTXn2 Transmit	signal	pair	2,	negative
(SuperSpeed/SuperSpeedPlus)1

B4 VBUS Bus	power

B5 CC2/VCONN Configuration	Channel	2	(receptacle)
plug	power	(plug)

B6 Receptacle:	Dp2	Plug:	no	contact	present USB	2.0	differential	pair	2,	positive	(USB
2.0)	(receptacle)	no	contact	present
(plug)

B7 Receptacle:	Dn2	Plug:	no	contact	present USB	2.0	differential	pair	2,	negative	(USB
2.0)	(receptacle)	no	contact	present
(plug)

B8 SBU2 Sideband	Use2

B9 VBUS Bus	power

B10 SSRXn1 Receive	signal	pair	1,	negative
(SuperSpeed/SuperSpeedPlus)1

B11 SSRXp1 Receive	signal	pair	1,	positive
(SuperSpeed/SuperSpeedPlus)1

B12 GND Cable	return	current	path

1No	connection	on	USB	2.0	Type-C	plug.
2Connected	on	USB	2.0	Type-C	plug	only	if	required	for	specified	purpose.

Table	 20-10:	 In	 a	 USB	 Full-Featured	 Type-C	 cable,	 the	 Enhanced	 SuperSpeed
and	SBU	wires	cross-connect	TX/RX	and	SBU1/SBU2.
Plug	1 Cable	connection Plug	2

Pin Signal Signal Pin

A1,	B1,	A12,	B12 GND connects	to GND A1,	B1,	A12,	B12

A4,	B4,	A9,	B9 VBUS connects	to VBUS A4,	B4,	A9,	B9

A5 CC connects	to CC A5

B5 VCONN connects	to VCONN B5

A6 Dp1 connects	to Dp1 A6

A7 Dn1 connects	to Dn1 A7

A2 SSTXp1 connects	to SSRXp1 B11

A3 SSTXn1 connects	to SSRXn1 B10

B11 SSRXp1 connects	to SSTXp1 A2

B10 SSRXn1 connects	to SSTXn1 A3

B2 SSTXp2 connects	to SSRXp2 A11

B3 SSTXn2 connects	to SSRXn2 A10

A11 SSRXp2 connects	to SSTXp2 B2

A10 SSRXn2 connects	to SSTXn2 B3

A8 SBU1 connects	to SBU2 B8

B8 SBU2 connects	to SBU1 A8

Configuration	channel
Host	 and	 device	 ports	 can	 use	 the	 Configuration	 Channel	 (CC)	 to	 detect
attachment	and	plug	orientation,	establish	downward	 facing	port	 (DFP)	and
upward-facing	 port	 (UFP)	 roles,	 and	 configure	 VBUS,	 VCONN,	 Alternate
Modes,	and	Accessory	Modes.
The	 cable’s	CC	wire	 can	 carry	messages	 to	 negotiate	 a	USB	Power	Delivery
(PD)	Contract	 as	 described	 in	Chapter	17.	 The	Configuration	Channel	 uses
Bi-phase	Mark	Coded	(BMC)	communications,	a	method	of	encoding	similar
to	 differential	 Manchester	 encoding	 where	 each	 bit	 has	 at	 least	 one	 level
change	and	the	average	DC	component	is	zero.

When	 two	 dual-role	 ports	 (DRPs)	 connect,	 a	 protocol	 on	 the	 CC	 pins
establishes	which	port	functions	as	the	host.	The	ports	can	then	use	a	PD	DR
Swap	message	 to	swap	roles,	or	a	device	can	swap	roles	by	emulating	detach
and	reattach.

VCONN

A	USB	Type-C	cable	has	a	single	CC	wire,	but	USB	Type-C	receptacles	have
two	CC	pins,	CC1	and	CC2.	In	USB	Full-Featured	Type-C	cables,	the	CC	pin
that	 doesn’t	 connect	 in	 the	 cable	 functions	 as	 the	 VCONN	 +5V	 source	 to
power	 circuits	 in	 electronically	 marked	 cables.	 VCONN	 must	 be	 able	 to
provide	a	minimum	1	W	of	power.

Figure	20-11.	USB	Type-C	plugs	can	attach	 in	either	orientation.	For	example,
A1	may	attach	to	A1	or	B1,	A2	may	attach	to	A2	or	B2,	and	so	on.

Electronically	 marked	 cables	 can	 report	 characteristics	 such	 as	 the	 cable’s
vendor	and	maximum	current.	The	information	travels	in	a	Discover	Identity
command	 in	 a	 Vendor	 Defined	Message	 as	 defined	 in	USB	 Power	 Delivery
Rev.	 2.0,	 v1.0.	 All	USB	 Full-Featured	Type-C	 cables	 and	 any	 cable	 rated	 for
more	 than	3	A	must	be	 electronically	marked	and	must	 support	USB	 Power
Delivery	Rev.	2.0,	v1.0	protocols.

The	DFP	provides	VCONN	initially,	but	PD	protocols	can	swap	the	VCONN
source.	VCONN	is	always	+5V	and	 the	voltage	 is	 isolated	 from	the	opposite
end	 of	 the	 cable.	 Electronically	 marked	 cables	 can	 use	 VBUS	 instead	 of
VCONN	to	power	circuits	in	the	plug.
A	 VCONN-powered	 accessory	 is	 a	 device	 with	 a	 UFP	 that	 supports	 an
Alternate	Mode	and	that	can	operate	when	powered	by	VCONN.

Sideband	use
The	 Sideband	 Use	 (SBU)	 wires	 provide	 two	 new	 signal	 paths	 for	 specific
applications.	The	signals	are	used	in	Alternate	Modes	as	defined	in	USB	Power
Delivery	Rev.	2.0,	v1.0,	an	Audio	Adapter	Accessory	Mode	defined	in	the	USB
Type-C	 specification,	 and	 a	Debug	Accessory	Mode	 to	 be	 defined	 in	 a	 later
revision	of	 the	USB	Type-C	specification.	The	use	of	 these	pins	 is	 limited	 to
uses	defined	in	USB	specifications.

Data	routing
To	 configure	 the	 USB	 Type-C	 interface	 for	 Enhanced	 SuperSpeed	 data,	 the
ports	use	the	CC	wire	to	identify	which	of	the	two	sets	of	signal	pairs	to	use	for
communications.

Connections
Depending	 on	 the	 orientation	 of	 the	 plugs,	 the	 CC	 wire	 in	 the	 cable	 may
connect	to	CC1	on	both	receptacles,	to	CC2	on	both	receptacles,	or	to	CC1	on
one	 receptacle	 and	 CC2	 on	 the	 other.	 In	 addition,	 the	 DFP	 may	 supply
VCONN,	 and	 the	UFP	may	 be	 a	 conventional	 USB	 device	 or	 a	 device	 that
supports	one	or	more	Alternate	Modes	or	an	Accessory	Mode.	Using	the	CC
wire,	the	ports	can	detect	each	of	these	conditions.
Figure	20-12	shows	example	connections	for	a	cable	that	connects	to	CC1	on
both	ports	with	the	DFP	supplying	VCONN.
On	CC1	and	CC2,	a	DFP	on	a	host	or	hub	has	a	pull-up,	a	current	source,	or
another	means	to	detect	a	termination,	or	resistance	to	ground,	at	the	opposite
end	 of	 the	 cable.	 If	 using	 default	 USB	 power	 with	 a	 pull-up	 to	 +5V,	 the
resistor’s	 value	 is	 56	kΩ.	Ports	with	higher	 current	 capabilities	use	different,
lower,	values	to	enable	the	UFP	on	the	device	to	detect	the	amount	of	current
the	DFP	can	provide.	The	specified	values	also	vary	with	the	pull-up	voltage.	A
UFP	has	a	5.1	kΩ	pull-down	on	CC1	and	CC2.

Figure	20-12.	In	this	example,	the	CC	wire	in	the	cable	connects	to	CC1	on	both
ports,	and	the	DFP	supplies	VCONN	to	the	plug’s	circuits.	Information	source:
Universal	Serial	Bus	Type-C	Cable	and	Connector	Specification	Revision	1.0.

A	powered	 cable	 is	 a	 cable	 that	 requires	VCONN	 to	power	 its	 circuits.	 In	 a
powered	cable,	the	CC	pins	that	don’t	connect	to	the	CC	wire	initially	present
a	1	kΩ	load	to	ground.	On	detecting	VCONN,	the	cable	can	remove	this	load.

Detecting	attachment	and	orientation
On	connecting	a	UFP	to	a	DFP,	the	pull-down	on	the	UFP	causes	the	voltage
to	 drop	 at	 the	 DFP’s	 receptacle.	 The	 DFP	 detects	 an	 attached	 device	 by
detecting	this	voltage	drop.
On	detecting	 the	voltage	drop,	 the	DFP	knows	which	 signal	pairs	 to	use	 for
Enhanced	 SuperSpeed	 data,	 and	 the	 port	 switches	 the	 pairs	 to	 the	 port’s
circuits	in	the	host	or	hub.	If	CC1	connects,	Enhanced	SuperSpeed	data	uses
transmit	 signal	 pair	 1	 and	 receive	 signal	 pair	 1.	 If	 CC2	 connects,	 Enhanced
SuperSpeed	data	uses	transmit	signal	pair	2	and	receive	signal	pair	2.	The	USB
Type-C	specification	 leaves	 it	 to	 the	vendor	 to	decide	how	to	 implement	 the
switch.	 The	 other	 set	 of	 Enhanced	 SuperSpeed	 signal	 pairs	 in	 the	 cable
remains	unused	unless	put	to	use	in	an	Alternate	Mode	or	Accessory	Mode	as
described	later	in	this	chapter.
On	detecting	attachment,	the	DFP	applies	VBUS	and	applies	VCONN	on	the
CC	pin	that	doesn’t	connect	to	the	CC	wire.
The	UFP	detects	attachment	by	detecting	the	presence	of	VBUS.	The	CC	pin
with	the	higher	voltage	is	connected	to	the	CC	wire.	As	on	the	DFP,	the	UFP
switches	the	appropriate	Enhanced	SuperSpeed	pins	to	the	port’s	circuits.

The	 device	 is	 then	 ready	 for	 enumeration	 at	 Enhanced	 SuperSpeed.	 As
Chapter	17	explained,	USB	Type-C	ports	that	support	role	swapping	can	use
PD	protocols	to	swap	power	and	data	roles.
Both	ports	must	continue	to	monitor	the	lines	to	detect	detach.	On	the	DFP,
detach	 is	 indicated	 by	 a	 rise	 in	 voltage	 on	 the	 pin	 that	 connects	 to	CC.	On
detecting	detach,	the	DFP	removes	VBUS.	On	the	UFP,	detach	is	indicated	by
a	 loss	 of	 VBUS.	 On	 detach,	 the	 DFP	 resumes	 monitoring	 for	 a	 new
attachment.
For	USB	2.0	data,	the	USB	Type-C	receptacle	has	two	sets	of	contacts	with	the
two	D+	pins	shorted	together	and	the	two	D-	pins	shorted	together.	The	cable
has	 a	 single	 pair	 of	 USB	 2.0	 data	 wires	 that	 may	 connect	 to	 either	 pair
depending	on	orientation.

Legacy	cables	and	adapters
To	 enable	 connecting	 a	 host	 or	 device	 with	 a	 USB	 Type-C	 connector	 to	 a
device	 or	 host	 with	 a	 Series-B	 or	 Series-A	 receptacle,	 the	 USB	 Type-C
specification	defines	legacy	USB	cables	and	two	adapters.
A	cable	with	a	USB	Full-Featured	Type-C	plug	may	have	any	of	these	plugs	at
the	 opposite	 end:	USB	 Full-Featured	Type-C,	USB	 3.1	 Standard-A,	USB	 3.1
Standard-B,	 or	USB	3.1	Micro-B.	To	minimize	 the	number	 of	 defined	 cable
types,	 there	 are	 no	 defined	 cables	 using	 USB	 3.0	 Standard-A	 or	 Series-B
connectors.	A	cable	with	a	USB	2.0	Type-C	plug	may	have	any	of	these	plugs
at	the	opposite	end:	USB	2.0	Type-C,	USB	2.0	Standard-A,	USB	2.0	Standard-
B,	USB	2.0	Mini-B,	or	USB	2.0	Micro-B.
Also	allowed	are	an	adapter	with	a	USB	Full-Featured	Type-C	plug	and	USB
3.1	Standard-A	receptacle	(for	flash	drives),	an	adapter	with	a	USB	2.0	Type-C
plug	 and	 USB	 2.0	 Micro-B	 receptacle,	 and	 captive	 cables.	 Adapters	 that
convert	 a	USB	Type-C	 receptacle	 to	 a	 Standard-A	or	Series-B	 connector	 are
not	allowed.
Because	 the	Standard-A	and	Series-B	plugs	don’t	have	CC	or	SBU	pins	or	 a
VCONN	 source,	 those	 capabilities	 aren’t	 available	 on	 cables	where	 one	 end
has	a	Standard-A	or	Series-B	plug.
To	enable	detecting	attachment	and	plug	orientation,	a	cable	that	connects	a
USB	Type-C	receptacle	to	a	USB	3.1	or	USB	2.0	Standard-A	receptacle	has	a
single	CC	pin	with	a	pull-up	to	indicate	a	connection	to	a	DFP.	A	cable	that
connects	a	USB	Type-C	receptacle	to	a	USB	3.1	or	USB	2.0	Series-B	receptacle

has	a	single	CC	pin	with	a	pull-down	to	indicate	a	connection	to	a	UFP.
A	DRP	 initially	 alternates	 between	UFP	 and	DFP	 roles	 until	 the	 connected
port	detects	attachment	to	a	UFP	or	DFP.
A	USB	Type-C	cable	 that	 connects	 two	hosts	or	 two	devices	 isn’t	 functional
but	causes	no	harm.

Alternate	modes
Every	 device	 with	 a	 USB	 Type-C	 receptacle	 must	 support	 USB
communications	(except	for	dedicated	charging	ports	as	defined	in	the	battery
charging	 specification).	 Devices	 may	 optionally	 also	 support	 one	 or	 more
Alternate	 Modes	 that	 support	 alternate	 functions.	 An	 alternate	 mode	 can
reassign	 pins	 in	 the	 cable	 to	 new	 functions.	 The	 USB	 Type-C	 specification
gives	 the	 example	 of	 a	 PCIe	 bridge	 that	 communicates	 using	 the	 otherwise
unused	shielded	pairs	and	the	SBU	wires.
To	 enter	 and	 exit	 an	 Alternate	 Mode,	 a	 device	 uses	 PD	 Vendor	 Defined
Messages.	A	device	that	has	no	other	USB	function	must	at	minimum	support
the	 billboard	 class	 to	 identify	 the	 device.	 Alternate	 Modes	 require	 a	 direct
connection	to	a	host	with	no	hubs	between.

Accessory	modes
The	USB	Type-C	specification	defines	an	Audio	Adapter	Accessory	Mode	that
uses	 the	USB	 2.0	 data	 pins	 and	 the	 SBU	 pins	 to	 provide	 four	 analog	 audio
signals.	 Revision	 1.0	 of	 the	 specification	 also	 refers	 to	 a	 Debug	 Adapter
Accessory	Mode	to	be	defined	in	a	later	revision	of	the	document.
To	enable	detecting	devices	that	use	the	Accessory	Modes,	the	Audio	Adapter
has	pull-ups	on	both	CC	pins,	and	the	Debug	Adapter	has	pull-downs	on	both
CC	pins.

Other	ways	to	connect
Besides	using	conventional	cables,	USB	devices	can	connect	using	 inter-chip
connections,	 electrically	 isolated	 interfaces,	 long-distance	 interfaces,	 and
wireless	technologies.

Inter-Chip
USB	was	developed	as	an	interface	to	connect	computers	and	peripherals	via

cables.	But	USB	has	 also	 found	uses	 in	 products	 that	 contain	 a	 host	 and	 an
embedded	 or	 removable	 peripheral.	 In	 these	 products,	 communications
between	 the	 host	 and	 peripheral	 don’t	 require	 standard	 USB	 cables	 or
connectors	and	can	use	lower	supply	voltages.

USB	2.0
Two	 USB-IF	 standards	 for	 this	 type	 of	 interface	 are	 the	 Inter-Chip	 USB
Supplement	 for	 low	 and	 full	 speeds	 and	 the	 High-Speed	 Inter-Chip	 USB
Electrical	Specification	for	high	speed.
For	both	interface	types,	all	of	the	following	are	true:

The	distance	between	the	host	and	peripheral	is	10	cm	or	less.
The	 host	 doesn’t	 allow	peripheral	 attachment	 or	 removal	while	 the	 inter-
chip	supply	voltage	is	present.
The	 interface	 can	 use	 a	 vendor-specific	 cable	 or	 on-board	 connection
(circuit-board	traces).

An	 interface	 that	 complies	with	 the	 Inter-Chip	USB	 Supplement	must	meet
these	requirements:

The	 host	 always	 supports	 full	 speed	 and	 supports	 low	 speed	 if	 the	 host
communicates	 with	 a	 low-speed	 peripheral.	 The	 peripheral	 may	 support
low	or	full	speed.
The	 interface	 supports	 one	 or	 more	 of	 six	 defined	 supply-voltage	 classes
with	nominal	voltages	in	the	range	1–3	V.

The	 low/full	 speed	 interface	 draws	 no	 bus	 current	 when	 idle.	 To	 save
additional	 power,	 hardware	 can	 switch	 out	 the	 bus	 pull-up	 and	 pull-down
resistors	during	traffic	signaling.
The	High-Speed	 Inter-Chip	USB	Electrical	 Specification	defines	 an	 interface
that	 uses	 a	 high-speed	 inter-chip	 (HSIC)	 synchronous	 serial	 interface.	 The
interface	 uses	 240-MHz	 double	 data	 rate	 (DDR)	 signaling,	 which	 transfers
data	 on	 both	 the	 rising	 and	 falling	 clock	 edges.	 A	 240-MHz	 clock	 thus
supports	a	480-Mbps	bit	rate.
An	 interface	 that	 complies	 with	 the	 High-Speed	 Inter-Chip	 USB	 Electrical
Specification	must	meet	these	requirements:

The	host	and	peripheral	support	high	speed.
The	interface	uses	1.2	V	LVCMOS	voltages.

The	HSIC	interface	consumes	power	only	when	a	transfer	is	in	progress.

USB	3.0
For	 USB	 3.0	 products	 that	 contain	 a	 host	 and	 an	 embedded	 or	 removable
peripheral,	 the	 Inter-Chip	 Supplement	 to	 the	 USB	 Revision	 3.0	 Specification
describes	SuperSpeed	 Inter-Chip	 (SSIC)	connections.	Presumably,	a	USB	3.1
update	to	the	standard	is	forthcoming.

Isolated	interfaces
Galvanic	 isolation	 can	 be	 useful	 in	 preventing	 electrical	 noise	 and	 power
surges	from	coupling	into	a	circuit.	Circuits	that	are	galvanically	isolated	from
each	 other	 have	 no	 ohmic	 connection.	Typical	methods	 of	 isolation	 include
using	a	transformer	to	transfer	power	by	magnetic	coupling	and	optoisolators
to	transfer	digital	signals	by	optical	coupling.
USB	devices	shouldn’t	require	isolation	in	conventional	environments	such	as
offices	 and	 classrooms.	 For	 medical	 or	 industrial	 environments	 or	 other
locations	 where	 devices	 might	 benefit	 from	 isolation,	 USB’s	 timing
requirements	 and	USB	2.0’s	 use	 of	 a	 single	 pair	 of	wires	 for	 both	directions
make	it	difficult	to	isolate	a	device	from	its	host.	One	solution	is	to	isolate	the
non-USB	 components	 the	 device	 controller	 connects	 to.	 For	 example,	 in	 a
motor	controller	with	a	USB	interface,	 the	motor	and	control	circuits	can	be
isolated	from	the	USB	controller	and	bus.
Maxim’s	MAX3420E	 interface	chip	can	be	suitable	 for	electrically	 isolating	a
USB	device	from	its	host.	The	chip	uses	a	3-	or	4-wire	SPI	bus	to	connect	to	a
processor	 that	 sends	and	receives	USB	data.	Electro-isolators	on	each	 line	of
the	SPI	bus	can	isolate	the	interface	chip	and	USB	data	from	the	processor	and
its	upstream	hubs	and	host.
Another	 option	 is	 to	 use	 an	 isolated	 hub.	 Several	 sources	 offer	 hubs	 with
isolated	 low/full-speed	 downstream	 ports.	 Wireless	 links,	 described	 later	 in
this	chapter,	offer	another	way	to	cut	the	cable.

Long	distance	links
The	 USB	 specifications	 prohibit	 extension	 cables	 that	 extend	 a	 segment	 by
connecting	a	second	cable	in	series.	An	extension	cable	for	the	upstream	side
of	 a	 cable	 would	 have	 a	 Standard-A	 plug	 on	 one	 end	 and	 a	 Standard-A
receptacle	 on	 the	 other,	 while	 an	 extension	 cable	 for	 the	 downstream	 side

would	have	a	Series-B	plug	and	Series-B	receptacle.	A	USB	Type-C	extension
cable	 would	 have	 a	 plug	 and	 a	 receptacle.	 Prohibiting	 extension	 cables
eliminates	the	temptation	to	stretch	a	segment	beyond	the	interface’s	electrical
limits.	Extension	cables	are	available,	but	just	because	you	can	buy	one	doesn’t
mean	 that	 it’s	a	good	 idea	or	 that	 the	cable	will	work.	 Instead,	 to	extend	 the
distance	between	a	host	and	device,	use	hubs.
An	exception	 to	 the	no-extension-cable	rule	 is	an	active	extension	cable	 that
contains	 a	 hub,	 a	 downstream	 port,	 and	 a	 cable.	 This	 type	 of	 cable	 works
because	 it	 contains	 the	 required	hub.	Depending	on	 the	attached	device,	 the
hub	may	need	its	own	power	supply.
The	 USB	 Type-C	 specification	 defines	 an	 active	 cable	 that	 contains
conditioning	circuits	that	may	support	longer	cable	lengths.	The	specification
doesn’t	detail	how	the	conditioning	circuits	might	work.
One	option	 for	 long	distances	 is	 to	use	 an	 adapter	 as	 a	 bridge	 that	 converts
between	USB	and	Ethernet,	RS-232,	RS-485,	or	another	 interface	suitable	for
longer	 distances.	 The	 remote	 device	 supports	 the	 long-distance	 interface
rather	than	USB.
Another	 approach	 for	 long	 distances	 is	 to	 access	 USB	 devices	 using	 a	 local
Ethernet	network.	A	product	that	uses	this	method	is	the	AnywhereUSB	hub
from	Digi	 International.	The	hub	contains	one	or	more	host	controllers	 that
communicate	with	the	host	PC	over	an	Ethernet	connection	using	the	Internet
Protocol	 (IP).	 The	 hub	 can	 attach	 to	 any	 Ethernet	 port	 in	 the	 PC’s	 local
network.	The	host	drivers	for	the	USB	devices	are	on	the	PC.	PC	applications
can	access	many	USB	devices	that	connect	to	the	AnywhereUSB	hub	and	use
bulk	 and	 interrupt	 transfers.	 The	 interface	 has	 increased	 latency	 due	 to	 the
added	protocol	layer.
Software-only	products	for	accessing	USB	devices	over	a	network	include	USB
Network	Gate	 from	Eltima,	USB	over	Network	 from	Fabula	Tech,	 and	USB
Redirector	 from	 Incentives	 Pro.	 To	 use	 these	 products	 to	 access	 a	 device
attached	to	another	computer	 in	a	network,	you	must	 install	software	on	the
PC	the	device	attaches	to	and	the	PC(s)	that	will	access	the	device.

Going	wireless
Replacing	 a	 USB	 cable	 with	 a	 wireless	 connection	 isn’t	 an	 easy	 task.	 USB
transactions	 involve	 communicating	 in	 both	 directions	 with	 tight	 timing
requirements.	 For	 example,	 when	 a	 USB	 2.0	 host	 sends	 a	 token	 and	 data

packet	 in	 the	 Data	 stage	 of	 an	 interrupt	 OUT	 transaction,	 the	 device	 must
respond	quickly	with	ACK	or	another	code	in	the	handshake	packet.
But	 the	 idea	 of	 a	wireless	 connection	 for	USB	 devices	 is	 so	 compelling	 that
multiple	 technologies	 have	 become	 available	 to	 incorporate	USB	 in	wireless
applications.	 In	many	 implementations,	 the	wireless	 links	 use	wired	 devices
that	 serve	 as	 wireless	 bridges,	 or	 adapters.	 The	 bridge	 uses	 USB	 to
communicate	with	the	host	and	a	wireless	interface	to	communicate	with	the
peripheral.	The	peripheral	 contains	 a	wireless	bridge	 to	 convert	between	 the
wireless	interface	and	the	peripheral’s	circuits.

Wireless	USB
The	USB-IF’s	Wireless	Universal	Serial	Bus	Specification	defines	Wireless	USB.
Revision	1.1	was	released	in	2010.
Wireless	USB	supports	speeds	of	up	to	480	Mbps	at	3	m	and	100	Mbps	at	10
m.	 The	 interface	 supports	 power-saving	 modes	 and	 uses	 encryption	 for
security.	 The	 technology	 is	 ultrawideband	 (UWB)	 radio,	which	 transmits	 in
short	 bursts	 at	 very	 low	 power	 over	 a	 wide	 frequency	 spectrum.	 The	UWB
technology	 is	 defined	 in	 the	 ISO/IEC	 26907/8	 specifications,	 which	 evolved
from	specifications	developed	by	the	nonprofit	WiMedia	Alliance.
A	USB	host	can	have	a	built-in	Wireless	USB	interface	or	a	wired	connection
to	 a	 USB	 device	 that	 functions	 as	 a	 host	 wire	 adapter	 (HWA)	 that
communicates	 via	Wireless	USB.	 In	 a	 similar	way,	 a	USB	device	 can	have	 a
built-in	Wireless	USB	interface	or	a	wired	connection	or	direct	attachment	to
a	device	wire	adapter	(DWA)	that	communicates	via	Wireless	USB.
A	Wireless	USB	host	 can	 support	up	 to	 127	devices	 that	 each	 communicate
directly	with	the	host.	A	host	and	its	devices	form	a	Wireless	USB	Cluster.	All
communications	are	between	the	host	and	a	device.	Wireless	USB	doesn’t	use
hubs	 though	 a	 DWA	may	 have	 an	 embedded	 hub	 that	 enables	 wired	 USB
devices	to	communicate	wirelessly.
Hosts	 and	devices	use	 a	protocol	 to	 establish	 a	 secure	 relationship	where	 all
communications	sent	wirelessly	are	encrypted.
Products	with	Wireless	USB	interfaces	have	been	slow	to	reach	the	market	in
part	 because	 Wi-Fi	 hubs	 and	 other	 Wi-Fi	 devices	 have	 competed	 more
successfully	for	the	same	market.

Media	Agnostic	USB

In	 2014,	 the	 USB-IF	 released	 a	Media	 Agnostic	 (MA)	 USB	 specification	 to
enable	using	USB	drivers	to	communicate	over	a	variety	of	wireless	and	wired
interfaces.
The	first	expected	use	for	MA	USB	is	1-Gbps	wireless	communications	based
on	 the	 WiGig	 Serial	 Extension	 (WSE)	 1.2	 specification	 from	 the	 Wi-Fi
Alliance.	The	Wi-Fi	Alliance	transferred	the	WSE	specification	to	the	USB-IF
for	 use	 in	MA	 USB.	WiGig	 uses	 unlicensed	 60-GHz	 frequencies	 for	 short-
range	communications.

Cypress	WirelessUSB
For	 low-speed	 devices,	 including	HID-class	 devices,	 Cypress	 Semiconductor
offers	the	WirelessUSB	technology.	An	obvious	market	is	wireless	keyboards,
mice,	 and	 game	 controllers.	 With	 a	 wireless	 range	 of	 up	 to	 50	 m,	 the
technology	 is	 also	 useful	 for	 building	 and	 home	 automation	 and	 industrial
control.	The	wireless	interface	uses	radio-frequency	(RF)	transmissions	at	2.4
GHz	in	the	unlicensed	Industrial,	Scientific,	and	Medical	(ISM)	band.
A	 WirelessUSB	 system	 consists	 of	 a	 WirelessUSB	 bridge	 and	 one	 or	 more
WirelessUSB	devices	 (Figure	20-13).	The	bridge	 translates	between	USB	and
the	 wireless	 protocol	 and	medium.	 The	WirelessUSB	 device	 carries	 out	 the
device’s	function	(mouse,	keyboard,	game	controller)	and	communicates	with
the	bridge.
The	 bridge	 contains	 a	 USB-capable	 microcontroller	 and	 a	 WirelessUSB
transceiver	 chip	 and	 antenna.	 The	 WirelessUSB	 device	 contains	 a	 Cypress
PsOC	 or	 another	 microcontroller	 and	 a	 WirelessUSB	 transmitter	 or
transceiver	chip	and	antenna.	A	device	with	a	transceiver	is	2-way:	the	device
can	communicate	in	both	directions.	A	device	with	just	a	transmitter	is	1-way:
the	 device	 can	 send	 data	 to	 the	 host	 but	 can’t	 receive	 data	 or	 status
information.	 In	 both	 the	 bridge	 and	 device,	 the	 transmitter	 and	 transceiver
chips	use	SPI	to	communicate	with	their	microcontrollers.

Figure	20-13.	WirelessUSB	provides	a	way	to	design	low-speed	devices	that	use	a
wireless	interface.

In	 a	 2-way	 system,	when	 a	 device	 has	 data	 to	 send	 to	 the	 host,	 the	 device’s
microcontroller	writes	the	data	to	the	transceiver	chip,	which	encodes	the	data
and	sends	it	through	the	air	to	the	bridge’s	transceiver.	On	receiving	the	data,

the	 bridge	 returns	 an	 acknowledgment	 to	 the	 device,	 decodes	 the	 data,	 and
sends	the	data	to	the	host	in	conventional	USB	interrupt	or	control	transfers.
On	failing	to	receive	an	acknowledgment	from	the	bridge,	the	device	resends
the	data.
When	the	host	has	data	to	send	to	the	device,	 the	host	writes	the	data	to	the
bridge’s	 USB	 controller,	 which	 returns	 ACK	 (if	 not	 busy	 and	 the	 data	 is
accepted)	 and	 passes	 the	 data	 to	 the	 bridge’s	 transceiver.	 The	 transceiver
encodes	the	data	and	sends	it	through	the	air	to	the	WirelessUSB	device.	The
device	returns	an	acknowledgment	 to	 the	bridge.	On	receiving	a	NAK	or	no
reply,	the	bridge	resends	the	data.
In	a	1-way	system,	a	device	sends	data	to	the	host	in	much	the	same	way	as	in
a	2-way	system	except	the	device	receives	no	acknowledgment	from	the	host.
To	help	ensure	that	the	bridge	and	host	receive	all	transmitted	data,	the	device
sends	its	data	multiple	times.	Sequence	numbers	enable	the	bridge	to	identify
previously	received	data.
With	both	systems,	the	host	thinks	it’s	communicating	with	an	ordinary	HID
and	has	no	knowledge	of	the	wireless	link.
A	WirelessUSB	 link	 can	 have	 data	 throughput	 of	 up	 to	 62.5	 kbps,	 but	 low-
speed	 throughput	 is	 limited	 by	 the	 USB	 bandwidth	 available	 for	 low-speed
control	 and	 interrupt	 transfers.	 A	 device	 and	 its	 bridge	 must	 use	 the	 same
frequency/code	 pair.	 A	 single	 WirelessUSB	 bridge	 can	 use	 multiple
frequency/code	 pairs	 to	 communicate	 with	 multiple	 devices.	 For	 faster
performance,	the	microcontroller	can	use	burst	reads	to	read	multiple	registers
in	the	WirelessUSB	chip	in	sequence.

Other	options
Other	ways	to	use	USB	in	wireless	devices	include	various	wireless	bridges	and
a	wireless	networking	option.
Chapter	7	introduced	two	USB	classes	for	wireless	data.	A	device	in	the	IrDA
bridge	 class	 can	use	 bulk	 transfers	 to	 communicate	 over	 an	 infrared	 link.	A
device	in	the	wireless	controller	class	can	use	Bluetooth	to	communicate	over
an	RF	link.
ZigBee	 is	 an	 inexpensive,	 low-power,	 RF	 interface	 suitable	 for	 building	 and
industrial	automation	and	other	applications	that	 transmit	at	up	to	250	kbps
and	 over	 distances	 of	 up	 to	 500	 m.	 DLP	 Design’s	 DLP-RF1-Z	 2.4GHz
Transceiver	module	provides	a	way	to	monitor	and	control	a	Zigbee	interface

from	a	USB	port.	The	module’s	USB	controller	 is	FTDI’s	FT245BM.	One	or
more	 DLP-RF2-Z	 2.4GHz	 Transceiver	 modules	 can	 communicate	 with	 the
DLP-RF1-Z.
Another	option	is	a	vendor-specific	wireless	bridge	that	uses	infrared,	RF,	or
other	 wireless	 modules	 designed	 for	 use	 in	 robotics	 and	 other	 low-	 to
moderate-speed	applications.	The	bridge	functions	as	a	wired	USB	device	that
also	supports	a	wireless	 interface.	A	remote	device	 that	supports	 the	wireless
interface	 carries	 out	 the	 peripheral’s	 function.	 Firmware	 passes	 received
wireless	data	to	the	host	and	passes	received	USB	data	to	the	device.
To	use	an	existing	USB	device	wirelessly,	 you	may	be	able	 to	use	one	of	 the
USB/Ethernet	products	described	earlier	in	this	chapter	along	with	a	wireless
network	interface	between	the	host	PC	and	the	hub/server.

21

Hosts	for	Embedded	Systems
A	 conventional	USB	 host	 has	many	 responsibilities.	 The	 host	must	 support
multiple	 bus	 speeds,	 manage	 communications	 with	many	 device	 types,	 and
provide	 current	 to	 every	 device	 that	 connects	 to	 the	 root	 hub.	 Embedded
systems	 might	 also	 need	 to	 access	 USB	 devices	 but	 might	 not	 have	 the
resources	to	support	all	of	the	responsibilities	of	a	conventional	USB	host.
Embedded	 systems	 that	 operate	 as	 USB	 hosts	 can	 take	 advantage	 of
alternatives	that	relax	some	requirements	and	offer	new	capabilities	tailored	to
the	needs	of	small	systems.	This	chapter	presents	options	for	small	systems.

The	Targeted	Host
An	 embedded	 system	 is	 a	 device	 that	 contains	 a	 processor	 programmed	 to
carry	out	a	dedicated	task	or	related	set	of	tasks.	Embedded	systems	typically
access	a	limited	number	of	device	types.	For	example,	a	camera	might	print	to
a	 USB	 printer.	 A	 data-acquisition	 device	 might	 store	 data	 in	 a	 USB	 drive.
Products	like	these	can	perform	their	functions	without	having	to	support	all
of	the	requirements	of	a	conventional	host.
Some	 embedded	 systems	 have	 the	 additional	 requirement	 of	 needing	 to
support	 both	USB	 host	 and	 device	 functions.	 For	 example,	 a	 camera	might
function	as	a	device	that	connects	to	a	host	for	uploading	images	and	as	a	host
that	connects	to	a	printer	for	printing	photos.
Three	 specifications	 define	 requirements	 and	 capabilities	 for	 hosts	 in	 small
systems.	The	On-The-Go	and	Embedded	Host	Supplement	to	the	USB	Revision
2.0	 Specification	 applies	 to	 hosts	 of	 any	 speed,	 while	 the	 On-The-Go	 and
Embedded	 Host	 Supplement	 to	 the	 USB	 Revision	 3.0	 Specification	 adds
information	specific	 to	SuperSpeed-capable	products	and	presumably	will	be
updated	 for	 USB	 3.1.	 The	 USB	 3.1	 specification	 defines	 connectors	 for	 use
with	Enhanced	SuperSpeed	Targeted	Hosts.

The	Targeted	Peripheral	List
The	supplements	define	requirements	 for	USB	hosts	 that	provide	a	Targeted
Peripheral	List	(TPL).	A	host	that	provides	a	TPL	is	a	Targeted	Host.
The	TPL	names	devices	that	the	manufacturer	has	successfully	tested	with	the
host.	For	example,	a	camera	might	list	manufacturers	and	model	numbers	of
supported	printers.	Other	printer	models	may	also	work,	but	 the	 list	enables
users	 to	 find	 and	 use	 known	 good	 peripherals.	 The	 specifications	 don’t	 say
where	the	list	must	appear.
On	 attachment	 of	 an	 unsupported	 peripheral,	 including	 a	 hub	 on	 a	 system
that	doesn’t	 support	hubs,	 a	Targeted	Host	 shouldn’t	 fail	 silently	but	 should
provide	a	message	or	other	indicator	to	inform	the	user	that	the	host	doesn’t
support	the	device.	The	message	should	have	enough	information	so	the	user
doesn’t	have	 to	refer	 to	a	manual	or	other	documentation	 to	understand	the
failure.
A	 Targeted	Host	 can	 support	 external	 hubs	 or	 require	 all	 devices	 to	 attach
directly	 to	a	host	port.	A	host	 that	 supports	hubs	can	support	 the	hub	class,
including	providing	500	mA	(USB	2.0)	or	900	mA	(USB	3.0)	to	bus-powered
hubs,	 or	 the	host	 can	 support	 specific	 hub	models.	On	 attachment	 of	 a	 hub
when	the	TPL	doesn’t	support	hubs,	a	user	message	should	say	specifically	that
the	Targeted	Host	doesn’t	support	hubs.

Targeted	Host	types
Two	 types	 of	 Targeted	 Hosts	 are	 the	 Embedded	 Host	 and	 the	 On-The-Go
(OTG)	device	(Figure	21-1).
An	 Embedded	Host	 has	 one	 or	more	 host	 ports	 and	may	 also	 have	 one	 or
more	device	ports.	An	OTG	device	has	a	single	port	that	can	function	as	both
a	host	port	and	a	device	port.

Figure	21-1.	An	Embedded	Host	system	can	have	multiple	USB	ports,	while	an
OTG	device	has	a	single	dual-role	port.

Bus	current
Targeted	 Hosts	 have	 more	 flexible	 requirements	 for	 providing	 bus	 current.
The	ability	for	a	device	to	draw	up	to	500	mA	or	900	mA	per	port	reduces	cost
because	 many	 devices	 can	 rely	 on	 bus	 power	 instead	 of	 external	 power
supplies.	Bus	power	is	also	convenient	for	users,	who	don’t	have	to	find	a	place
to	plug	in	a	power	supply	for	the	device.	But	providing	this	much	current,	or
even	the	100	mA	that	USB	2.0	battery-powered	hosts	must	provide,	can	be	a
burden	 for	 small	 systems,	 and	many	 devices	 don’t	 need	 this	much	 current.
Some	self-powered	devices	might	not	need	bus	power	at	all.
An	 Embedded	Host	 or	 an	 OTG	 device	 with	 a	Micro-A	 plug	 inserted	must
provide	 the	 greater	 of	 8	 mA	 of	 bus	 current	 or	 the	 maximum	 amount	 the
devices	on	the	TPL	require,	up	to	500	mA	(USB	2.0)	or	900	mA	(USB	3.0).
Like	 conventional	hosts,	Targeted	Hosts	 can	 suspend	 the	bus	 to	 save	power,
and	devices	can	use	remote	wakeup	to	request	communications	when	the	bus
is	suspended.

Turning	off	bus	power
Targeted	Hosts	can	leave	VBUS	unpowered	until	detecting	plug	insertion	by	a
variety	of	methods,	depending	on	the	receptacle	type:

Micro-AB	receptacle:	detect	insertion	of	a	Micro-A	plug	by	monitoring	the
voltage	on	the	Micro-AB	receptacle’s	ID	pin.
Series-A	 receptacle:	 detect	 insertion	 of	 a	 Series-A	 plug	 using	 Attach
Detection	Protocol	(ADP)	signaling,	required	if	the	host	runs	an	application
on	attachment	to	a	specific	device.
Standard-A	 or	 PD	 Standard-A	 receptacle:	 as	 defined	 in	 the	 USB	 Power
Delivery	Rev.	2.0,	v1.0	 specification,	use	 the	 Insertion	Detect	pin	 to	detect
plug	insertion
PD	Standard-A	receptacle:	use	the	PD	Detect	pins	to	detect	insertion	of	PD
Standard-A	plugs.

Targeted	Hosts	may	also	turn	off	VBUS	when	a	plug	is	present	and	the	bus	is
idle.	The	host	restores	power	to	VBUS	on	detecting	plug	removal	followed	by
insertion	using	any	of	the	methods	described	above	and	also	on	these	events:

If	 the	 host	 has	 an	 SRP-capable	 peripheral	 on	 the	 TPL,	 detect	 Session
Request	 Protocol	 (SRP)	 signaling	 or	 any	 user	 input.	 (See	 below	 for	 a
definition	of	SRP.)
If	the	host	communicates	over	USB	only	in	response	to	a	user	action,	detect
the	user	action.

Attach	Detection	Protocol
Conventional	 USB	 2.0	 hosts	 detect	 device	 attachment	 by	 monitoring	 for	 a
voltage	change	on	the	D+	or	D-	data	line.	But	the	USB	2.0	specification	forbids
devices	from	powering	the	pull-up	resistor	on	D+	or	D-	when	VBUS	is	absent
except	 to	 do	data-line	pulsing	 for	 the	 Session	Request	Protocol	 as	 described
below.	 The	 Attach	 Detection	 Protocol	 (ADP)	 provides	 a	 way	 for	 a	 host	 or
device	to	detect	attachment	when	VBUS	is	absent.
A	host	performs	ADP	probing	by	discharging	the	VBUS	line,	then	measuring
the	time	required	for	a	known	current	to	charge	the	line	to	a	known	voltage.	If
the	 line	 doesn’t	 charge	 within	 the	 expected	 time,	 no	 device	 is	 present.	 The
probing	 repeats	 about	 every	1.75	 s.	Host	 support	 for	ADP	 is	optional.	Hubs
don’t	support	ADP	probing	so	 if	a	hub	 lies	between	the	host	and	device,	 the
host	 can’t	 use	 ADP	 probing.	 Devices	 can	 also	 use	 ADP	 probing	 to	 detect
attachment	to	a	host.
Both	USB	2.0	and	SuperSpeed	Targeted	Hosts	and	devices	can	use	ADP.	Host
and	device	controllers	typically	require	additional	hardware	to	support	ADP.

Session	Request	Protocol
If	 the	host	has	 turned	off	VBUS,	 a	device	 that	 supports	 the	 Session	Request
Protocol	(SRP)	can	use	SRP	to	request	restoring	VBUS	and	beginning	a	new
session.
To	 request	 to	 restore	 VBUS,	 a	 device	 performs	 data-line	 pulsing,	 which
consists	of	switching	in	the	pull-up	on	D+	for	5–10	ms.	Within	5	seconds	of
detecting	data-line	pulsing,	the	host	must	turn	on	VBUS	and	reset	the	bus.
A	Targeted	Host	must	respond	to	SRP	if	the	host	ever	turns	off	VBUS	while	a
Series-A	plug	is	inserted.	Hubs	don’t	recognize	SRP	signaling,	so	if	a	hub	lies
between	the	host	and	device,	the	device	can’t	use	SRP.
In	violation	of	the	USB	2.0	specification,	some	self-powered	devices	keep	D+
pulled	up	when	VBUS	isn’t	present.	To	prevent	problems	with	these	devices,
on	detecting	that	D+	is	pulled	up	for	a	period	longer	than	10	ms,	a	host	should

disable	 responding	 to	 SRP	until	D+	goes	 low,	 indicating	 that	 the	device	has
been	removed.

Figure	21-2.	The	ID	pin	tells	the	OTG	device	is	the	attached	plug	is	a	Micro-A	or
Micro-B.

USB	 2.0	 and	 SuperSpeed	 Targeted	 Hosts	 can	 use	 SRP.	 Host	 hardware	 can
provide	support	for	SRP.	For	example,	chips	in	Microchip’s	PIC32MX	family
include	 register	 bits	 for	monitoring	 the	VBUS	 voltage	 and	 switching	 in	 the
pull-up	on	D+.

The	Micro-AB	receptacle
Chapter	20	introduced	the	Micro-AB	receptacle,	which	accepts	both	Micro-A
and	Micro-B	plugs.	OTG	devices	must	use	the	Micro-AB	receptacle.	The	On-
The-Go	and	Embedded	Host	Supplement	 to	 the	USB	Revision	2.0,	 version	1.1
specifies	that	Embedded	Hosts	may	also	use	Micro-AB	receptacles.
The	 Micro-USB	 Cables	 and	 Connectors	 specification	 defines	 the	 USB	 2.0
Micro-AB	 receptacle	 and	 Micro-A	 and	 Micro-B	 plugs.	 The	 USB	 3.1
specification	defines	a	Micro-AB	receptacle	and	Micro-A	and	Micro-B	plugs
for	Enhanced	SuperSpeed.	The	USB	3.1	Micro-AB	receptacle	adds	contacts	for
Enhanced	SuperSpeed	and	can	accept	a	USB	3.1	Micro-B,	USB	3.1	Micro-A,
USB	2.0	Micro-B,	or	USB	2.0	Micro-A	plug.	USB	3.1	Micro-A	and	Micro-B
plugs	don’t	fit	USB	2.0	Micro-AB	receptacles.
There	 is	no	approved	Micro-A	receptacle	so	Micro-A	plugs	must	attach	to	a
Micro-AB	receptacle.	The	USB-IF	deprecated	the	Mini-AB	receptacle	defined
in	version	1.0	of	the	OTG	specification.
Micro-A	 and	Micro-B	 plugs	 include	 an	 ID	 pin	 that	 enables	 a	 device	with	 a
Micro-AB	receptacle	to	detect	whether	a	Micro-A	or	Micro-B	plug	is	inserted.
On	a	Micro-B	plug,	 the	ID	pin	 is	open	or	connected	 to	 the	ground	pin	by	a

resistance	greater	than	1	MΩ.	(The	MicroUSB	Micro-B	ID	Pin	Resistance	ECN
raised	the	minimum	value	from	its	original	100	kΩ.)	On	a	Micro-A	plug,	the
ID	pin	connects	to	the	GND	pin	(Figure	21-2).
At	the	Micro-AB	receptacle,	a	pull-up	resistor	much	lower	than	1	MΩ	on	the
ID	pin	enables	identifying	the	type	of	an	attached	plug.	If	the	pin	is	a	logic	low,
the	plug	is	a	Micro-A,	and	if	the	pin	is	a	logic	high,	the	plug	is	a	Micro-B.

Embedded	Hosts
The	 host	 ports	 of	 an	 Embedded	 Host	 function	 much	 like	 the	 ports	 in
conventional	 PCs	 but	 without	 the	 need	 to	 support	 the	 bus	 speeds	 and	 bus
currents	the	targeted	peripherals	don’t	need.

Differences	from	conventional	host	ports
Table	21-1	compares	the	requirements	for	USB	2.0	Embedded	Host	ports	and
conventional	host	ports.
A	USB	2.0	Embedded	Host	can	support	just	about	any	combination	of	speeds
needed	 for	 the	 targeted	peripherals.	 If	 all	of	 the	 targeted	peripherals	use	 low
speed	 or	 all	 use	 full	 speed,	 the	 system	 needs	 to	 support	 only	 one	 speed.	 A
system	 that	 supports	high	 speed	must	 also	 support	 full	 speed.	All	host	ports
should	support	the	same	speeds	and	devices.
A	SuperSpeed-capable	Embedded	Host	must	also	support	operation	as	a	USB
2.0	Embedded	Host	at	 full	speed,	with	support	 for	high	speed	recommended
and	support	for	low	speed	required	only	if	needed	by	a	device	on	the	TPL.

Host	connectors
An	Embedded	Host	can	have	one	or	more	host	ports.	The	port(s)	can	use	any
combination	of	Standard-A	and	Micro-AB	receptacles.
An	Embedded	Host	with	a	Micro-AB	receptacle	requires	a	cable	with	a	Micro-
A	plug	and	a	plug	that	mates	with	the	desired	peripheral.	Because	the	Micro-
AB	receptacle	can	also	accept	a	Micro-B	plug,	a	user	could	use	a	Series-A-to-
Micro-B	 cable	 to	 mistakenly	 connect	 another	 host	 port	 to	 an	 Embedded
Host’s	Micro-AB	receptacle.	To	prevent	two	voltage	sources	from	connecting
on	 VBUS,	 an	 Embedded	 Host	 with	 a	 Micro-AB	 receptacle	 should	 enable
VBUS	only	when	the	port’s	ID	pin	is	logic	low,	indicating	that	a	Micro-A	plug
is	inserted.

Designers	 of	 products	 that	 have	 both	 Standard-A	 and	 Series-B	 receptacles
should	use	product	design,	labeling,	and	product	literature	to	inform	users	of
the	product’s	function.	In	particular,	the	product’s	design	and	labeling	should
make	it	clear	that	the	product	isn’t	a	hub.

Functioning	as	a	USB	device
An	embedded	 system	with	USB	host	 support	 can	 also	provide	 a	device	port
and	 function	as	a	USB	device.	For	example,	 a	data	 logger	might	have	a	host
port	that	connects	to	a	drive	for	saving	data	and	a	device	port	that	connects	to
a	PC	 for	 uploading	 data.	Unlike	OTG	devices,	which	 can	 perform	only	 one
function	 at	 a	 time,	 a	 system	 with	 conventional	 host	 and	 device	 ports	 can
function	as	a	host	and	device	at	the	same	time.

Table	21-1:	USB	2.0	Embedded	Hosts	have	different	requirements	compared	to
conventional	USB	2.0	hosts.
Capability	or	Feature Conventional	Host USB	2.0	Embedded	Host

Communicate	at	high	speed Yes Must	support	all	devices	on	the	TPL.
May	support	high,	full,	and	low	speeds;
high	and	full	speeds;	full	and	low	speeds;
full	speed	only;	or	low	speed	only.

Communicate	at	full	speed Yes

Communicate	at	low	speed Yes

Support	external	hubs Yes Optional

Provide	Targeted	Peripheral	List No Yes

Minimum	available	bus	current	per
port

500	mA	(100	mA	if
battery-powered)

8	mA	or	the	amount	needed	by	targeted
peripherals,	whichever	is	greater

OK	to	turn	off	VBUS	when
unneeded?

No	except	as	defined	in
USB	Power	Delivery

Yes

Connector 1	or	more	Standard-A
receptacles

1	or	more	Standard-A	and/or	Micro-AB
receptacles

OTG	devices
An	 OTG	 device	 can	 function	 as	 both	 a	 limited-capability	 host	 and	 a
peripheral,	switching	roles	as	needed.	When	connected	to	a	host,	including	an
OTG	device	 functioning	as	 a	host,	 the	OTG	port	 functions	as	 a	device	port.
When	connected	to	a	peripheral	on	the	OTG	device’s	TPL,	including	an	OTG
device	functioning	as	a	peripheral,	the	OTG	port	functions	as	a	host	port.
Compared	to	Embedded	Host	systems,	OTG	adds	complexity	by	requiring	the

ability	 to	 function	 as	 a	 peripheral	 and	 requiring	 support	 for	 role-swapping
protocols.	 But	OTG	 reduces	 the	 hardware	 cost	 and	 product	 size	 by	 using	 a
single	connector	for	both	functions.
An	alternative	 to	an	OTG	device	 is	a	Dual-Role	Device	(DRD)	as	defined	 in
the	USB	Type-C	connector	specification.	A	DRD	has	a	USB	Type-C	connector
and	 can	 function	 as	 a	 host	 or	 device.	 Protocols	 defined	 in	 the	 Type-C
specification	enable	the	device	to	detect	which	role	to	use	when	connected	to	a
host	 or	 device	 with	 a	 USB	 Type-C	 connector	 and	 to	 swap	 roles	 when
connected	to	another	DRD.

Requirements
To	 support	 OTG,	 the	 Targeted	Host	must	 have	 a	 hardware	 OTG	 port	 and
support	 for	 protocols	 for	 role	 switching.	 Table	 21-2	 compares	 the
requirements	 of	 a	 USB	 2.0	 conventional	 host	 and	 a	 USB	 2.0	 OTG	 device
functioning	as	a	host.

Table	 21-2:	 USB	 2.0	 OTG	 hosts	 have	 different	 requirements	 compared	 to
conventional	USB	hosts.
Capability	or	Feature USB	2.0	Conventional

Host
USB	2.0	OTG	device	Functioning	as	a
Host

Communicate	at	high	speed Yes As	needed	to	support	targeted
peripherals

Communicate	at	full	speed Yes Yes

Communicate	at	low	speed Yes As	needed	to	support	targeted
peripherals	(not	allowed	when	operating
as	a	peripheral)

Support	external	hubs Yes Optional

Provide	Targeted	Peripheral	List No Yes

Function	as	a	peripheral Requires	a	separate
device	port

Yes,	when	not	functioning	as	a	host

Support	Attach	Detection	Protocol
(ADP)

Optional Optional

Support	Session	Request	Protocol
(SRP)

Optional Yes	if	the	device	supports	HNP	as	a	B-
device;	otherwise	optional

Support	Host	Negotiation	Protocol
(HNP)

No Yes	as	an	A-device;	yes	as	a	B-device	if
the	TPL	includes	an	OTG	device

Minimum	available	bus	current	per
port

500	mA	(100	mA	if
battery-powered)

8	mA	or	the	amount	needed	by	targeted
peripherals,	whichever	is	greater

OK	to	turn	off	VBUS	when
unneeded?

No Yes

Connectors 1	or	more	Standard-A 1	Micro-AB

An	USB	2.0	OTG	device	must	provide	all	of	the	following:
A	Targeted	Peripheral	List	(TPL).
The	ability	 to	 function	as	 a	host	 that	 can	communicate	with	one	or	more
full-speed	devices.	Support	for	high	speed	and	low	speed	is	required	only	as
needed	by	devices	on	the	TPL.
The	 ability	 to	 function	 as	 a	 full-speed	 peripheral.	 Functioning	 as	 a	 high-
speed	 peripheral	 is	 optional.	 The	 peripheral	 function	 must	 not	 use	 low
speed.
When	functioning	as	an	A-device	(Micro-A	plug	inserted),	support	for	the
Host	Negotiation	Protocol	(HNP)	for	role	swapping.	When	functioning	as	a
B-device,	support	for	HNP	is	required	if	the	TPL	includes	OTG	devices.
If	the	device	ever	turns	off	VBUS	with	a	Micro-A	plug	inserted,	the	ability
to	 respond	 to	 the	 Session	 Request	 Protocol	 (SRP).	 If	 the	 device	 supports
HNP	when	functioning	as	a	B-device	(Micro-B	plug	inserted),	the	ability	to
initiate	SRP.
Support	for	remote	wakeup.
One	and	only	one	Micro-AB	receptacle.
When	 functioning	 as	 the	A-device,	 the	 ability	 to	 provide	 the	 bus	 current
required	by	peripherals	on	the	TPL.
A	display,	indicators,	or	other	way	to	communicate	with	users.

An	 OTG	 device	 that	 supports	 operating	 as	 a	 SuperSpeed	 host	 must	 also
support	operating	as	a	USB	2.0	host.	If	the	host	function	supports	SuperSpeed,
support	for	host	operation	at	high	speed	is	recommended.
An	 OTG	 device	 that	 supports	 operation	 as	 a	 USB	 2.0	 host	 but	 not	 as	 a
SuperSpeed	 host	 may	 support	 operation	 as	 a	 SuperSpeed	 peripheral.	 If	 the
peripheral	function	supports	SuperSpeed,	support	for	high	speed	operation	as
a	peripheral	is	recommended.
When	 functioning	 as	 a	 host,	 the	 OTG	 device	 can	 communicate	 with	 the
devices	in	its	TPL.	The	targeted	peripherals	can	be	any	combination	of	other
OTG	devices	and	peripheral-only	devices.

OTG	communications	occur	 in	 sessions.	A	 session	begins	when	VBUS	 rises
above	 the	 session-valid	 threshold	 voltage	 and	 ends	 when	 VBUS	 falls	 below
that	 voltage.	To	conserve	power,	 an	OTG	device	 that	 is	providing	power	on
VBUS	can	remove	bus	power	when	the	bus	is	idle.

Cables	and	connectors
An	OTG	device	has	one	and	only	one	Micro-AB	receptacle,	which	can	accept
a	Micro-A	plug	or	 a	Micro-B	plug.	Figure	21-3	 shows	 cabling	 options.	 Two
USB	2.0	OTG	devices	connect	to	each	other	via	a	cable	with	a	Micro-A	plug
on	 one	 end	 and	 a	Micro-B	 plug	 on	 the	 other	 end.	 It	 doesn’t	matter	 which
device	has	which	plug.
A	 host	 or	 upstream	 hub	 connects	 to	 an	 OTG	 device	 via	 a	 Standard-A-to-
Micro-B	 cable.	A	 peripheral	with	 a	Micro-B	 receptacle	 connects	 to	 an	OTG
device	 with	 a	 Micro-A-to-Micro-B	 cable.	 A	 peripheral	 with	 a	 permanently
attached	cable	with	a	Micro-A	plug	attaches	directly	to	the	OTG	device.
A	peripheral	with	a	Standard-B	or	Mini-B	receptacle	or	a	captive	cable	must
use	 an	 adapter	 to	 connect	 to	 an	 OTG	 device	 (Figure	 21-4).	 The	 adapter,
defined	in	the	Micro-USB	Cables	and	Connectors	specification,	has	a	Micro-A
plug	 and	 a	 Standard-A	 receptacle.	 The	 Micro-A	 plug	 attaches	 to	 the	 OTG
device.	The	Standard-A	receptacle	accepts	a	Standard-A	plug	from	a	captive	or
detachable	 cable	 that	 connects	 to	 a	 peripheral.	 The	 adapter	 is	 the	 only
approved	adapter	for	use	with	Series-A	and	Series-B	cables.

Figure	 21-3.	An	USB	 2.0	OTG	device	 can	 communicate	with	 a	USB	host	 or	 a
device	on	the	OTG	device’s	target	peripheral	list.

The	A-Device	and	B-Device
Every	OTG	connection	is	between	an	A-device	and	a	B-device.	An	OTG	port
with	a	Micro-A	plug	 inserted	 is	an	A-Device.	The	device	at	 the	other	end	of
the	cable,	which	can	be	another	OTG	device	or	a	conventional	peripheral,	 is
the	B-device.	On	attachment,	 the	A-device	 functions	 as	 the	host,	 and	 the	B-
device	 functions	as	 the	peripheral.	Two	 connected	OTG	devices	 can	use	 the
Host	Negotiation	Protocol	(HNP)	to	swap	roles.

Figure	21-4.	This	adapter	enables	connecting	an	OTG	device	with	a	Micro-AB
receptacle	 to	 a	 device	 that	 uses	 a	 captive	 cable	 or	 a	 detachable	 cable	 with	 a
Standard-A	plug.

The	 A-device	 is	 always	 the	 source	 of	 VBUS	 even	 when	 functioning	 as	 a
peripheral.	An	OTG	device	must	detect	the	resistance	at	the	OTG	connector’s
ID	pin	and	implement	the	host	or	device	function	accordingly.
To	connect	an	OTG	device	to	a	conventional	host,	use	a	cable	with	a	Micro-B
plug	for	the	OTG	port	and	a	Standard-A	plug	for	the	host.	When	connected	to
a	conventional	host,	the	OTG	device	functions	as	a	peripheral.
To	 connect	 an	 OTG	 port	 to	 a	 conventional	 peripheral,	 use	 the	 adapter
described	above	along	with	a	cable	that	has	a	Standard-A	plug	and	a	Series-B
plug.	Cables	with	a	Micro-A	plug	and	either	a	Standard-B	plug	or	Mini-B	plug
are	 not	 allowed.	 When	 connected	 to	 a	 conventional	 peripheral,	 the	 OTG
device	functions	as	a	host	only.

The	OTG	descriptor
The	 OTG	 descriptor	 tells	 the	 host	 whether	 an	 attached	 B-device	 supports
ADP,	 SRP,	 and	HNP.	Any	B-device	 that	 supports	ADP,	 SRP,	 or	HNP	must
return	 an	 OTG	 descriptor	 in	 response	 to	 a	 Get	 Descriptor	 request	 for	 the
configuration	descriptor.
The	OTG	specification	doesn’t	say	where	to	insert	the	descriptor,	but	typically
the	 OTG	 device	 returns	 the	 OTG	 descriptor	 immediately	 following	 the
configuration	descriptor.	The	OTG	device	must	also	return	the	descriptor	 in
response	to	a	Get	Descriptor(OTG)	request.
Table	21-3	shows	 the	contents	of	 the	descriptor.	The	bmAttributes	 field	 tells
whether	the	device	supports	various	OTG	protocols.	An	A-device	doesn’t	need
to	know	in	advance	if	a	device	supports	SRP,	but	the	information	is	useful	in
compliance	testing.

Table	 21-3:	 The	 OTG	 descriptor	 informs	 the	 host	 about	 support	 for	 OTG
protocols.
Offset Field Size Description

0 bLength 1 Descriptor	length	(0x05)

1 bDescriptorType 1 OTG	(0x09)

2 bmAttributes 1 Protocols	supported	as	B-device
(1	=	supported):
D0:	SRP
D1:	HNP
D2:	ADP
D3:	RSP	(USB	3.1)
D4–D7:	reserved,	set	to	zero

3 bcdOTG 2 OTG	and	EH	supplement	revision	number	in	BCD
format	(release	2.0	=	0x0200).	This	field	is	present
only	if	the	revision	number	>=	2.

Host	Negotiation	Protocol	(HNP)
The	 Host	 Negotiation	 Protocol	 (HNP)	 enables	 a	 B-device	 to	 request	 to
function	 as	 a	 host.	 HNP	means	 that	 users	 who	 connect	 two	 USB	 2.0	 OTG
devices	don’t	have	worry	about	which	end	of	the	cable	goes	where.	As	needed,
the	devices	use	HNP	to	swap	roles.
When	two	OTG	devices	connect	 to	each	other,	 the	A-device	enumerates	 the
B-device	 in	 the	 same	way	 that	 a	 standard	USB	 host	 enumerates	 its	 devices.
During	 enumeration,	 the	 A-device	 retrieves	 the	 B-device’s	 OTG	 descriptor,
which	indicates	whether	the	B-device	supports	HNP.
If	 the	 B-device	 supports	HNP,	 the	 A-device	 can	 send	 a	 Set	 Feature	 control
request	with	a	request	code	of	b_hnp_enable	(0x03).	The	request	informs	the
B-device	that	it	can	use	HNP	to	request	to	function	as	the	host	when	the	bus	is
suspended.
At	any	time	after	enumerating,	an	A-device	 that	has	no	communications	 for
the	B-device	can	suspend	the	bus.	The	B-device	then	can	use	HNP	to	request
to	communicate.	The	B-device	might	use	HNP	in	response	to	user	input	such
as	pressing	a	button,	or	firmware	can	initiate	HNP	without	user	intervention.
Support	for	HNP	ensures	that	an	OTG	B-device	can	request	to	communicate
with	the	peripheral	function	of	an	attached	and	supported	OTG	device.	If	the
TPL	 includes	 no	OTG	 devices,	 the	 OTG	 B-device	 isn’t	 required	 to	 support
HNP	because	the	supported	peripherals	will	never	use	it.

Standard	 hubs	 don’t	 recognize	 HNP	 signaling.	 If	 a	 hub	 is	 between	 the	 A-
device	and	the	B-device,	 the	A-device	must	not	send	the	hnp_enable	request
and	the	B-device	can’t	use	HNP.
When	idle	or	functioning	as	a	host,	an	OTG	device	should	switch	in	its	pull-
down	 resistors	 on	 D+	 and	 D-.	When	 functioning	 as	 a	 peripheral,	 an	 OTG
device	should	disable	its	pull-down	resistor	only	on	D+.

Requesting	to	operate	as	a	host
This	is	the	protocol	the	B-device	uses	to	request	to	operate	as	the	host:
1.	The	A-device	suspends	the	bus.
2.	If	the	devices	were	communicating	at	full	speed,	the	B-device	removes	itself
from	the	bus	by	switching	out	 its	pull-up	resistor	on	D+.	If	 the	devices	were
communicating	 at	 high	 speed,	 the	 B-device	 enters	 full-speed	 mode	 by
switching	in	its	pull-up	on	D+	briefly.	The	B-device	then	switches	the	pull-up
out.	The	bus	segment	is	in	the	SE0	state.
3.	The	A-device	detects	 the	SE0	state	and	connects	 to	 the	bus	as	a	device	by
switching	in	its	pull-up	resistor	on	D+,	placing	the	bus	segment	in	the	J	state.
4.	The	B-device	detects	the	J	state	and	resets	the	bus.
5.	 The	 B-device	 enumerates	 the	 A-device	 and	 can	 perform	 other
communications	with	the	device.

Returning	to	operation	as	a	peripheral
When	finished	communicating,	the	B-device	returns	to	its	role	as	a	peripheral
using	the	following	protocol:
1.	The	B-device	stops	all	bus	activity	and	may	switch	in	its	pull-up	resistor.
2.	The	A-device	detects	a	 lack	of	activity	for	at	 least	3	ms,	enters	full-speed	mode	if	communicating	at

high	speed,	and	switches	out	its	pull-up	resistor	or	removes	VBUS	to	end	the	session.
3.	If	VBUS	is	present	and	the	B-device	didn’t	switch	in	its	pull-up	in	Step	1,	the	B-device	switches	in	its

pull-up	to	connect	as	a	peripheral.
4.	If	VBUS	is	present,	the	A-device	can	reset	the	bus	and	enumerate	and	communicate	with	the	B-device

or	end	the	session	by	removing	VBUS.

Requesting	device	status
During	an	active	OTG	session,	a	host	learns	if	a	device	wants	to	function	as	a
host	by	initiating	a	control	transfer	with	a	Get_Status	request	with	wIndex	=
0xF000.	In	the	Data	stage	of	the	request,	the	device	returns	0x01	if	the	device
wants	 to	 function	as	 the	host	or	0x00	 if	not.	During	active	 sessions	between

two	OTG	devices,	the	host	must	issue	the	request	every	1–2	s.	On	receiving	a
request	to	function	as	the	host,	the	currently	active	host	must	suspend	the	bus
within	2	s	to	enable	the	remote	device	to	initiate	HNP.

Hardware	Support
OTG	controllers	may	have	hardware	support	for	HNP.	For	example,	chips	in
the	 Microchip	 PIC32MX	 family	 contain	 register	 bits	 to	 detect	 a	 connect
condition	on	the	port,	control	the	pull-up	on	D+,	and	enable	and	disable	host
operations.

Role	Swap	Protocol
Instead	of	HNP,	two	directly	connected	OTG	devices	operating	at	SuperSpeed
use	the	Role	Swap	Protocol	(RSP)	to	swap	roles.	With	RSP,	an	A-device	or	B-
device	functioning	as	a	peripheral	can	request	to	function	as	a	host,	and	a	B-
device	functioning	as	a	host	can	release	its	host	function	to	an	A-device.
These	are	the	steps	for	a	role	swap	using	RSP:
1.	The	OTG	device	operating	as	a	peripheral	issues	a	DEV_NOTIFICATION
TP	 with	 a	 HOST_ROLE_REQUEST	 notification	 and	 the	 notification’s	 RSP
Phase	field	set	to	INITIATE.
2.	 To	 release	 the	 host	 role,	 an	 OTG	 device	 operating	 as	 a	 host	 sends	 a
Set_Feature(NTF_HOST_REL)	request.
3.	The	OTG	device	operating	as	a	peripheral	confirms	that	the	device	is	ready
for	 the	 role	 swap	 by	 issuing	 a	 Device	 Notification
TP(HOST_ROLE_REQUEST)	notification	with	RSP	Phase	set	to	CONFIRM.
4.	The	OTG	device	operating	as	a	host	then	initiates	the	role	swap	by	issuing	a
Warm	Reset.	 Following	 the	Warm	Reset,	 the	 device	 previously	 operating	 as
the	host	 starts	up	as	a	peripheral,	and	 the	device	previously	operating	as	 the
peripheral	starts	up	as	a	host.
In	one	case,	the	ability	to	communicate	at	SuperSpeed	depends	on	the	cable’s
orientation.	If	the	A-device	supports	SuperSpeed	only	as	a	peripheral	and	the
B-device	supports	SuperSpeed	as	a	host,	the	link	uses	a	USB	2.0	speed	because
the	A-device,	which	must	be	the	initial	host,	doesn’t	support	SuperSpeed	as	a
host.	To	use	SuperSpeed,	the	user	must	reverse	the	cable.	When	operating	at
SuperSpeed,	 this	 type	 of	 link	 can’t	 use	 RSP	 because	 the	 B-device	 doesn’t
support	 SuperSpeed	 as	 a	 host.	 To	 swap	 roles,	 the	 B-device	must	 disconnect

and	reconnect	at	a	USB	2.0	speed	to	enable	using	HNP.

Choosing	a	development	platform
Because	 of	 the	 host’s	many	 responsibilities,	 adding	USB	host	 capability	 to	 a
small	 embedded	 system	 can	 seem	 like	 a	 daunting	 task.	 But	 a	 variety	 of
hardware	and	programming	platforms	can	help	ease	the	way.

Comparing	options
Host	 hardware	 and	 firmware	 are	 available	 for	 just	 about	 any	 need.	 Systems
that	 need	 capabilities	 comparable	 to	 conventional	 PCs	 can	 use	 high-end
processors	 targeted	 to	 embedded	 applications.	 Cost-sensitive	 systems	 that
need	 good	 performance	 can	 use	mid-range	microcontrollers	 with	USB	 host
support	either	on-chip	or	in	an	external	controller.	Where	high	performance
isn’t	 essential,	 even	 8-bit	 microcontrollers	 can	 access	 USB	 devices	 by
interfacing	to	host	modules	that	manage	USB	protocols.	Many	processors	and
USB	interface	chips	with	host	ports	also	support	OTG	functions.
The	 amount	 and	 type	 of	 programming	 the	 developer	 needs	 to	 provide	 host
communications	varies	depending	on	the	host	hardware	and	the	amount	and
type	of	 firmware	 support	 for	host	 communications.	On	 some	platforms,	 the
OS	or	a	host	module	handles	many	or	all	of	the	low-level	USB	host	functions.
With	 other	 hardware,	 the	 developer	must	 provide	 firmware	 for	 these	 tasks.
When	 the	 hardware	 needs	 firmware	 support,	 chip	 vendors	 typically	 provide
example	 code.	 Table	 21-4	 compares	 options	 for	 implementing	 an	 Targeted
Host	in	an	embedded	system.

Embedded	PC
USB	 was	 created	 as	 an	 interface	 for	 PCs,	 and	 OSes	 such	 as	 Linux	 and
Windows	have	rich	support	for	USB	host	communications.	An	embedded	PC
can	 take	 advantage	 of	 this	 built-in	 support	 by	 using	 a	 Linux	 distribution	 or
Windows	edition	targeted	to	small	systems.
In	 an	 embedded	PC,	 applications	 can	 access	 devices	 in	much	 the	 same	way
that	 applications	 access	 devices	 on	 conventional	 PCs.	 The	 OS	 manages
enumeration	 and	other	 low-level	 protocols	 and	provides	 drivers	 for	 popular
USB	device	classes.
Embedded	 PCs	 can	 use	 many	 of	 the	 same	 development	 tools	 used	 for

developing	mainstream	 PC	 applications.	 You	 can	 use	 boards	 with	 Linux	 or
Windows	installed	or	install	an	OS	yourself	on	suitable	hardware.
The	 ever-evolving	Windows	Embedded	 family	 includes	 editions	 suitable	 for
smartphones,	 point-of-sale	 devices,	 automotive	 applications,	 and	 more.
Windows	Embedded	editions	 include	USB	host	drivers	and	support	 for	USB
classes.
Linux	has	a	variety	of	distributions	that	are	targeted	to	embedded	systems	and
have	USB	host	 support.	The	Android	OS,	based	on	Linux,	 also	 supports	 the
USB	host	 function.	Two	books	 that	 focus	on	USB	communications	 in	Linux
embedded	 systems	 are	 my	 USB	 Embedded	 Hosts	 and	 Rajaram	 Regupathy’s
Bootstrap	 Yourself	 with	 Linux-USB	 Stack.	 For	 USB	 under	 Android,	 see
Unboxing	Android	USB	by	Rajaram	Regupathy.
For	sources	of	hardware	for	Windows	Embedded,	Microsoft	maintains	a	web
page	 of	Windows	 Embedded	 Board	 Support	 Packages.	 For	 a	 similar	 list	 for
Linux,	see	elinux.org.

Table	 21-4:	 Many	 hardware	 options	 are	 available	 for	 implementing	 hosts	 in
embedded	systems.
System	Type Sources Host	Communications	Support

Embedded	PC	with	host	controller Products	listed	on	the
Windows	Embedded	Board
Support	Packages	web	page
and	elinux.org

Linux	or	Windows	API,	other
protocols	supported	by	the	OS	and
programming	environment

General-purpose	microcontroller
with	on-chip	host	controller

Atmel,	Cypress
Semiconductor,	Freescale
Semiconductor	Inc.,
Microchip	Technology

Libraries	from	chip	provider

External	host	interface	chip	used
with	general-purpose
microcontroller

Maxim	Integrated	Products,
Inc.

Libraries	from	chip	provider

Processor	with	on-chip	host	module FTDI	(Vinculum	VNC2) Vendor-specific	API

General-purpose	microcontroller
A	 general-purpose	microcontroller	 or	 other	 processor	with	 an	 on-chip	 host
controller	 allows	 full	 control	 of	 the	 firmware	 with	 low	 per-unit	 cost.	 The
downside	 is	 the	 effort	 needed	 to	 program	 host	 communications.	 Firmware
typically	manages	device	detecting	 and	 enumeration,	 communications	down

http://elinux.org
http://elinux.org

to	the	transaction	level,	and	bus	power.	Chip	vendors	often	provide	firmware
libraries	that	implement	basic	host	communications	and	provide	a	foundation
for	application	programming.
Sources	 for	 microcontrollers	 and	 processors	 with	 on-chip	 host	 controllers
include	Atmel,	Cypress,	Freescale,	and	Microchip.

Interface	chip
A	microcontroller	or	other	processor	 that	doesn’t	have	an	on-chip	USB	host
controller	 can	 use	 an	 external	 host	 interface	 chip.	 Maxim’s	 MAX3421E	 is
similar	 to	 the	MAX-3420E	 introduced	 in	 Chapter	 6	 but	 adds	 the	 ability	 to
function	as	a	full-	and	low-speed	host.

Host	module
For	projects	that	don’t	have	the	firmware	resources	to	support	USB	protocols,
a	USB	host	module	can	be	a	solution.	The	module	manages	enumeration	and
low-level	 communications	 and	 supports	 commands	 or	 an	API	 for	 accessing
popular	device	types.	FTDI’s	VNC2	(Vinculum	II)	is	a	host	module	with	built-
in	 support	 for	 accessing	 drives,	 keyboards,	 and	 other	 devices.	 A	 free	 ebook
that	focuses	on	the	VNC2,	Embedded	USB	Design	By	Example	by	John	Hyde,
is	available	from	FTDI.
The	VNC2	has	an	on-chip	processor	core	that	supports	an	API	for	accessing
USB	devices.	FTDI	provides	a	C	compiler	 for	 the	processor.	Supported	USB
device	 classes	 includes	mass	 storage,	 hub,	 HID,	 still	 image,	 and	 audio.	 The
module	can	also	communicate	with	FTDI’s	FT232x	USB	UART	devices.
The	 VNC2	 also	 supports	 an	 alternate	 mode	 that	 can	 use	 an	 asynchronous
serial	 (UART),	 SPI,	 or	 parallel	 interface	 to	 an	 external	 processor.	 The
processor	 uses	 defined	 commands	 to	 exchange	 data	 with	 USB	 devices.	 The
VNC2	handles	the	USB	protocols	and	communications.	This	mode	emulates
the	first-generation	Vinculum.

I	hope	you’ve	 found	this	book	useful.	For	example	code,	updates,	and	more,
please	 visit	 my	 website:	 janaxelson.com.	 I	 wish	 you	 success	 with	 your	 USB
projects!

http://www.janaxelson.com

	Title Page
	Copyright
	Contents
	Introduction
	1 USB Basics
	Uses and limits
	Benefits for users
	Benefits for developers
	Addressing USB’s limits
	USB and Ethernet
	USB and Thunderbolt

	Evolution of an interface
	USB 1.0
	USB 1.1
	USB 2.0
	USB 2.1
	USB 3.0
	USB 3.1
	Embedded Host and On-The-Go

	Bus components
	Topology
	Bus speed considerations
	Terminology

	Division of labor
	Host responsibilities
	Device responsibilities
	Bus speeds and data throughput

	Developing a device
	Components
	Tools for developing
	Steps in developing a project

	USB 3.1 essentials
	Features
	Compatibility
	Cables
	Power

	2 Inside USB Transfers
	Transfer basics
	Essentials
	Purposes for communication
	Managing data on the bus

	Elements of a transfer
	Endpoints: the source and sink of data
	Transaction types
	Pipes: connecting endpoints to the host
	Transfer types
	Stream and message pipes
	Initiating a transfer

	USB 2.0 transactions
	Transaction phases
	Packet sequences
	Timing constraints and guarantees
	Split transactions

	Ensuring successful transfers
	Status and control
	Reporting the status of control transfers
	Error checking

	Enhanced SuperSpeed transactions
	Packet types
	Transferring data
	Link Management Packets

	3 A Transfer Type for Every Purpose
	Control transfers
	Availability
	Structure
	Data size
	Speed
	Detecting and handling errors
	Device responsibilities

	Bulk transfers
	Availability
	Structure
	Data size
	Speed
	Detecting and handling errors
	Device responsibilities

	Interrupt transfers
	Availability
	Structure
	Data size
	Speed
	Detecting and handling errors
	Device responsibilities

	Isochronous transfers
	Availability
	Structure
	Data size
	Speed
	Detecting and handling errors
	Device responsibilities

	More about time-critical transfers
	Bus bandwidth
	Device capabilities
	Host capabilities
	Host latencies

	4 Enumeration: How the Host Learns about Devices
	Events and requests
	Getting to the Configured state
	Device removal
	Tips for successful enumeration

	Descriptors
	Types
	Device
	Device_qualifier
	Configuration
	Other_speed_configuration
	Interface association
	Interface
	Endpoint
	SuperSpeed endpoint companion
	SuperSpeedPlus isochronous endpoint companion
	String
	Binary device object store (BOS) and device capability
	OTG descriptor
	Microsoft OS descriptors
	Updating descriptors to USB 2.0
	Updating descriptors to USB 3.1

	5 Control Transfers: Structured Requests for Critical Data
	Elements of a control transfer
	Setup stage
	Data stage
	Status Stage
	Handling errors
	Device firmware

	Standard requests
	Get Status
	Clear Feature
	Set Feature
	Set Address
	Get Descriptor
	Set Descriptor
	Get Configuration
	Set Configuration
	Get Interface
	Set Interface
	Synch Frame
	Set SEL
	Set Isochronous Delay

	Other requests
	Class-specific requests
	Vendor-defined requests

	6 Chip Choices
	Components of a USB device
	Inside a USB 2.0 controller
	Other device components

	Simplifying device development
	Device requirements
	Documentation and example code
	Host driver
	Development boards

	USB microcontrollers
	Microchip PIC18
	Cypress EZ-USB
	ARM processors

	Controllers that interface to CPUs
	Maxim MAX3420E
	PLX Technology USB 3380
	FTDI interface chips

	7 Device Classes
	Purpose
	Approved specifications
	Elements of a class specification

	Defined classes
	Audio
	Audio/Video
	Billboard
	Communications
	Content security
	Device firmware upgrade
	Human interface
	IrDA bridge
	Mass storage
	Personal healthcare
	Printer
	Smart card
	Still image capture
	Test and measurement
	Video
	Classes defined by other specifications

	Implementing non-standard functions
	Choosing a driver
	Using a generic driver
	Converting from RS-232
	Converting from the parallel port
	Connecting two PCs

	8 How the Host Communicates
	Device drivers
	The layered driver model
	User and kernel modes

	Inside the layers
	Applications
	User-mode client drivers
	Kernel-mode client drivers

	Low-level host drivers
	USB 3.0 drivers
	USB 2.0 drivers

	Writing drivers
	Kernel mode
	User mode
	Testing tools

	Using GUIDs
	Device setup GUIDs
	Device interface GUIDs

	9 Matching a Driver to a Device
	Using Device Manager
	Viewing devices
	Property pages

	Device information in the registry
	The hardware key
	The class key
	The driver key
	The services key

	Using INF files
	Driver signing requirements
	File structure
	Inside an INF file

	Using device identification strings
	Finding a match
	When to provide an INF file

	Tools and diagnostic aids
	Tips for using INF files
	What the user sees

	10 Detecting Devices
	A brief guide to calling API functions
	Managed and unmanaged code
	Managing data

	Finding a device
	Obtaining the device interface GUID
	Requesting a pointer to a device information set
	Identifying a device interface
	Requesting a structure with the device path name
	Extracting the device path name
	Closing communications

	Obtaining a handle
	Requesting a communications handle
	Closing the handle

	Detecting device attachment and removal
	Using WMI
	Adding a handler for newly arrived devices
	Detecting the target device
	Adding a handler for removed devices

	11 Human Interface Devices: Capabilities
	What is a HID?
	Hardware requirements
	Firmware requirements

	Descriptors
	The HID interface
	HID class descriptor
	Report descriptors

	HID-specific requests
	Get Report
	Get Idle
	Get Protocol
	Set Report
	Set Idle
	Set Protocol

	Transferring data
	Writing firmware
	Tools

	12 Human Interface Devices: Reports
	Report structure
	Control and data item values
	Item format

	The Main item type
	Input, Output, and Feature items
	Collections

	The Global item type
	Identifying the report
	Describing the data’s use
	Converting units
	Converting raw data
	Describing the data’s size and format
	Saving and restoring Global items

	The Local item type
	Physical descriptors
	Padding

	13 Human Interface Devices: Host Application
	HIDClass support routines
	Requesting information about the HID
	Sending and receiving reports
	Providing and using report data
	Managing HID communications

	Identifying a device
	Reading the Vendor ID and Product ID
	Getting a pointer to device capabilities
	Getting the device’s capabilities
	Getting capabilities of buttons and values

	Sending and receiving reports
	Sending Output reports with interrupt transfers
	Reading Input reports with interrupt transfers
	Writing Feature reports
	Writing Output reports with control transfers
	Reading Feature reports
	Reading Input reports with control transfers
	Closing communications

	14 Using WinUSB for Vendor-defined Functions
	Capabilities and limits
	Device requirements
	Host requirements
	Driver requirements
	Device firmware

	Accessing the device
	Creating a SafeWinUsbHandle
	Obtaining a WinUSB handle
	Requesting an interface descriptor
	Identifying the endpoints
	Setting pipe policies
	Writing bulk and interrupt data
	Reading bulk and interrupt data
	Using vendor-defined control transfers
	Selecting an alternate interface
	Writing data: isochronous transfers
	Reading data: isochronous transfers
	Closing communications

	15 Using WinUSB’s System INF File
	Microsoft OS 1.0 descriptors
	Microsoft OS string descriptor
	Extended compat ID OS feature descriptor
	Extended properties OS feature descriptor
	Enumeration

	Microsoft OS 2.0 descriptors
	Microsoft OS 2.0 platform capability descriptor
	Microsoft OS 2.0 descriptor set
	Enumeration

	16 Using Hubs to Extend and Expand the Bus
	USB 2.0
	The hub repeater
	The transaction translator
	The hub controller
	Speed
	Maintaining active links

	USB 3.1
	Bus speeds
	SuperSpeed
	SuperSpeedPlus
	Managing traffic

	The hub class
	Hub descriptors
	Hub class requests

	17 Managing Power
	Power options
	Using bus current
	Bus voltage
	Bus-powered devices

	Hub power
	Power sources
	Over-current protection
	Power switching

	Conserving power
	USB 2.0 Link Power Management
	Suspend
	Sleep
	Enhanced SuperSpeed power management

	Advanced power delivery capabilities
	Requirements
	Negotiating power
	Role swapping
	Vendor-defined messages

	Power management under Windows
	Computer power states
	Utilities

	Battery charging
	Charger types
	Charger detection
	Charging dead or weak batteries

	18 Testing and Debugging
	Tools
	Hardware protocol analyzers
	Software protocol analyzers
	Traffic generators

	Compliance testing
	Checklists
	USB Command Verifier software
	Device Framework tests
	Interoperability tests
	Current measurement
	Electrical tests
	Certified USB Logo

	Windows hardware certification
	Windows hardware certification
	Driver signatures
	Test-signing a driver
	Microsoft USB Test Tool (MUTT)

	19 Packets on the Bus
	USB 2.0
	Low speed and full speed bus states
	High speed bus states
	Data encoding
	Staying synchronized
	Timing accuracy
	Packet format
	Inter-packet delay
	Test modes

	USB 3.1
	Data scrambling
	Encoding
	Link layer
	Reset
	Signaling
	Negotiating speed

	20 Electrical and Mechanical Interface
	USB 2.0
	Transceivers
	Cables and connectors

	USB 3.1
	Transmitters and receivers
	Cables and connectors

	USB Type-C cables
	Benefits
	Cables and connectors
	New cable connections
	Data routing

	Other ways to connect
	Inter-Chip
	Isolated interfaces
	Long distance links
	Going wireless

	21 Hosts for Embedded Systems
	The Targeted Host
	The Targeted Peripheral List
	Targeted Host types
	Bus current
	Turning off bus power
	The Micro-AB receptacle

	Embedded Hosts
	Differences from conventional host ports
	Host connectors
	Functioning as a USB device

	OTG devices
	Requirements
	Cables and connectors
	The A-Device and B-Device
	The OTG descriptor
	Host Negotiation Protocol (HNP)
	Role Swap Protocol

	Choosing a development platform
	Comparing options
	Embedded PC
	General-purpose microcontroller
	Interface chip
	Host module

